
GRID SCHEDULING DIVISIBLE LOADS FROM MULTIPLE SOURCES VIA
LINEAR PROGRAMMING

Mequanint A. Moges
Department of Electrical and Computer Engr.

Stony Brook University
Stony Brook, NY 11794

email: mmoges@ece.sunysb.edu

Dantong Yu
Department of Physics

Brookhaven National Laboratory
Upton, NY 11973

email: dtyu@bnl.gov
Thomas G. Robertazzi

Department of Electrical and Computer Engr.
Stony Brook University
Stony Brook, NY 11794

email: tom@ece.sunysb.edu

ABSTRACT
To date solutions for optimal finish time and job alloca-
tion in divisible load theory are largely obtained only for
network topologies with a single load originating (root)
processor. However in large-scale data intensive problems
with geographically distributed resources, load is generated
from multiple sources. This paper introduces a new divisi-
ble load scheduling strategy for tree networks with two load
originating processors. Solutions for an optimal allocation
of fraction of loads to nodes in single level tree networks
are obtained via linear programming. Performance evalua-
tion of a two source homogeneous single level tree network
with concurrent communication strategy is presented.

KEY WORDS
Divisible Loads, Scheduling, Tree Networks, Linear Pro-
gramming, Multiple Source.

1 Introduction

The problem of minimizing the processing time of ex-
tensive processing loads originating from various sources
presents a challenge that, if successfully met, could fos-
ter a range of new creative applications. Inspired by this
challenge, we sought to apply divisible load theory to the
problem of grid computing scheduling involving multiple
sources connected to multiple sinks. So far research in this
area includes [1] where tasks arrive according to a basic
stochastic process to multiple nodes and [2] presents a first
step technique for scheduling divisible loads from multiple
sources to multiple sinks, with and without buffer capacity
constraints.

Divisible load theory [3],[4],[5] is characterized by
the fine granularity and large volume of loads. There
are also no precedence relations among the data elements.
Such a load may be arbitrarily partitioned and distributed
among processors and links in a system. The approach is
particularly suited to the processing of very large data files
in signal processing, image processing, experimental data

processing, grid computing and computer utility applica-
tions.

There has been an increasing amount of study in di-
visible load theory since the original work of Cheng and
Robertazzi [6] in 1988. The majority of these studies de-
velop an efficient load distribution strategy and protocol in
order to achieve optimal processing time in networks with
a single root processor. The optimal solution is obtained
by forcing the processors over a network to all stop pro-
cessing simultaneously. Intuitively, this is because the so-
lution could be improved by transferring load if some pro-
cessors were idle while other are still busy [7]. Such studies
for network topologies including linear daisy chains, tree
and bus networks using a set of recursive equations were
presented in [6],[8],[9] respectively. There have been fur-
ther studies in terms of load distribution policies for hy-
percubes [10] and mesh networks [11]. The concept of
equivalent networks [12] was presented for complex net-
works such as multilevel tree networks. Work has also
considered scheduling policy with multi-installment [13],
multi-round algorithms [14], independent task scheduling
[15], fixed communication charges [16], detailed parame-
terization and solution reporting time optimization [17] and
combinatorial optimization [18]. Recently, though divisi-
ble load theory is fundamentally a deterministic theory, a
study has been done to show some equivalence to Markov
chain models [19].

As mentioned earlier, almost all of the previous re-
search has assumed a network in which the processing load
originates at a single node. This paper, unlike the previous
research papers, presents the application of divisible load
theory to tree networks with two load originating (root)
processors. Applications include high energy and nuclear
physics experiments that require an effective analysis of ex-
tensive data by geographically distributed nodes that must
work closely together.

The organization of this paper is as follows. In section
2, the system model used in this paper is discussed. The
scheduling of divisible load in single level tree networks

439-153 423

debbie

for concurrent communication strategy with two root pro-
cessors is presented in section3. Section4 presents the
respective performance analysis results in terms of finish
time. Finally the conclusion appears in section5.

