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High radiative efficiency in moderately doped n-InP results in the transport of holes dominated by 
photon-assisted hopping, when radiative hole recombination at one spot produces a photon, whose 
interband absorption generates another hole, possibly far away. Due to “heavy tails” in the hop 
probability, this is a random walk with divergent diffusivity (process known as the Lévy flight). Our 
key evidence is derived from the ratio of transmitted and reflected luminescence spectra, measured 
in samples of different thicknesses. These experiments prove the non-exponential decay of the hole 
concentration from the initial photo-excitation spot. The power-law decay, characteristic of Lévy 
flights, is steep enough at short distances (steeper than an exponent) to fit the data for thin samples 
and slow enough at large distances to account for thick samples. The high radiative efficiency makes 
possible a semiconductor scintillator with efficient photon collection. It is rather unusual that the 
material is “opaque” at wavelengths of its own scintillation. Nevertheless, after repeated recycling 
most photons find their way to one of two photodiodes integrated on both sides of the semiconductor 
slab. We present an analytical model of photon collection in two-sided slab, which shows that  
the heavy tails of Lévy-flight transport lead to a high charge collection efficiency and hence high 
energy resolution. Finally, we discuss a possibility to increase the slab thickness while still 
quantifying the deposited energy and the interaction position within the slab. The idea is to use a 
layered semiconductor with photon-assisted collection of holes in narrow-bandgap layers spaced by 
distances far exceeding diffusion length. Holes collected in these radiative layers emit longwave 
radiation, to which the entire structure is transparent. Nearly-ideal calculated characteristics of a 
mm-thick layered scintillator can be scaled up to several centimeters. 

Keywords: Photoluminescence; photon recycling; anomalous diffusion; scintillators.  

1.   Introduction 

The term “Lévy flight” (LF) was coined by Benoît Mandelbrot to describe a random 
walk, in which step lengths ℓ have a probability distribution that is heavy-tailed. 
Although the exact definitions of “heavy tailing” vary in the literature, we shall reserve 
the term to distributions ( )ℓP  that do not possess a variance as they decrease too slowly 

at large steps, (1 )( ) γ− +∝ℓ ℓP . For the index γ  in the range 0 2γ< < , the distribution 

itself can be normalized, ( ) 1d =∫ ℓ ℓP , but its second moment, 2 2 ( ) d= ∫ℓ ℓ ℓ ℓP , 

diverges. Although one often speaks of “anomalous diffusion”, the LF random walk 
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cannot be described by an ordinary diffusion equation. The conventional diffusivity is not 
even defined for such a random walk. 

Possibility of statistical description of the random walk (e.g., through evaluation of a 

particle distribution that emerges from a point-type source after a given number of steps) 
relies on a statistical theorem that defines the limit of a sum of randomly distributed 
numbers (in our case these are the lengths of individual steps). If the step length 

distribution ( )ℓP  decreases rapidly enough for large steps (namely, when 2γ > ) the 
result is given by the Central Limit Theorem (CLT) and the sum has a normal (Gaussian) 
distribution. When the steps are distributed with heavy tails, their sum does not follow the 

CLT and is not Gaussian. It may be still described by a universal (though γ -dependent) 
distribution, called the stable distribution. The first systematic studies of the stable 
distributions originate from Paul Lévy and Aleksandr Khinchin [1]. 

The LF transport problem has been extensively studied mathematically. Description 
of the anomalous transport in terms of fractional dynamic equations or, for random walks 
in external field, fractional Fokker-Planck equations, is amply discussed in the reviews 

[2-4]. These phenomena are well-known to astrophysicists, as they occur in the problem 
of transport of resonance radiation in celestial bodies [5, 6]. They are also known in 
plasma physics as the imprisonment of resonance radiation in gaseous discharge [7, 8]. 

Interestingly, LF transport is more common in nature than one might think: thus, Lévy 
flights were recently invoked to explain movement strategies in mussels as revealed in 
the patterning of mussel beds [9], as well as ocean predators search strategies in regions 

where prey is sparse [10]. Birds and other animals also seem to follow Lévy flights when 
foraging [11]. Finally, a vast literature is devoted to Lévy flights in finance, “random 
walk down the Street” [12]. 

Nevertheless, there have been preciously few experimentally available laboratory 
systems for studying LF transport, ideally with variable parameters. A rather ingenious 
such system was recently demonstrated  by Barthelemy et al. [13], who embedded 

scattering particles in a glass matrix – together with non-scattering glass microspheres of 
same refractive index as the matrix. The sole purpose of these spacer spheres was to 
modify locally the average separation between the scattering particles and thus control 

the step-length distribution for photon transport. With specially designed, highly non-
trivial, distributions of microspheres diameter, the authors were able to observe a Lévy 
flight of light. 

Recently, we described [14] a more “natural” lab system exhibiting Lévy flight, 
namely the direct-gap semiconductor of high radiative efficiency, specifically n-doped 
InP. The randomly walking particles in this case are minority carriers (holes) and their 

dominant transport process is photon-assisted hopping. This process, also known as the 
photon recycling, consists of radiative recombination of a hole at one spot producing a 
photon, whose subsequent interband absorption leads to the re-emergence of a hole at 

another spot, possibly far away. The high radiative efficiency and low free-carrier 
absorption of light in lightly doped InP ensure that photon recycling continues for about  
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100 times before a hole recombines non-radiatively or a photon is absorbed without 
leaving a hole behind. The randomness of free flight is set by the emission spectrum in 
radiative recombination. This spectrum, combined with the interband absorption 

probability and the probability of photon propagation to a given distance, defines the 
probability distribution for free flights of photons. Photons generated in the long-
wavelength wing of the emission spectrum travel long distances before they get re-

absorbed and are responsible for the divergent variance of the distribution and the  
Lévy-flight nature of the resulting random walk. This process is reviewed in Section 2. 

Manifestations of anomalous transport were found [14] by studying photo-

luminescence in n-doped InP. The key evidence was derived from the ratio of transmitted 
and reflected luminescence spectra, measured in samples of the same doping level but 
very different thicknesses (350 µm vs. 50 µm). The results give a direct experimental 

proof of the non-exponential decay of the minority-carrier concentration from the surface 
where the holes were photo-excited initially. The power-law decay of the hole 
concentration, characteristic of the LF transport, is steep enough at short distances 

(steeper than an exponent) to fit the data for the thin sample, and at the same time slow 
enough at large distances (again, compared to an exponent) to account for the data for 
thick samples. This work is reviewed in Section 3. 

Transport at much larger distances (up to centimeters) was studied in experiments 
[15], where photoluminescence was registered from the edge of an InP wafer as a 
function of the distance from the excitation spot on the broadside surface. Since the 

extremely long photon propagation is owing to the transparency region at the red wing of 
the emission spectrum, one observes a red shift in the luminescence spectrum, with larger 
shift corresponding to longer distances. Analysis of this shift provides an independent 

and accurate determination of the Urbach tails in moderately doped semiconductors. This 
work is reviewed in Section 4. 

Sections 5 and 6 deal with practical applications of the anomalous transport of 

minority carriers in semiconductors of high radiative efficiency, specifically to the  
so-called semiconductor scintillator [16-18]. Normally, scintillators are not made of 
semiconductor material. The key issue in implementing a semiconductor scintillator is 

how to make the material transmit its own infrared luminescence, so that the response 
signal generated deep inside the semiconductor slab could reach its surface without 
tangible attenuation. In high-efficiency semiconductors, the long tails of Lévy-flight 

transport come to the rescue, providing near-ideal photon collection. Luminescence 
experiments [14, 15] support a simple model of photon collection, which we shall refer to 
as the “on the spot approximation” (OTSA). In this model, the signal received by a 

photodetector at the surface arises from repeated emission at the same spot where the 
initial minority carrier was generated. Each attempt has a small probability of “unhappy” 
termination, due to the nonradiative channel of recombination or free-carrier absorption. 

