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1. Introduction 

Energy spectroscopy in semiconductor -detectors is based on registration of the 
total number of electron-hole pairs produced by a single -photon after a cascade 
of various processes.  These include Compton scattering events, photo-absorption, 
deep core level excitation, core vacancy relaxation, emission of plasmons by the 
secondary electrons (holes), plasmon decay into electron-hole (e-h) pairs and 
impact ionizations.  At each stage the cascade is accompanied by sequential energy 
branching between secondary particles, which results in almost random energy 
distribution in a cloud of secondary electrons and holes in the final state.  The 
branching is terminated when the energy of a secondary electron or hole is below 
the impact ionization threshold.  Importantly, to a very high precision and in a 
broad energy range, the number of created pairs N is just proportional to the initial 
energy E= h, of the -photon, N = E/, where   is the average excitation energy 
of a single pair (referred to as the pair excitation energy).  For semiconductor 
materials the pair excitation energy   is about 3Eg, where Eg is the band gap 
energy and is typically about 2Em, i.e. twice the minimal energy required for 
electron to produce a pair by impact ionization in a process with momentum 
conservation. This means that electrons and holes possess a large average residual 
kinetic energy after cascade termination.  

Due to the almost random nature of the cascade energy branching, the pair 
number N fluctuates from one event to the other.  Therefore, the theoretical limit 
for the -detector energy resolution depends on the variance of the registered 
energy E, i.e. <E2> = <N2> 2.  The variance differs from the Poissonian 
statistics by a factor F, called the Fano factor1, so that <N2> = F<N>.  
Experimental data for F are  most  reliably determined for Ge and Si where they 
are close to 0.1.  For many years the statistical limitations of energy resolution 
expressed by the factor F were less important than those due to electronic noise 
and the effects of incomplete charge collection.  However, owing to recent 
progress in electronics2 and the development of pixel detectors3 the intrinsic 
contribution to energy resolution has become tangible.  Moreover, a number of 
novel detectors, based on new energy-measurement principles (such as the 
Compton telescope4,5) and new semiconductor materials6 are explored.  Therefore, 
critical evaluation of the Fano factor theory becomes important in the search for 
materials with improved energy resolution.   
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Theoretical models used for Fano factor calculations have been based on 
widely varying assumptions, often ignoring the important details of the energy 
branching process.7,8  Therefore, the confidence in these models is questionable 
even though they routinely produce estimates of F in the range 0.06 to 0.14, close 
to the experimental results for a number of semiconductors.7 In this chapter, we 
overview some of the popular models used and discuss the most subtle aspect of 
energy branching, namely the pair correlations in the final-state energy 
distribution.  We show that these correlations need being taken into account and 
that moreover they can be used in the search for materials with reduced Fano factor 
and hence improved intrinsic energy resolution. 

2. Final state models 

The pair production in semiconductor -detectors occurs by an ionization cascade  
that goes through a number of intermediate stages where the energies of secondary 
electrons or holes are much larger than the ionization energy.  The relative energy 
loss at these stages is typically much smaller than the energy spread in the final 
state, as has been shown by Monte-Carlo modeling,9,10 using fairly well known 
cross-sections of elementary processes.  For secondary high-energy electrons the 
dominant energy-loss process for high-energy electrons is the emission of 
plasmons (collective valence-band excitations).7,11 The density of valence-band 
electrons is almost the same for all tetrahedral semiconductors and the plasmon 
energy is close to 16 eV for Ge, Si, and A3B5 semiconductors. De-excitation of the 
deep core state vacancies goes through fluorescence or Auger-like Coster-Kronig 
transitions, also creating intermediate electrons and holes, spread in a wide energy 
interval in the conduction and valence bands, respectively. 

The final stage of the energy branching is governed by a competition between 
the processes of impact ionization and phonon emission.  The energy conservation 
in impact ionization for an electron with energy Ee reads Ee = Eg + E1e + E2e + Eh , 
where E1e, E2e, Eh  are the kinetic energies of carriers (in this example, two 
electrons and a hole, respectively). Similar relation holds for impact initiated by a 
hole  After the bandgap is subtracted, the residual energy is distributed between 3 
particles.  The cascade process is repeated until the final energy of a secondary 
particle is smaller than the impact ionization threshold or until subsequent phonon 
emission becomes more probable. Termination of the cascade fixes the number N 
of pairs, since the excess energy dissipates without changing the particle number.   

The most popular statistical approach to the Fano factor evaluation is based on 
the analysis of the energy distribution in the system of e-h pairs and phonons in the 
final state, i.e. at the stage when further creation of e-h pairs is impossible. 