2 Two Root Processors System Model

In this section, the various network parameters used in this
paper are presented along with some notation and defini-
tions. The network topology discussed in this study is a
tree network consisting of two root processors (P1 andP2)
andN−2 child processors (P3, ... ,PN) with 2(N−2) links
as shown in Fig. 1. It will be assumed that the total process-
ing load considered here is of the arbitrarily divisible kind
that can be partitioned into fractions of loads to be assigned
to each processor over a network. The two root processors
keep their own fraction of loads (α1 andα2) and communi-
cate/distribute the other fractions of loads (α3, α4, ... αN)
assigned to the rest of processors in the network. Each pro-
cessor begins to process its share of the load once the load
share from either root processor has been completely re-
ceived.

The load distribution strategy from either root proces-
sors to the child processors may be sequential or concur-
rent. In the sequential load distribution strategy, each root
processor is able to communicate with only one child at a
time. However, in the case of concurrent communication
strategy, each root processor can communicate simultane-
ously/concurrently with all the child processors. The lat-
ter communication strategy can be implemented by using
a processor which has a CPU that loads an output buffer
for each output link. In this case it can be assumed that
the CPU distributes the load to all of its output buffers at
a rapid enough rate so that the buffer outputs are concur-
rent. In this paper the concurrent communication strategy
is considered.

P1 P2

P4 PN

z13 z1N

z23

z2N

P3

z14 z24

root processor 1 root processor 2

Figure 1. Single level tree network with two root proces-
sors.

2.1 Notations and Definitions:

Li: Total processing load originated from root proces-
sori, (i = 1, 2).

αi: The total fraction of load that is assigned by the
root processors to childi.

α1i: The fraction of load that is assigned to processor
i by the first root processor.

α2i: The fraction of load that is assigned to processor
i by the second root processor.

αi = α1i + α2i, i = 3, 4, ..., N.

ωi: A constant that is inversely proportional to the
processing speed of processori in the network.

z1i: A constant that is inversely proportional to the
speed of link between the first root processor and
theith child processor in the network.

z2i: A constant that is inversely proportional to the
speed of link between the second root processor
and theith child processor in the network.

Tcp: Processing intensity constant. This is the time
that it takes theith processor to process the entire
load whenωi = 1. The entire load can be processed
on theith processor in timeωiTcp.

Tcm: Communication intensity constant. This is the
time that it takes to transmit all the processing load
over a link whenzi = 1. The entire load can be
transmitted over theith link in time ziTcm.

Ti: The total time that elapses between the begin-
ning of the scheduling process att = 0 and the
time when processori completes its processing,
i = 1, ..., N . This includes communication time,
processing time and idle time.

Tf : This is the time when the last processor finishes
processing.

Tf = max(T1,T2, . . . ,TN).

One convention that is followed in this paper is that the
total load originating at the two root processors is assumed
to be normalized to be a unit load. That is,

L1 + L2 = 1.

3 Optimal Scheduling Strategies

The load scheduling strategies presented here targets find-
ing solutions for optimal finish time (make-span) and job
allocation in single level tree networks with two root pro-
cessors. Most previous load scheduling strategies in divisi-
ble load models can be solved algebraically in order to find
the optimal finish time and load allocation to processors

424

and links. In this case optimality is defined in the context
of the specific interconnection topology and load distribu-
tion schedule used. An optimal solution is usually obtained
by forcing all processors to finish computing at the same
time. Intuitively, if there exist idle processors in the net-
work, load can be transferred from busy processors to those
idle processors [7]. This section covers the load scheduling
strategies proposed for tree networks with two root proces-
sors.

3.1 Single Level Tree Network with Two
Root Processors

The network topology considered here is a tree network
with two root processors andN−2 child processors. In this
case, it is assumed that the total processing load originates
from the two root processors (P1 andP2). The schedul-
ing strategy involves the partitioning and distribution of the
processing loads originated fromP1 andP2 to all the pro-
cessors. The load distribution process proceeds as follows:
the total processing loads originated fromP1 andP2 are
assumed to beL1 andL2 respectively. Each root proces-
sor keeps some fraction of the respective processing load
for itself to compute and distributes the remaining load si-
multaneously to the child processors. The timing diagram
shown in Fig. 2, shows the load distribution process dis-
cussed above. The figure shows that at timet = 0, the
processors are all idle. The child processors start computa-
tion only after completely receiving their assigned fraction
of load from either of the two root processors.