The happy end corresponds to the photon reaching the surface and being collected at the 
photodetector. The advantage of the OTSA is that it leads to a close-form expression for  
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the collected signal, by summing a geometric series. As discussed in Section 5, the OTSA 
is very close to reality for the typical minority-carrier distributions generated by Lévy-
flight transport. 

Our understanding of the anomalous transport of minority carriers in direct-gap 
semiconductor of high radiative efficiency has led to the invention [18] of a layered 
scintillator, described in Section 6. The idea of embedding radiation sites in a 

semiconductor (or insulator) material is nearly as old as the scintillator concept itself 
[19]. In all such devices [20], the photo-generated carriers migrate to the radiation sites 
and recombine there emitting deep subband light, for which the material is transparent. 

The density of the radiation sites must be very high, so that the typical travel distance for 
carriers is much smaller than their diffusion length. The novelty of our idea [18] is to 
employ the photon-assisted transport of minority carriers rather than their ordinary 

diffusion. This allows one to space out the radiation sites (in our case, narrow low-
bandgap wells embedded in a wide-gap semiconductor matrix) by a large distance. 
Ultimately, this may lead to the implementation of centimeter-thick semiconductor 

scintillators. 
Our conclusions will be summarized in Section 7. 

2.   Photon Assisted Random Walk of Minority Carriers in InP  

Suppose that an electron-hole pair is created by optical excitation in an n-doped infinite 
crystal. There is no interest in tracing the additional single electron as it produces little 
change in the majority-carrier system. All the action is due to the additional hole. Firstly 

(on a sub-picosecond time scale), it will become “thermalized”, i.e. lose the excess 
energy it obtained from the light quantum. On a longer (nanosecond) time scale, the hole 
will move randomly with the thermal velocity until recombining with an electron. This 

type of random walk corresponds to the ordinary diffusion. The average hole lifetime τ  
depends on the electron concentration and is in the nanosecond range. The recombination 
process can be either radiative or non-radiative, and the rates of these processes are 

additive, 1 1 1
rad nrτ τ τ− − −= + . The probability of radiative recombination is described by the 

emission quantum efficiency η , viz. 

 nr

nr rad

τ
η

τ τ
=

+
. (2.1) 

The non-radiative lifetime in high-quality crystals reaches several microseconds, 

resulting in 90η > %. The emitted photons disappear mainly via interband absorption 
process, resulting in the generation of a new hole and then a new photon emitted via 
radiative recombination. The absorption-reemission sequence will be repeated many 

times until the recycled hole recombines non-radiatively or the intermediate photon is 
destroyed by a residual non-interband absorption process. This sequential process is 
called the photon recycling. Due to the short thermalization time of holes, the emission 
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spectrum remains the same at all stages of the recycling and is well described by the 
equilibrium electron-hole recombination spectrum. 

2.1.   Diffusion equation with a recycling term 

The spatial distribution of holes is formed by two additive transport processes: (i) the 
random flights of holes (at sub-micron distances) interrupted by scattering, as in the 
ordinary diffusion, and (ii) the photon-assisted transfer of holes over much larger 

distances. To quantify these processes we write down a modified diffusion equation for 
the concentration of holes ( , )p tr : 

 ( , ) ( , )
p p

D p G t R t
t τ

∆
∂

+ = − + +
∂

r r , (2.2)  

where D  is the diffusivity of holes, τ  is the hole lifetime against all recombination 

processes, and ( , )G tr  is the generation function defined as the concentration of holes 
generated per unit time. For a single hole generated at r = 0 and t = 0, this function is 

( , ) ( ) ( )G t tδ δ=r r . The last term ( , )R tr  is the recycling function, 

 ( )( , ) ( , )R t P p t d
η

τ
′ ′ ′= −∫r r r r r , (2.3) 

which describes the concentration of holes generated per unit time at point r due to the 
radiative recombination of holes present in the crystal at the time t.  

The factor ( )P ′−r r  in the integrand of Eq. (2.3) describes the probability that a hole 

at ′r generates another hole at r by the described emission-reabsorption process. For the 
two points separated by the distance r ′= −r r , this probability is given by 

 
2

exp[ ( ) ]
( ) ( ) ( )

4
i

i

E r
P r E E dE

r

α
α

π

−
= ∫N ,  (2.4) 

where ( )i Eα  is the light absorption coefficient due to interband processes only. The 

integrand in Eq. (2.4) is the product of three probabilities: (i) the probability of emission 
of a photon of energy E, described by the normalized emission spectral function ( )EN ; 

(ii) the propagation probability of this photon over the distance r ′= −r r  (this 

probability is described by the intensity distribution produced by a unit point source) ; the 
absorption probability of this photon, described by the factor ( )i Eα . One can easily 

check that the probability (2.4) is properly normalized, ( ) 1P r dV =∫ . 

Equation (2.2) with the recycling term (2.3) was first obtained in the papers by 

Holstein [7] and Biberman [21] for the radiative spread of the excited-atom concentration 
in gases and is known as the Biberman-Holstein equation. Solution of this equation in 3D 
case is complicated by the fact that the resultant distribution cannot be factorized as a 

product of distributions along perpendicular axes. In other words, in contrast to the 
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familiar Gaussian distribution, projections of the displacements on coordinate axes are 
correlated.a The source of these correlations and the entire difficulty reside in the 
recycling term. Nevertheless, one can find the solution of Eq. (2.2) quite generally by a 

trick due to V. A. Ambartsumyan [22], which transforms Eq. (2.2) for a point-like source 
into an equation for ( , )p z tɶ , which is the concentration ( , )p tr  integrated over the ( , )x y  
plane: 

 
0

( , ) 2 ( , , ) 2 ( , )
z

p z t p z t d p r t r drπ ρ ρ ρ π
∞ ∞

≡ =∫ ∫ɶ ,  (2.5) 

where 2 2 2
r z ρ= + . With the known ( , )p z tɶ , one can find ( , )p r t  by differentiating  

Eq. (2.5) with respect to z,  
The Ambartsumyan transformation expresses the solution for a point-like source in 

3D (the Green function of Eq. 2.2) in terms of the solution of a 1D problem with a plane 
source. 

 
1 ( , )

( , )
2

p z t
p r t

r z z rπ

∂
= −

∂ =

ɶ
. (2.6) 

The 1D concentration ( , )p z tɶ  obeys a much simpler equation that is obtained by 
integrating Eq. (2.2) over the ( , )x y  plane. The resulting 1D equation is of the form [23] 

 ( )
2

2

( , )
( , ) ( , )

2

p p p z t
D p z t z z dz G z t

t z

η

τ τ

∞

−∞

∂ ∂
′ ′ ′− + = − +

∂ ∂ ∫
ɶ ɶ ɶ

ɶɶ P , (2.7) 

where ( , )G z tɶ  is the generation term ( , )G tr  integrated over the ( , )x y  plane. The 
probability ( )z z ′−P  is given by 

 ( ) ( ) ( ) Ei[1, ( ) ]iz E E E z dEα α= ∫P N , (2.8) 

                                                      
a This can be illustrated in the instance when the characteristic function F(k) of the distribution is of the form 

 
0( ) ( )exp[ ]F P i dV r≡ − ⋅ =∫k r k r k  

In the 1-dimensional case, the inverse Fourier transformation of F(ki) generates a Cauchy distribution, 

 
2

0
2

0
1

1
)(

rx

r
xP

i

i
+

=
π

 

In the d-dimensional case, the transform of F(k) yields 

 
( ) 2/)1(2

0
2

0]2/)1[(
)(

dd

rr

rd
rP

+
+

+Γ
=

π
, where ∑= 22

i
xr . 

It is evident that the above expression for Pd(r) cannot be factorized, and hence different xi components are 
manifestly correlated. 
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where the exponential integral function is defined by 

 1

1

Ei (1, ) exp( )z t zt dt

∞
−= −∫ . 

The probability ( )z z ′−P  satisfies the normalization condition 

 tot

0

( ) 1z dz

∞

≡ =∫P P . (2.9)    

If one knows ( ),z z ′−P  then, for an infinite medium, Eq. (2.7) can be solved [24] 

by a Fourier transformation. Using this equation, one can study the temporary evolution 
of the total number of holes per unit length along the z axis. In view of its linearity,  
Eq. (2.7) can be equally well applied to the case of a planar excitation uniform in the 

( , )x y  plane – with ( , )G z tɶ  being the hole concentration generated per unit time. In this 
case, ( , )p z tɶ  is just the z-dependent concentration of holes. 

In the problem of interest to us, the ordinary diffusion term gives negligible 

contribution. With this term dropped (D = 0), Eq. (2.7) retains a simple probabilistic 
interpretation: it describes a 1-dimensional random walk of a particle created at 0z = . 
The distribution of jump lengths is given by ( )zP , the average time between jumps is 

τ , and 1 η−  is the probability of particle loss at any step. This interpretation suggests 
that Monte Carlo modeling should be a useful approach to studying ( , )p z tɶ . It has the 
advantage of being able to include various factors “difficult” in any analytic approach, 

such as effects of the boundaries, realistic shape of the generation pulse, etc. Our 
calculation begins with ascertaining the distribution ( )zP  of single jumps in the 
photon-assisted random walk of holes in n-InP. 

2.2.  Jump distribution 

We shall use Eq. (2.8) to evaluate ( )zP  from the experimentally measured [15, 25] 
interband absorption coefficient ( )i Eα  for moderately doped n-type InP. With the 

known ( )i Eα , the spectral density ( )EN  of photon emission in the quasi-equilibrium 
hole recombination process (minority holes recombining with majority electrons)  can be 
obtained by the thermodynamic relation due to van Roosbroek and Shockley [26],  

 2 /( ) ( ) E kT
iE A E E eα −=N , (2.10) 

which we shall refer to as the VRS relation. Expression (2.10) represents the “intrinsic” 

emission spectrum and it agrees very well with the spectra of luminescence measured 
[27] from thin epitaxial layers (especially when those are clad by wider-gap layers to 
prevent surface recombination). Experimentally observed bulk luminescence spectra 

differ from VRS and the distortion depends on the geometry of the experiment.  
As discussed in Sections 3 and 4, the main contribution to spectral distortion results 
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Fig. 2.1. Experimentally observed absorption spectrum (log scale) for moderately doped n-InP sample  
(ND = 2×1017 cm−3). Dashed lines show the fitting by Eq. (2.12). The intrinsic emission spectrum, derived from 
the VRS relation (2.10), is plotted on the linear scale. 

 

from energy-dependent filtering due to the re-absorption of outgoing photons. These 
experimentally accessible filtering functions contain a wealth of information about  

the steady-state minority-carrier distribution ( )p zɶ . In this section, concerned with 
evaluation of ( )zP , we are not interested in filtering and assume that the intrinsic 
(unfiltered) emission lineshape is faithfully given by the VRS relation. 

Both spectra, ( )i Eα  and ( )EN , are displayed in Fig. 2.1. Below the absorption 
edge, ( )i Eα  decreases exponentially 

 G

G

( )
ln

( )
i

i

E E E

E

α

α ∆

−
= . (2.11) 

If the bandgap GE  is independently known, the ( )i Eα  dependence is characterized by 

two parameters, absorption at the bandgap, G( )i Eα , and the tailing energy ∆  (Urbach 
tail). In a broader range that includes the absorption edge and the region GE E>  the 
dependence ( )i Eα  for moderately doped samples ( 18 3

D 10  cmN −< ) is well 

approximated by 

 0 0

G G

( )
1 exp[( ) / ]i

E E
E

E E E

α
α

∆

−
=

+ −
, (2.12) 

see the dashed line in Fig. 2.1. Here the first factor reflects an almost linear growth of 
( )i Eα  above the absorption edge and the second factor reproduces Urbach tailing  

(2.11). For the electron concentration 17 3
D 2 10  cmN −= × , parameters in (2.12) are 

GE = 1.35 eV, 0E = 0.9 eV, ∆ =  8.2 meV, and 5 1
0 6.6 10  cmα −= × . For higher 

concentrations, an increase is observed [15] in both GE  and ∆  (for 18 3
D 2 10  cmN −= × ,  
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GE = 1.36 eV, 0E = 1.2 eV, ∆ = 10.6 meV, and 5 1
0 1.2 10  cmα −= × ). Note that the 

Fermi level crosses GE  at 17 3
D 4.3 10  cmN −= ×  (at room temperature). At higher 

concentrations, the absorption spectra are influenced by the conduction band filling (the 

Moss-Burstein shift). 
Numerical evaluation of ( )zP  with Eq. (2.8) is presented in Figs. 2.2 (a, b). In  

the entire range of z, the dependence is very close to 

 min
1

min

( )
2( )

z
z

z z

γ

γ

γ
+=

+
P , (2.13) 

where min 0.1 µmz ≈  is a distance scaling parameter that stems from truncation of the 
power law at short-distances and normalization of the distribution (2.13). The essential 

parameter is the exponent γ , called the index of the distribution.  For moderately doped 
samples, in the range 17 3

D (2 to 6) 10  cmN −= ×  illustrated in Fig. 2.2 (a), the index 
varies from 0.69γ ≈  to 0.64, slightly decreasing with the doping level. 

Theoretical calculation of the index γ  in an analytical form can be carried out  
in a model, where the interband absorption is approximated by a function simpler than 
(2.12), viz. 

 0

G

( )
1 exp[( ) / ]i E

E E

α
α

∆
=

+ −
. (2.14) 

The function (2.14) decays exponentially below the absorption edge and saturates above 
it. This model correctly accounts for the Urbach tailing but it does not describe the 
approximately linear growth of ( )i Eα  at GE E> . Furthermore, the emission spectrum 

in this model can be described by Eq. (2.10) with ( )i Eα  given by (2.14) and the pre-
exponential factor replaced by its value at GE E=  (reasonable for GkT E∆ ≤ << ). The 
model yields a simple expression for the index, 

 1
kT

γ
∆

= − . (2.15) 

Equation (2.15) predicts lower values of γ  at lower temperatures. It also explains the 

decrease of γ  with increasing DN . The latter effect is due to the smearing of the 

absorption edge at higher doping, described by increasing tailing energy ∆ . Estimation 

of the index with Eq. (2.15) for moderately doped samples ( ∆ =  9.4 meV) gives  

0.64γ ≈   in close agreement with the more accurate numerical calculations. 

For heavier doping, the accurate numerical calculations yield a more complicated 

concentration dependence of γ  (see Table I) compared to that predicted by (2.15). The 

discrepancy is due to the fact that Eq. (2.14) is no longer a good approximation when the 

Moss-Burstein shift is large.  
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Fig. 2.2. Reabsorption probability P(z) calculated with Eq. (2.8) for moderately doped (a) and heavily doped  
(b) samples at room temperature. Relevant sample parameters are listed in Table I. Dashed lines correspond to 
the power-law approximation, Eq. (2.13). Note that the 3×1017 cm−3 sample is represented in both graphs for 
comparison. 

 
Finally, we note that in addition to interband absorption, n-doped InP has a residual 

“free-carrier” absorption, ( )fc Eα , which linearly grows with the doping and weakly 

depends on the energy in the vicinity of the interband absorption edge.  It can be easily 

taken into account by replacing ( ) ( ) ( ) ( )i i fcE E E Eα α α α→ = +  in the exponential 

propagation probability factor in Eq. (2.4). In Eq. (2.8), similar replacement has been 

actually done tacitly in the argument of the Ei function. As a result, the full probability 

(2.9) of interband reabsorption becomes less than unity, tot 1<P . However, this effect is 
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small. Experimentally, 17 1
D0.13 10  cmfc Nα − −= × at room temperature, and in the range 

of distances of our interest the effect of free-carrier absorption is negligible for all 

experiments discussed below. 