Now the equations that govern the relations among
various variables and parameters in the network can be
written as follows:

T1 = α1ω1Tcp (1)

T2 = α2ω2Tcp (2)

T3 = (α13 + α23)ω3Tcp + α13z13Tcm (3)

TN = (α1N + α2N)ωNTcp + α1Nz1NTcm. (4)

As it was mentioned earlier, since total measurement
load originating at the two root processors is assumed to be
normalized to a unit load, the fractions of the total process-
ing load should sum to one as:

L1 + L2 = 1 (5)

α1 + α2 + α3 + ... + αN−1 + αN = 1 (6)

Since

L1 = α1 +
N∑

j=3

α1,j (7)

L2 = α2 +
N∑

j=3

α2,j (8)

P1 T1

P2

P3 T3

T2

 α13z13Tcm

 α14z14Tcm

P4 T4
 α14ω4Tcp α24ω4Tcp

 α13ω3Tcp α23ω3Tcp

 α23z23Tcm

 α24z24Tcm

 α2ω2Tcp

 α1ω1Tcp

 α1Nz1NTcm

 α2Nz2NTcm

PN TN
 α1NωNTcp α2NωNTcp

Figure 2. Timing diagram for a single level tree network
with two root processors and concurrent communication.

The normalization equation given above can also be
written in terms of the fraction of loads as:

α1 + α2 +
N∑

j=3

α1,j +
N∑

j=3

α2,j = 1 (9)

As it can be seen from the timing diagram shown in
Fig. 2, all processors stop processing at the same time, thus
we have:

T1 = T2 = T3 = . . . =TN

Based on the above set of equations, one can write the
following set ofN − 1 equations:

α1ω1Tcp = α2ω2Tcp (10)

α2ω2Tcp = α3ω3Tcp + α13z13Tcm (11)

α3ω3Tcp + α13z13Tcm = α4ω4Tcp (12)

+ α14z14Tcm

αi−1ωi−1Tcp + α1i−1z1i−1Tcm = αiωiTcp (13)

+ α1iz1iTcm

wherei = 3, 4, ..., N.

425

As it can be seen from the above set of equations,
there is a smaller number of equations than the number of
unknowns. AnotherN − 2 equations can be written by set-
ting up relationship between the fractions of loads within
each child processor as:

α23z23Tcm ≤ α13(z13Tcm + ω3Tcp) (14)

α24z24Tcm ≤ α14(z14Tcm + ω4Tcp) (15)

α2Nz2NTcm ≤ α1N (z1NTcm + ωNTcp) (16)

In this case, there will be2N−1 equations (including
the normalization equations) and2N − 2 unknowns. This
will lead us to a linear programming problem with the
objective function that minimizes the total processing time
of the network. In this case the objective function will be:

Minimize:

Tf = α1ω1Tcp (17)

Subject to:

α1ω1Tcp - α2ω2Tcp = 0
α2ω2Tcp - α3ω3Tcp - α13z13Tcm = 0

α3ω3Tcp + α13z13Tcm - α4ω4Tcp - α14z14Tcm = 0
.
.

αN−1ωN−1Tcp + α1N−1z1N−1Tcm - αNωNTcp -
α1Nz1NTcm = 0

L1 - α1 -
∑N

j=3 α1,j = 0

L2 - α2 -
∑N

j=3 α2,j = 0

α23z23Tcm - α13(z13Tcm + ω3Tcp) ≤ 0
α24z24Tcm - α14(z14Tcm + ω4Tcp) ≤ 0

α2Nz2NTcm - α1N (z1NTcm + ωNTcp) ≤ 0

αi ≥ 0

The first set of equality equations enforce the con-
straints that all processors should stop processing at the
same time for the optimality condition. The inequality set
of constraints state that the child processors do their com-
putation without any interruption. The last equation is that
the fractions of the assigned load should be positive. Fi-
nally, the objective function is to minimize the total pro-
cessing time needed to process the loads from the two root
processors.