Table I. Parameters of the jump distribution P(z)  and the recycling factor Φ. 

ND (1018 cm−3) 0.2  to 0.6 2 3.7 6.3 8 

γ 0.69 to 0.64 0.79 0.7 0.64 0.69 

 zmin(µm) 0.1 0.6 0.7 1.0 1.4 

Φ 90 34 19 11 8 

2.3.   Stable distribution of minority carriers 

The emission-reabsorption probability (2.8) describes a one-dimensional photon-assisted 

motion of holes that we call “jumps” in distinction from the actual hole movement 
interrupted by scattering and described as conventional diffusion. The stochastic nature of 
this 1D random walk is associated with the emission spectrum ( )EN . The hole jump 

probability, accurately described by Eq. (2.13), is typical for the “anomalous diffusion” 
of the Lévy-flight type [3]. Its hallmark is the asymptotic spatial decay with a “heavy 
tail,” 1( ) 1 /z z γ+∝P , which has the power-law asymptotic index 2γ < . Since the 

second moment of this distribution diverges, one cannot describe the photon-assisted 
random walk of holes with a conventionally defined “enhanced” diffusion coefficient 

2
enh /D z τ∝ . However, for any finite number N of jumps zi, one can find the 

statistical (averaged over many histories) hole distribution ( , )p z N  for 
1

N

ii
z z

=
= ∑ .  

Monte Carlo simulation is well-suited for this purpose. The normalized hole 

distributions simulated with 0.76γ =  are presented in Fig. 2.3 (a) for several values of 
N. The initial excitation is localized at the origin. The heavy tails are very prominent on 
the logarithmic scale, especially in comparison with similar distributions shown in  

Fig. 2.3 (b) for the assumed index 2γ >  , when 2z  is finite and the random walk is 
Brownian. 

The statistical model of a random walk on an infinite line has been thoroughly studied 

[2, 3, 28]. After 1N >>  jumps originating from 0z = , the distribution approaches the 
so-called stable distribution [28] with a given index  2γ < , viz. 

 ( )
0

1
( , ) cos( ) exp Cp z N kz N z k dk

γ

π

∞
 = −  ∫ , (2.16) 

where  Cz  is a depth scaling factor, which depends on the short distance behavior of the 
jump distribution ( )zP . In our case, minCz z≈ by the order of magnitude. Comparing the 

distribution (2.16) with our Monte Carlo results, we find 0.23 µmCz = . Figure 2.3 (a) 
displays both the results of Monte Carlo simulations and the calculation using Eq. (2.16). 
Excellent agreement demonstrates high accuracy of the Monte Carlo approach that will 

be extended below to include “difficult” factors, such as various boundary conditions in 
the random walk over a finite slab. 
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Fig. 2.3. (a) Hole distribution p(z, N) calculated by Monte Carlo (noisy lines) assuming the jump probability 
P(z) in the form (2.13) with γ = 0.76 for an infinite crystal and holes generated at z = 0. Smooth lines are 
obtained by numerical evaluation of stable distribution (2.16) of same index.  
(b) Similar results for γ = 3.5 and zmin = 1 µm. The displayed curves p(z, N) calculated by Monte Carlo are very 

close to Gaussian curves of width  2
min

2 )15/8( zNz ××××==== , evaluated according to the central limit theorem. 

 

According to Eq. (2.16), the stable distribution is of the form 

 
1/ 1/

1 1
( , )

C

z
p z N g

zN N
γγ γ

 
=  

 
, (2.17) 

with the universal function ( )g zγ  characterized by only one parameter γ .  For this 

reason, the distribution is called “strictly stable”, its universality being similar to the 
universally Gaussian shape of the normal distribution that emerges in the case of 2γ > , 
when the random walk is Brownian. Figure 2.3 (b) illustrates the Monte Carlo simulated 
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distributions assuming ( )zP  of the form (2.13) with the index 3.5γ = . In this case, the 
2nd moment is finite, 2 2

min(8 / 15)z z= , and for large N, the distributions ( , )p z N  are 
normal, according to the central limit theorem. 

An important conclusion can be drawn by examining the asymptotic behavior of 
( )g zγ . It follows from (2.16) that at large z 

 
1

( ) C

C

z
g z

z z z

γ

γ

+
 →  >>  

, (2.18) 

which implies that 

 
1

( , ) C

C

z
p z N Nz z z

γ+
 →  >>  

. (2.19) 

Comparison of Eqs. (2.13) and (2.19) illustrates a major property of the random  
walk with a heavy-tailed jump distribution: at large distances, the dominant contribution 

to ( , )p z N  results from the single jumps from the starting point – with a pre-factor 
corresponding to the number of attempts. This result justifies the “on the spot 
approximation” (OTSA) that was mentioned in Introduction and will be put to practical 

use in Section 5. 

2.4.   Stationary hole distribution for constant excitation 

In the preceding Section we calculated the distribution of holes ( , )p z N  after a given 

number of jumps N upon their localized excitation, as if the hole jumps started all at once.  
We are now concerned with a continuous constant excitation and the resultant stationary 
distribution st ( )p z . To bridge these two problems, we consider the time evolution of  

the distribution ( , )p z t  after a short excitation pulse at 0t = . Given the ( , )p z t , we 
evaluate st ( )p z  by applying the Duhamel principle [29], viz. 

 st

0

( ) ( , ) exp( / ) /p z p z t t dtτ τ
∞

= −∫ , (2.20) 

where the exponential factor accounts for the decline of the hole concentration in time, 
with nrτ τ≈  being the average lifetime.b 

                                                      
b For the ordinary diffusion (Brownian random walk) one has )4/exp()4(),( 22/1

DtzDttzp −= −π . In this case, 

Eq. (2.20) yields 

,)/||(exp)2()( 1
st DD LzLzp −= −  

which describes an exponential decline of the concentration away from the excitation point, with a characteristic 
length τDLD = , called the diffusion length.  
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Equation (2.20) suggest a Monte Carlo approach to evaluating st ( )p z . Firstly, we 
interpret the simulated distribution ( , )p z N  as ( , )p z t  for a fixed “discrete” time 

radt Nτ=  in units of the radiation emission time. Next, we average the simulated 

distributions over the durations of random walk t  distributed as 1
nr nr( ) exp( / )-t tρ τ τ= − . 

This is equivalent to averaging over the number of jumps (recycling events) N for a  
given mean value N , which coincides by definition with the recycling factor NΦ ≡ . 

Thus, we have 

 st
1

( ) ( , ) exp( / )
N

p z p z N N
Φ

Φ
∞

=

= −∑ . (2.21) 

For 1Φ >> , the main contribution to the sum for all minz z>  comes from terms with 
1N >>  and hence both Eqs. (2.20) and (2.21) give very close results. 

The stationary distribution for a given recycling factor Φ  can also be found in an 

analytical form by substituting into (2.21) – instead of the Monte Carlo simulated 
distributions ( , )p z N  – the quadrature expression (2.16) for the stable distribution. 
Substituting rad/N t τ=  in (2.16) and then integrating (2.20) with radτ τΦ= , we obtain 

 st

0

1 cos( )
( )

1 ( )C

kz dk
p z

kz γπΦ Φ

∞

=
+∫ . (2.22) 

Equation (2.22) is a new result that generalizes the stationary distribution for a Brownian 
( 2γ > ) random walk to the case of a Lévy flight ( 2γ < ). Analysis of Eq. (2.22)  
readily shows the existence of two regions in the hole concentration profile, that of 

asymptotic decay and that of short jumps. In the asymptotic region the hole concentration 
is formed by repeated one-pass long-distance flights and hence it drops off like the  
jump probability itself, 1

st ( ) ( ) 1 /p z z z γ+∝ ∝P . The asymptotic region corresponds to 
1/

Cz zγΦ>> . The length 1/
F Cz zγΦ≡  characterizes the front spread distance; in our 

samples F Cz z>> , since 1Φ >>  and 1γ < . In the short-jumps region, Fz z<< , the 
concentration of holes drops off with distance at a much slower rate, 1

st ( ) 1 /p z z γ−∝ . 

Our Monte Carlo results for st ( )p z  are presented in Figs. 2.4 (a, b). We consider a 
relatively thin InP wafer with optical excitation near the front surface. The simulated 
distributions drop off with the distance in a non-exponential way, similar to Eq. (2.22) 

and characteristic of the LF transport. However, details are sensitive to the boundary 
conditions on the back surface. These effects are illustrated in Fig. 2.4 (a), which  
plots the st ( )p z  evaluated for samples with the same carrier concentration 

( 18 3
D 6.3 10  cmN −= × ) but different boundary conditions. A particular strong effect is 

produced by the reflecting back boundary conditions. The corresponding stationary 
distribution decays with a much slower exponent compared to that for a semi-infinite 

medium (non-reflecting back surface). The reflecting boundary conditions are ruled out 
by our experiments (Section 3), even though on the first glance they appear plausible, 
owing to the complete internal reflection of most light rays at the back surface of InP 

wafer. However, these rays go outside the observation and are effectively extinct. 
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Fig. 2.4.  Stationary distribution )(st zp  of holes generated near the front surface and calculated by Monte Carlo 
assuming the jump probability )(zP  in the form (2.13). Relevant distribution parameters for differently doped 

samples are listed in Table I. 

(a) InP sample ( 318
D cm 103.6 −×=N ) of finite thickness and different boundary conditions at the back surface, 

r: reflecting, a: absorbing, nr: non-reflecting (the latter means a semi-infinite sample with no back surface). 
Dashed lines show the power-law fitting with γ~1

minst )/()( ++= zzczp  where 12.0~ ====γ . 

(b) Distributions )(st zp  for differently doped samples with non-reflecting boundary conditions. The dashed line 

shows the exponential distribution for µm 45=DL (see footnoteb). 

 

The simulated distributions st ( )p z  for a set of differently doped samples and  
non-reflecting back boundary conditions are presented in Fig. 2.4 (b) on a log-log  
scale. Parameters of the jump probability ( )zP  and the recycling factor Φ  are listed  

in Table I. For comparison, we also show an exponentially decaying distribution 
corresponding to a Brownian random walk with diffusion length D 45 µmL = . 

With the non-reflecting boundary conditions on the back surface, the simulated 

distributions are accurately described by Eq. (2.22). For moderately doped samples, one 
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can estimate 300 µmFz ≈  and hence the onset of the asymptotic range is at distances 
larger than the sample thickness d. Neither the condition Fd z<<  nor Fd z>>  applies 
experimentally. In the sample range 0 z d< < , the stationary distributions have an 

intermediate asymptotic 1
st ( ) 1 /p z z γ+∝ ɶ  with 0.12γ γ≈ <ɶ . The concentration extends 

over a much larger region than could be expected from an exponential distribution and it 
drops off slower than the single-jump probability ( )zP  given by Eqs. (2.8) and (2.13). 

The normalized distributions sensitive to boundary conditions on the back surface, 
were found to be practically insensitive to the boundary conditions on the front surface.c 

Finally, we remark that the one-dimensional Lévy-flight transport is fully described 

by the integro-differential equation (2.7). This equation, with appropriate boundary 
conditions, can be solved numerically, using available COMSOL software. We evaluated 
the hole distributions in this way and found excellent agreement with the Monte Carlo 

results, except within a region of the order of the hole diffusion length near the sample 
surface. Far away from that region, the integro-differential equation admits of an analytic 
solution [5], which is again Eq. (2.22). 

3.   Transmission and Reflection Luminescence Spectra 

The basic experiment is illustrated in Fig. 3.1. Thin n-type InP wafers (mostly 350 µm, 
but some further thinned down to 250 µm and 50 µm) were illuminated by short 

wavelength radiation to ensure short penetration of the incident radiation into the  
wafer, so that the resulting distribution of holes is dominated by the carrier kinetics. The 
spectra were taken at room temperature in both reflection and transmission geometries. 

We shall denote these spectral functions by refl ( )I E  and trans ( )I E , and the total 
integrated luminescence intensities by reflL  and transL , respectively. The setup is 
schematically shown in Fig. 3.1 (a). It is convenient for the analysis to deal with the 

ratios of luminescence signals rather than the signals themselves, because the internal 
reflection factors at the wafer/air interface cancel out, being equal at the front and the 
back surface. 

Figure 3.1 (b) shows the measured intensity ratio of the transmission and reflection 
luminescence as a function of the majority doping DN .  The ratio trans refl/L L  increases 
both at high DN  (due to the Moss-Burstein effect) and at low DN  because of the 

enhanced photon recycling effect (higher recycling factor Φ ). 
The measured spectra refl ( )I E  and trans ( )I E  are distorted compared to the intrinsic 

emission spectrum ( )EN  in a different way, because of the different reabsorption-

filtering geometry, 

 trans trans( ) ( ) ( )I E F E E= N , (3.1a) 

 refl refl( ) ( ) ( )I E F E E= N . (3.1b) 

                                                      
c For example, the stationary distributions )(rf zp obtained with the reflecting front boundary conditions satisfy 
for z > 0 the expected relation )(2)(rf zpzp ∞≈  with the distribution )(zp∞  corresponding to fully infinite 
media ( ∞<<∞− z ). The factor of 2 corresponds to the contribution of an “image” source of photons provided 
by the reflecting boundary at z = 0. 
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Fig. 3.1. Transmission and reflection luminescence. 

(a) Schematic experimental setup. The excitation wavelength is chosen short enough to ensure small 
penetration of the incident radiation.  

(b) Intensity ratio of the transmission and reflection luminescence as function of the doping ND. 

 
The filtering factors refl ( )F E  and trans ( )F E , are expressed through one-pass filtering 
functions, 

 1

0

( ) ( ) exp[ ( ) ]
d

F E p z E z dzα= −∫ , (3.2a) 

 2

0

( ) ( ) exp[ ( )( )]
d

F E p z E d z dzα= −∫ . (3.2b) 

where ( )p z is the non-equilibrium stationary hole concentration that results from the 
steady-state excitation near the front surface ( 0)z =  of the InP wafer of thickness d. 

0 2 4 6 8

0.06

0.07

0.08

0.09

0.10

0.11

0.12   T = 297 K

  d = 350 µm

E
x 
 = 1.85 eV

L
u

m
in

e
s
c
e
n

c
e

 R
a
ti
o

Carrier concentration, 10
18

 cm
-3

(b)

L
trans

/L
refl

 



S. Luryi & A. Subashiev 

 

1250001-18 

Taking into account multiple reflections at surfaces of the wafer, this expression is of the 
form [14], 

 2 1
trans 2

exp( )
( ) (1 )

1 exp( 2 )

F RF d
F E R

R d

α

α

+ −
= −

− −
, (3.3a) 

 1 2
refl 2

exp( )
( ) (1 )

1 exp( 2 )

F RF d
F E R

R d

α

α

+ −
= −

− −
, (3.3b) 

where 0.3R ≈  is the InP reflection coefficient.d   
 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

Fig. 3.2. Ratio R(E) of transmission and reflection luminescence spectra measured in 350 µm thick InP wafers 
of various doping levels ND. For several select ND we also show theoretical curves, calculated with Eqs. (3.4) 
and (3.2) with Monte Carlo modeled distributions p(z) as in Fig. (2.4b).  

(a) Lightly doped samples; (b) heavily doped samples.  

                                                      
d In numerical calculations [14], we took into account the measured dependence R(E) and its variation with ND. 
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It is possible in principle to experimentally determine both factors refl ( )F E  and 

trans ( )F E  from precisely measured spectra refl ( )I E , trans ( )I E  and ( )Eα  [the latter 
determines ( )EN  by the VRS relation (2.10)].  Next, one could invert Eqs. (3.3) to 

determine functions 1( )F E  and 2 ( )F E , and use Eqs. (3.2) as integral equations for ( )p z . 
In fact, viewed as functions of the argument ( )Eα , the functions 1( )F α  and 2 ( )F α  
represent Laplace transformations of ( )p z , naturally extended to the infinite domain. 