4 Processing Finish Time (Make Span) Re-
sults

This section presents the plots of finish time vs. number of
processors in a single level tree network with two root pro-
cessors. The results are obtained by using linear program-
ming with the objective function of minimizing the total

processing time. In this case a homogeneous network is
considered to study the effect of communication and com-
putation speed variations and the number of processors on
the total processing time.

In Fig. 3, the finish time is plotted against the num-
ber of processors in the network for different inverse bus
speeds,z1 which is the communication link between the
first root processor and the child processors. The communi-
cation link between the second root processor and the child
processors is set to be fixed toz2 = 1.

The tree network that is used to obtain the plot in
Fig. 3 has a homogeneous link and processor speed. In
this caseω = 2 and the values ofTcm andTcp are also set to
be equal to one. The plot shows that a better finish time is
obtained as the number of processors in the network is in-
creased and when the link speed is faster. This is expected
as more processors would have been involved in computa-
tion as the link speed is increased.

5 10 15 20 25 30 35
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of Processors

F
in

is
h

T
im

e

z1=2.5
z1=2.0
z1=1.5
z1=1.0
z1=0.5

Figure 3. Finish time versus number of processors, for two
root sources single level homogeneous tree network and
variable inverse bus speed, z1, (first root processor links).

The plot shown in Fig. 4 shows the performance of
the network when the communication link between the first
root processor and the child processorsz1 is fixed and the
communication link between the second root processor and
the child processorsz2 varies from 0.5 to 2.5. For these pa-
rameters, as shown in the plot the finish time is the same
regardless of the variation ofz2. The computation of the
fraction of load that originates from the second processor
starts only after the completion of the processing load that
originated from the first processor. Thus the variation of
the link speedz2 has no effect on the total processing time.
As mentioned in the earlier sections, this whole process as-
sumes that the nodes are always busy computing the loads
originated from the two root processors. That is, there is no
idle time between computation time.

In Fig. 5, the finish time is plotted against the number

426

5 10 15 20 25 30 35
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Processors

F
in

is
h

T
im

e

z2=0.5
z2=1.0
z2=1.5
z2=2.0
z2=2.5

Figure 4. Finish time versus number of processors, for
two root sources single level homogeneous tree network
and variable inverse bus speed, z2, (second root processor
links).

of processors in the network for different inverse processor
speed,ω. In this casez1 andz2 are set to be equal to 0.5
and the values ofTcm andTcp are set to be equal to one.
The plot shows that a better finish time is obtained as the
number of processors in the network is increased and when
the processor speed is faster.

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Processors

F
in

is
h

T
im

e

w=1.0
w=1.5
w=2.0
w=2.5
w=3.0

Figure 5. Finish time versus number of processors, for two
root sources single level homogeneous tree network and
variable inverse processor speed,ω.

5 Conclusion

In this paper, solutions for optimum allocation of loads
to processors over a single level tree networks with two

root processors are obtained via an optimization problem
that uses linear programming. The objective is to find a
minimum processing time by distributing processing loads
(jobs) that originate from different sources. A performance
evaluation of these networks with this new scheduling strat-
egy is provided and the effects of the number of processors
and speeds of links and processors on the finish time are
studied. For the homogeneous single level tree network
with a concurrent communication load distribution strategy
considered in this study the finish time is inversely propor-
tional to the number of processors in the network.

Currently, we are in the process of extending the two
processor model to consider sequential load distribution
strategy and multi-level tree networks. It will be also in-
teresting to study the complexity involved in dealing with
networks with more than two root processors.

Acknowledgments

The authors would like to acknowledge the support of NSF
grant CCR-99-12331.

References

[1] K. Ko and T.G. Robertazzi, Scheduling in an environ-
ment of multiple job submissions,Proceedings of the
2002 Conference on Information Sciences and Sys-
tems, Princeton NJ, USA, 2002.

[2] H.M. Wong, B. Veeravalli, D. Yu and T.G. Robertazzi,
Data intensive grid scheduling: Multiple sources with
capacity constraint,IASTED International Confer-
ence on Parallel and Distributed Computing and Sys-
tems (PDCS 2003), Marina del Rey, CA, USA, 2003.

[3] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Rober-
tazzi, Scheduling divisible loads in parallel and dis-
tributed systems(Los Alamitos, CA: IEEE Computer
Society Press, 1996).

[4] V. Bharadwaj, D. Ghose, T.G. Robertazzi, Divisible
load theory: A new paradigm for load scheduling in
distributed systems,Cluster Computing, 6, 2003, 7-
18.

[5] T.G. Robertazzi, Ten reasons to use divisible load the-
ory, Computer, 36, 2003, 63-68.

[6] Y.C. Cheng and T.G. Robertazzi, Distributed com-
putation with communication delays,IEEE Transac-
tions on Aerospace and Electronic Systems, 22, 1988,
60-79.

[7] J. Sohn and T.G. Robertazzi, Optimal divisible load
sharing for bus networks,IEEE Transactions on
Aerospace and Electronic Systems, 32, 1996, 34-40.

[8] Y.C. Cheng and T.G. Robertazzi, Distributed compu-
tation for a tree network with communication delays,

427

IEEE Transactions on Aerospace and Electronic Sys-
tems, 26, 1990, 511-516.

[9] S. Bataineh and T.G. Robertazzi, Bus oriented load
sharing for a network of sensor driven processors,
IEEE Transactions on Systems, Man and Cybernet-
ics, 21, 1991, 1202-1205.

[10] J. Blazewicz and M. Drozdowski, Scheduling divisi-
ble jobs on hypercubes,Parallel computing, 21, 1996,
1945 - 1956.

[11] M. Drozdowski and W. Glazek, Scheduling divisible
loads in a three-dimensional mesh of processors,Par-
allel Computing, 25, 1999, 381-404.

[12] T.G. Robertazzi, Processor equivalence for a linear
daisy chain of load sharing processors,IEEE Transac-
tions on Aerospace and Electronic Systems, 29, 1993,
1216-1221.

[13] V. Bharadwaj, D. Ghose, V. Mani, Multi-installment
load distribution in tree networks with delays,IEEE
Transactions on Aerospace and Electronic Systems,
31, 1995, 555-567.

[14] Y. Yang, H. Casanova, UMR: A multi-round algo-
rithm for scheduling divisible workloads,Proceed-
ings of the International Parallel and Distributed Pro-
cessing Symposium (IPDPS’03), Nice, France, 2003.

[15] O. Beaumont, A. Legrand, and Y. Robert, Optimal al-
gorithms for scheduling divisible workloads on het-
erogeneous systems,12th Heterogeneous Computing
Workshops, HCW’2003, 2003.

[16] J. Blazewicz and M. Drozdowski, Distributed pro-
cessing of distributed jobs with communication
startup costs,Discrete Applied Mathematics, 76,
1997, 21-41.

[17] A.L. Rosenberg, Sharing partitionable workloads in
heterogeneous NOWs: greedier is not better. In D.S.
Katz, T. Sterling, M. Baker, L. Bergman, M. Paprzy-
cki, and R. Buyya, editors,Cluster Computing, 2001,
124-131.

[18] P.F. Dutot, Divisible load on heterogeneous linear ar-
ray,Proceeding of the International Parallel and Dis-
tributed Processing Symposium (IPDPS’03), Nice,
France, 2003.

[19] M. Moges and T.G. Robertazzi, Optimal divisible
load scheduling and Markov chain models,Proceed-
ings of the 2003 Conference on Information Sciences
and Systems, The Johns Hopkins University, Balti-
more, MD, USA, 2003.

428