Again in principle, one can obtain ( )p z  by inverting these Laplace transformations 
numerically. However, numerical inversion of the Laplace transform is a classical  
ill-conditioned mathematical problem and the accuracy of our spectral measurements is 

not sufficient for finding a meaningful solution. Instead, our approach [14] was to 
calculate the reabsorption-filtering functions from the model distribution of holes in the 
layer, and compare the results with the functions found from the experiment. 

The key experimental function for our analysis is the ratio of the transmission and 
reflection spectra, which in light of Eqs. (3.1) and (3.30) is given by 

 trans 2 1

refl 1 2

( ) exp( )
( )

( ) exp( )

I E F RF d
E

I E F RF d

α

α

+ −
≡ =

+ −
R . (3.4) 

This ratio has important advantages for the analysis of the spatial hole distribution ( )p z , 

firstly because it does not depend on details of the intrinsic emission spectrum. 
Furthermore, it is not sensitive to multiple reflections, since the denominators of  
Eq. (3.3) cancel out. At the same time, it is quite sensitive to ( )p z  through 1( )F E   

and 2 ( )F E . Therefore, the ratio ( )ER  is well suited to quantify the spatial hole 
distribution. Figure 3.2 shows the ratio for several samples, lightly doped (a) and heavily 
doped (b).  

The experimental ratio curves show nearly perfect fit to the theoretical curves 
calculated from Eq. (3.4) with 1( )F E  and 2 ( )F E  given by Eq.  (3.2), where we take for 

( )p z  the model stationary distributions st ( )p z  evaluated by Monte Carlo or by  

Eq. (2.22). The only adjustable parameter is the recycling factor, which was previously 
estimated independently from time-resolved luminescence kinetics [25]. The agreement 
is excellent. 

Nevertheless, this fit, however perfect, does not provide an unambiguous evidence of 
Lévy flight transport. The “problem” is that we can obtain a reasonable fit also by 
assuming an exponential distribution (see footnoteb above) with the length DL  as an 

adjustable parameter [14]. For example, the 18 3
D 2 10  cmN −= ×  data for ( )ER  are well 

fit with D 45µmL = , cf. the exponential curve in Fig. 2.4 (b), corresponding to the 
Brownian random walk. 

An unambiguous experimental demonstration of the LF transport is presented  
in Fig. 3.3, where we plot the ratio ( )ER  for samples of same doping but different 
thickness d. In this case, the theoretical fit based on distributions st ( )p z  evaluated  

for the Lévy flight remains nearly perfect, whereas the exponential distribution fails 
miserably. The exponential approximation fails to describe thin and thick samples  
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simultaneously. To fit the data for 50 µm sample, one would have to assume length LD  
to be substantially shorter than the sample thickness. This, however, would be in 
contradiction with the fairly high intensity of transmitted radiation in the 350 µm sample 

of the same doping. The power-law decay of the hole concentration is steep enough at 
short distances (steeper than an exponent) to fit the data for the thin sample, and at the 
same time slow enough at large distances (again, compared to an exponent) to account 

for thick samples. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 

Fig. 3.3. Ratio R(E) of transmission and reflection luminescence spectra measured in a pair of thick and thin 
InP wafers of same doping concentration ND. Dashed lines show theoretical curves, calculated with Eqs. (3.4) 
and (3.2) with Monte Carlo modeled model distributions p(z) = pst(z) as in Fig. (2.4b). 

(a) Moderately doped samples, 350 µm and 50 µm thick;  

(b) Heavily doped samples, 350 µm and 250 µm thick.  
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4.   Luminescence Filtering and Urbach Tails 

Luminescence studies described in Sect. 3 shed light on the anomalous transport 
properties over distances limited by the sample thickness, in our case < 350 µm. To 

circumvent this limitation, photoluminescence experiments were performed [15], where 
the luminescence spectra were excited by a red laser in a narrow spot on the broadside 
surface of an InP wafer but registered from the edge of the wafer, a distance d away from 

the excitation spot. 
The observed spectra, Fig. 4.1, show two interesting features. Firstly, we see a power-

law decrease of the integrated intensity and, secondly, a noticeable red shift of the 

spectral maximum. The power law is indicative of the anomalous transport but the exact 
Lévy-flight exponent is hard to extract from this experiment because of the irregular 
geometry producing specks of reflection. The red shift, on the other hand, can be 

analyzed very accurately and relate to the important spectral parameters, viz. the  
Urbach tails ∆  and ∆′  corresponding to absorption and emission spectra, respectively, 
and defined by their behavior deep in the red wing, 

 G
0( ) exp

E E
Eα α

∆

− =   
, (4.1a) 

 G
0( ) exp

E E
S E S

∆

− =   ′
. (4.1b) 

Both tailing parameters depend on the doping concentration and the temperature, 

D( , )T N∆ ∆=  and D( , )T N∆ ∆′ ′= . In our 17 3
D 3 10  cm -N = ×  InP samples at room 

temperature, 9.4 meV∆ =  and 15 meV∆ ′ = . For 18 3
D 2 10  cm -N = × , we have 

10.6 meV∆ =  and 16 meV∆ ′ = . The pre-exponential absorption factor 0α  cannot be 
measured independently of the small uncertainty in the bandgap GE , but it should not 

depend on the doping and the value 4 1
0 1.1 10 cmα −= ×  fits very well in a wide 

temperature range for undoped samples, where GE  is known accurately. 
The observed red shift, for several temperatures, fits very accurately to the 

expression, 

 0 min
max G

( )
( ) ln

d d
E d E

a

α
∆

+ = −   
. (4.2) 

This expression comprises two empirical parameters, dmin and a. The former of  
these, reflects details of the experimental geometry (finite width and depth of the 
excitation spot) and, since min 200 µmd <  for all samples, it is of no importance when 

distances d are in the range of 1 to 20 mm, i.e., for mind d>> . The main empirical 
content of the dependence max ( )E d  resides in the parameter D( , )a a T N= . For the 
samples with 17 3

D 3 10  cm -N = ×  and 18 3
D 2 10  cm -N = ×  at 300 KT = , we have 

respectively 0.63a =  and 0.68a = . 
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Fig. 4.1. Edge luminescence experiment [15].  

(a) Room-temperature luminescence spectra for n-InP sample, )cm 103( 317 −−−−××××  observed at increasing distances 
d between the excitation spot and the wafer edge; the dashed line shows the emission spectrum; 

(b) Shift of the luminescence peak )(max dE  for two samples of different doping. 

 
The observed max ( )E d , including the values of a, can be reproduced in a simple 

model that attributes the luminescent peak shift to wavelength-dependent filtering of 

outgoing radiation by the sample absorption. In the spirit of the on-the-spot 
approximation, the observed radiation at the edge arises from repeated emissions at the 
same spot where the initial hole was generated. Therefore, we assume that the position of 

the peak observed at distance d from the excitation spot is determined by the transparency 
of InP wafer to the emission spectrum ( )S E . In other words, the observed edge spectrum 
near its maximum is described by 
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 [ ]obs ( , ) ( ) exp ( )S E d S E E dα= × − . (4.3) 

The strong refraction of outgoing radiation and a relatively small observation angle 
ensure a small and constant range of the angles of incidence. Therefore, the d dependence 
corresponds to one-dimensional attenuation of light. The maximum of the observed 

spectrum can be found from the expression obs ( , ) / 0dS E d dE = , which, in light of (4.3), 
takes the form 

 
max max

ln[ ( )] ( )d S E d E
d

dE dE

α
= × , (4.4) 

Substituting Eqs. (4.1) into (4.4), we find an expression of the form (4.2) with the 
parameter a given by /a ∆ ∆ ′= . For 17 3

D 3 10  cm -N = ×  and 18 3
D 2 10  cm -N = × , 

respectively, the Urbach tail ratio gives 0.63a =  and 0.67a =  in a remarkable 

agreement with the above empirical values. Similar agreement is obtained for other 
samples at all temperatures [15].  

For all studied cases, the values of ∆  obtained from the slope of ln ( )Eα  and the 

slope of the dependence of max (ln )E d  are very close, the difference never exceeding  
0.2 meV. Thus, the described edge luminescence method provides an independent way of 
measuring the tailing parameters. This method can be indispensable (in fact, the only 

available) in the case when the residual absorption is strong. 
Edge luminescence studies lend further support to the on-the-spot approximation 

(OTSA) that was justified theoretically in Section 2: at large distances, the dominant 

contribution to the observed spectra results from repeated jumps from the starting point. 
This principle will be used in the evaluation of photon collection efficiency in 
semiconductor scintillators, Sections 5 and 6. 

5.   Photon Collection Efficiency in InP Scintillator 

The key issue in implementing a semiconductor scintillator is to make sure that photons 
generated deep inside the semiconductor slab could reach its surface without tangible 

attenuation.  However, semiconductors are usually opaque at wavelengths corresponding 
to their radiative emission spectrum. Our group has been working on the implementation 
of scintillators based on direct-gap semiconductors. For the exemplary case of InP, the 

luminescence spectrum is a band of wavelengths near 920 nm. The original idea [30] was 
to make InP relatively transparent to this radiation by doping it heavily with donor 
impurities, so as to introduce the Burstein shift between the emission and the absorption 

spectra.  
Here we shall describe another approach [16], based on the photon recycling effect 

owing to the high radiative efficiency of best direct-gap semiconductors, such as InP. In 

these materials, an act of interband absorption does not finish off the luminescent photon; 
it merely creates a new minority carrier and then a new photon in a random direction.  
The resultant random walk has been described (Section 2) as the Lévy flight of holes (or 

photons). 
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Consider an InP scintillator slab with two photoreceiver systems integrated on the 
opposite sides of the slab [31]. Exemplarily, these are epitaxially grown InGaAsP 
photodiodes [32]. Let the interaction occur a distance z from the detector top surface, as 

indicated in Fig. 5.1, producing minority carriers (holes). A hole has the probability η  

(the radiative efficiency, Eq. 2.1) to generate a photon (distributed in energy according to 
the emission spectrum, Eq. 2.10). The generated photon can either reach the detectors 

(probabilities 1π  and 2π , respectively) or disappear through free-carrier absorption 
(single-pass probability FCAπ ). All these probabilities depend on z. The combined 
probability 1 2 FCA( )z π π πΠ = + +  describes the likelihood of the photon loss at this 

stage and the alternative, 1 ( )zΠ− , is the probability that a new hole is created. The cycle 
of hole-photon-hole transformation repeats ad infinitum. Most of the scintillation 
reaching the detectors' surface are not photons directly generated at the site of the gamma 

particle interaction, but photons that have been re-absorbed and re-emitted a multiple 
number of times. 

 

 
 
 
 
 
 

 

Fig. 5.1. Schematic cross-section of InP scintillator with two epitaxial photodiodes grown on both sides.  
Interaction with incident gamma photon (shown by the explosion symbol) occurs a distance z from the top 
surface and both photodiode signals depend on this distance. 

 
The detector signals D1 and D2 add single-pass contributions from different cycles. 

The sum can be found as geometric progression, giving (per unit strength of initial 

excitation)  

 ( )[ ]
0

( )
( ) ( ) 1

(1 ) ( )

n i
i i

n

z
D z z

z

ηπ
ηπ η

η η
Π

Π=

= × − =
− +∑ , (5.1) 

where i = 1, 2. Taking into account Eq. (2.1), the photon collection efficiency, 

1 2PCE  D D≡ +  is given by 

 1 2

rad nr FCA 1 2

( ) ( )
PCE

[( / ) ( )] [ ( ) ( )]

z z

z z z

π π

τ τ π π π

+
=

+ + +
. (5.2) 
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We note that for high photon recycling ( 1η →  and FCA 0),π →  the entire luminescence 

is collected – even though the single-pass probabilities 1π  and 2π  may not be high due 

to interband absorption. The efficiency of photon collection is thus limited by parasitic 

processes, such as FCA and nonradiative recombination of holes. If these are minimized, 

one can have an “opaque” but ideal semiconductor scintillator. 

The only approximation involved in Eq. (5.1) is the assumption that every act of 

recycling occurs at the same place z where the initial interaction occurred, and therefore 

the same probabilities 1( )zπ  and 2 ( )zπ  appear at all stages of the recycling. This “on-

the-spot” approximation (OTSA) has reduced the summation of an infinite series to a 

geometric progression and allowed us to obtain the result in a closed form. The physical 

motivation for OTSA (the Lévy flight nature of random walk involved in the recycling) 

was presented in Sects. 2c and 4. Here we remark that going beyond OTSA (by direct 

Monte Carlo evaluation of PCE) does not change the results qualitatively, although it 

slightly enhances our estimate of PCE. 

The single-pass probabilities 1( )zπ  and 2 1( ) ( )z d zπ π= −  can be evaluated by 

integration over the isotropic distribution of photon directions and the random energies in 

the emission spectrum,  

 

1

2
0

( ) ( ) ( , )  ,

cos
( , ) exp[ ( ) ]  ,

2i

z E z E dE

z E E r d
r

π π

θ
π α ρ ρ

∞

=

=

∫

∫

N

 (5.3) 

where tanzρ θ=  and secr z θ= . Similarly, we can evaluate the single-pass probability 

of free-carrier absorption in terms of the FCA coefficient fcα . If we neglect in the exact 

expression [16] for FCA ( )zπ  the corrections due to 1( )zπ  and 2 ( )zπ , but retain the 

dominant process of interband absorption iα , then FCAπ  no longer depends on z, viz. 

 FCA

( )
( )

( ) ( )

fc

fc i

E
E dE

E E

α
π

α α
=

+∫N . (5.4) 

Practically, for moderately doped samples, one has  FCA rad nr/π τ τ<<  and FCA can 

be neglected. The calculated PCE is shown in Fig. 5.2 (a) for three moderate doping 

concentrations. We see that photon recycling delivers a reasonable fraction of the 

scintillation to the wafer surface, this fraction being higher for samples with higher 

radiative efficiency. We note, however, that the photon yield depends on the exact 

position of the interaction relative to the wafer surfaces. This spells trouble for the needed 

precise quantification of the energy deposited by a gamma quantum. The problem is how 

to distinguish the signal arising from a large energy deposited far from the photoreceiver 

surface from that arising from smaller energy deposited nearby. The problem arises from 

the attenuation of the optical signal. 
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Fig. 5.2. Model calculations in the “on-the-spot” approximation for 350 µm thick InP wafers of different doping 
concentration at room temperature. 

(a) Photon collection efficiency )( PCE z calculated according to Eq. (5.2) as a function of the position z of the 
interaction 

(b)  Position determining ratio )( PDR z calculated from Eq. (5.5) as a function of z. 

 
However, if we knew the position z of the gamma interaction event, we could correct 

for the attenuation. The solution [31] is based on tallying the signals D1 and D2  
individually. The relative strength of the two signals provides a good measure of event 
position. A convenient characteristic is the position determining ratio, defined by 

1 2 1 2PDR  ( ) / ( )D D D D≡ − +  and plotted in Fig. 5.2 (b) as a function of position, 
PDR ( )z . We see that the PDR is an excellent measure of z.   

From Eq. (5.1) we find 

 1 2

1 2

( ) ( )
PDR

( ) ( )

z z

z z

π π

π π

−
=

+
. (5.5) 

The simultaneous detection by both detectors of the scintillation arising from the 
same interaction event, allows us to determine the position of the event and correct for 
attenuation. 

As seen from Eq. (5.2), the efficiency of photon collection in a scintillator based  
on photon recycling depends strongly on the radiative efficiency of the material and  
is maximized when η →  1, or, equivalently, when rad nr/τ τ →  0. Since rad D1 / BNτ =  
and 2

nr D1 / A CNτ = + , this ratio is non-monotonic in concentration [17] and has a 
minimum when 2

D /N A C= . In our series of InP samples, the optimum doping is 
17 3

D 3 10  cmN −= × , where η ≈  98% or even higher [14, 17]. Unfortunately, the high 
radiative efficiency of the low-doped InP scintillator material does not survive the high-
temperature treatment involved in the epitaxial growth and processing of the quaternary 
InGaAsP pin diodes [32]. The bright luminescence of the virgin wafers degrades by 
nearly two orders of the magnitude upon the heat treatment. The degradation is thermally 
activated and is apparently related to defects inherent in a bulk Czochralski-grown wafer.  
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We have been therefore led to explore the possibility of all-epitaxial scintillator.  
It is known that the luminescent properties of low-doped epitaxial layers, as opposed  
to those of a bulk wafer, do not degrade under high-temperature treatment. Thick (e.g., 
millimeter-thick) free-standing layers can be grown by such epitaxial techniques as 
HVPE (“Hydride Vapor Phase Epitaxy,” a growth technique with rates exceeding 100 
µm an hour [33]) and can be expected to have superior non-degrading luminescence 
properties.  While we began to pursue such an approach experimentally, we explored 
theoretically the possibilities it offers. The most recent advance in this regard was our 
invention [18] of an artificially layered scintillator material that comprises alternating 
thick wide-gap “barrier” and thin narrow-gap “well” layers. The wells constitute the 
radiation sites that are pumped by light generated in the barriers. The idea is discussed in 
the next Section. 

6.   Layered Scintillator Based on Photon-Assisted Transport of Holes to 
Radiation Sites 

Semiconductor scintillator structure that could be scaled to thicknesses d ≈  1 mm and 
higher would be very attractive. We decided to explore the possibilities that would arise 
with an all-epitaxial fast-growth technique. This has led to our invention [18] described 
below.  

The inventive scintillator material illustrated in Fig. 6.1 is a direct bandgap 
semiconductor heterostructure that comprises alternating thick wide-gap “barrier” layers 
Bj and thin narrow-gap “well” layers Wj. Exemplarily, we take the wide-gap layers as 
low-doped InP and the well layers as lattice-matched InGaAsP alloy of 100 meV 
narrower bandgap.  The assumed absorption and emission spectra shown in Fig. 6.2 are 
based on the experimental spectra of Fig. 2.1. 

Minority carriers generated in the wide-gap material by an incident high-energy 
particle, recombine there radiatively, producing primary scintillation light that is captured 
by the narrow-gap wells generating new minority carriers therein. Recombination of 
these new minority carriers in the narrow-gap wells generates secondary longer 
wavelength scintillation – to which the entire layered structure is largely transparent. It is 
important that the separation between narrow-gap wells is not limited by the minority-

carrier diffusion length and can be as large as hundreds of microns. 

In the conventional scintillator language, the narrow-gap wells can be viewed as 
radiation sites that emit light at subband wavelengths [30, 34]. However, no travel of 
carriers to these radiation sites is now contemplated. This is a radical departure from all 

prior-art activated scintillators, where charge carriers were supposed to travel to the 
radiation sites and the distance to travel had to be minimized by increasing their 
concentration. The finite travel distance, even when minimized, leads to an unwelcome 

“non-proportionality” [35] of activated dielectric scintillators, which impedes their 
energy resolution. The present invention circumvents this requirement.  

The main advantage of the inventive scintillator structure is the possibility to enhance 

the overall thickness of the semiconductor body beyond 1 mm. 
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Fig. 6.1. All-epitaxial multilayered scintillator [18]. The scintillator body comprises a sequence of k  barrier 
(InP) layers Bi of thickness b, alternating with k–1 well layers Wi of thickness w made of quaternary InGaAsP 
lattice-matched to InP. The wells collect the primary photons generated in the barriers and in turn generate 
secondary photons – the scintillation output. The structure includes photoreceivers D1 (top) and D2 (bottom), 
sensitive to the scintillation. Exemplarily, k = 10, b = 100 µm and w = 1 µm, so there are altogether 10 barriers 
and 9 wells of total thickness about 1 mm. 

 

 

 
 
 
 
 
 
 
 
 
 

 

Fig. 6.2. Absorption and emission spectra of the multilayer structure, assumed in our calculations. For barrier 
layers B, the assumed spectra coincide with experimental curves (Fig. 2.1) for moderately doped InP. For the 
well layers W, the assumed curves describe similarly-doped lattice-matched InGaAsP alloy whose bandgap is 
100 meV narrower than that of InP. 

 
Figure 6.3 shows the results of calculating the response of the 1 mm thick 

multilayered structure described by Figs. 6.1 and 6.2. Calculations presented are based on 

the absorption and emission spectra of InP and take full account of the anomalous 
transport properties of photons in the high-radiative efficiency InP material. 
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Fig. 6.3. Normalized photodiode signals D1 and D2, the photon collection efficiency (PCE = D1 + D2), and the 
position-determining ratio PDR = (D1 – D2) / (D1 + D2) calculated for the multilayered structure described by 
Figs. 6.1 and 6.2 as a function of the position z of the interaction, counted from the bottom photoreceiver plane. 
The assumed quantum radiative efficiency is  η = 99 % throughout the structure. 

 

Photon-assisted transport enables us to space the radiation sites by a large distance, 

much larger than the diffusion length of carriers. Ultimately, this may lead to the 
implementation of centimeter-thick semiconductor scintillators. The capability for 
vertical position determination by the PDR function makes thick scintillators very 

attractive for their desired application [17] as a voxel (3D pixel) in a three-dimensional 
array of radiation detectors. The PDR resolves the z coordinate to a much finer degree 
than the linear dimension of the voxel in the z direction and enables one to replace a 3D 

stack of 2D arrays by a single 2D array of thick layered scintillators. 

7.   Conclusion 

We have discussed a remarkable laboratory system for studying Lévy flights, namely 

high-radiative-efficiency semiconductors. The Lévy-flight model provides an adequate 
description for the photon-assisted transport of minority carriers, where photons are 
repeatedly recycled by the interband absorption/re-emission processes. Based on 

photoluminescence experiments in high-efficiency bulk InP, we have demonstrated an 
unambiguous evidence for the Lévy-flight nature of this anomalous non-diffusive 
transport.  

We have developed a quantitative theoretical description of the steady-state 
distributions of minority carriers that emerge in the anomalous transport. The description, 
based on the mathematics of the stable Lévy-flight distributions, has been checked 

against both the experiments and Monte Carlo simulations. Our key experiments involve 
spectral ratios of the luminescence observed in the transmission and reflection 
geometries. Particularly revealing are ratios obtained with the variable wafer thickness.  
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Supported by the Lévy-flight model, we have formulated the so-called on-the-spot 

approximation (OTSA) that proves to be very useful in describing photon collection 
processes in semiconductor scintillators based on photon recycling. Equations of  

the OTSA demonstrate the tantalizing possibility of implementing a direct-gap 
semiconductor scintillator that is opaque in the usual sense at the wavelength of its own 
scintillation. Nevertheless, this scintillator will have nearly ideal photon collection 

efficiency. 
Finally, we discussed our recent invention, not yet reduced to practice, of a layered 

semiconductor scintillator, in which the Lévy-flight photon-assisted transport is used to 

deliver the generated primary minority carriers to the “radiation sites” implemented as 
semiconductor wells of narrower bandgap, spaced apart by distances much larger than the 
diffusion length of the minority carriers. The nearly ideal characteristics of the layered 

millimeter-thick scintillator can be scaled up to the dimensions of several centimeters. 
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