Consider the simplest case when phonon emission is not important.  In this 
case, for a particular realization of the cascade process, the initial energy E is 
distributed between N pairs,  E =  Ei , where Ei is the energy of the i-th pair.  In 
this distribution the sum E is fixed, whereas the number of terms N is the statistical 
variable.  It is instructive, however, to begin with the opposite situation with a sum 
of a fixed number N  of independent  random variables Ei , whose distribution is 
characterized by a mean                    and a variance                                    .   222  i Ei E
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In this case, according to the central limit theorem, the sum E will be normally 
distributed about its mean value N    
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where CN  is a normalization constant. For the case we are interested in, when  the 
total (initial) energy is fixed for all events, while the number of pairs fluctuates 
from one realization of energy branching to another, we can re-interpret  (1) to 
provide the probability distribution for N, viz.  
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where C is another normalization constant; we have replaced N by <N> in the 
denominator since their difference is small.  It is evident from Eq. (2) that the 
variance in the particle number is not Poissonian and that the Fano factor equals 
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The above argument leading to the widely used expression (3) for the Fano 
factor can be illustrated by the so-called “shot-glass” model.12  In this model, the 
initial energy E deposited in the semiconductor is taken analogous to the volume of 
water in a bathtub, while the electron-hole pair creation energy is represented by a 
volume of a shot glass with the help of which the tub is emptied sequentially.  The 
shots are thought of being filled differently in a random fashion with a known 
mean and variance. The total number of shots used to empty the tub will fluctuate 
from one realization to another and one can apply the above reasoning leading to 
Eq. (3).  The shot-glass model is an example of the class of uncorrelated models, 
called the final-state models.  It assumes that the final state is formed as a 
composition of uncorrelated random events described by the parameters (mean and 
variance) of the single-event statistics, with no correlations between the events. 
The apparent non-Poissonian statistics in the final-state models results from one 
single constrain: the fixed total initial energy. As a result, Eq. (3) readily provides 
smaller than unity values for the Fano factor. 

Equation (3) can be generalized to include “inelastic energy losses,” such as 
phonon emission.  The energy loss associated with phonon emission is much lower 
than the ionization threshold.  Phonon emission rate is also much lower than that of 
impact ionization, except very near the threshold where the ionization rate is much 
reduced.  Near the threshold, the emission of a single phonon can make the next 
impact ionization impossible. The apparent shift of the ionization threshold can be 
accounted for by an adjusted value of  .  In the final state models these events are 
assumed independent so that fluctuations of the phonon energy losses are additive 
to those in Ei . The modified Eq. (3) is then of the form   
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where ph is the average number of phonons emitted per e-h pair (created before 
the cascade termination). The number of emitted phonons is assumed to have 
Poissonian statistics. The average final-state pair energy is   = Eg + <Ke> + <Kh> , 
where Ke  and Kh  are the kinetic energies of electrons and holes, distributed in a 
range from zero to the impact ionization threshold Eth.  The number of phonons 
emitted before cascade termination is small and so are the corresponding energy 
losses, ħ ph << N (similarly small energy losses come from other inelastic 
processes, such as fluorescence of deep-level holes, bremsstrahlung emission with 
some radiation escape from the crystal, etc.).  

In order to use Eq. (4), one needs to know or assume the energy distribution in 
the final state.  The simplest assumption is that final-state electrons are distributed 
in p-space homogeneously with a parabolic energy band spectrum.13  This implies 
a distribution proportional to the band density of states (DOS) and cut at Eth. For 
this distribution, the average pair kinetic energy <Ke> + <Kh> = 1.2 Em, where Em 
is a maximum allowed energy equal to the ionization energy threshold, Em = 1.5 
Eg.  Then, the average energy needed for a pair production appears to be equal   = 
Eg +1.2Em = 2.8 Eg , which is close to experimental data.  Calculations of 

 (with the same assumption of homogeneously distributed final-state 
particles in p-space up to the energy of 3/2 Eg) give 2 <( Ki)

2> = 9/2 × 0.07 Eg
2 = 

0.315 Eg
2.  This gives the value F  0.04 to the electronic contribution to the Fano 

factor, which is far below the experimental data.  To obtain a Fano factor that is 
closer to experiment (at least two times larger), one either has to assume an 
unrealistically large phonon contribution or to find other channels of energy loss.   
Thus, in order to obtain good agreement with the experimental data for Ge, the 
author of a widely cited paper14 assumed the energies of electrons and holes spread 
over half of the conduction and valence band, respectively, while the densities of 
states were assumed constant.  The author of a well-known book2 assumes that the 
total number n of phonons emitted in the pair production (this number is  n = E − 
NEg ) fluctuates according to the Poisson statistics. This assumption (also yielding 
F < 1) has no sound justification and leads to a strong dependence of the Fano 
factor on the phonon energy. For most semiconductors it overestimates the value 
of F (compared to experiment). Other authors15 calculated the average number of 
phonons emitted before the cascade termination and thus estimated the average 
phonon energy loss as a function of initial electronic energy, which represents the 
second term in Eq. (4).  However, their approximate approach used to evaluate the 
energy distribution function (now extending far beyond the impact ionization 
threshold) also required to adjust the bandgap to obtain reasonable values of Fano 
factor and pair excitation energy.    

 2

Within the final-state model framework, the phonon losses are statistically 
independent and should be treated as simply additive in calculations of the average 
excitation energy and the Fano factor. For only a few emitted phonons per pair, the 
phonon contribution is rather negligible. Microscopic consideration of energy 
branching readily suggests that the main effect of phonon emission is a strong shift 
of the impact ionization threshold, and thus the increase of the width of the kinetic 
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energy distribution. This affects both the average excitation energy and the Fano 
factor, even when the average number of emitted phonons is small.  

This review of the final-state model approach is prompted by a recent paper,12 
which asserts that the model “provides a convenient framework for and point of 
departure for analyzing the essential statistical features of microscopic theories”.   

It is clear that usefulness of final-state models is limited by the need to make 
assumptions about the final state distribution that go beyond the model itself.  As a 
result, these models may often be misleading since the key assumptions, such as 
the role of phonon losses, may not be justified.  

Nevertheless, it is important to examine the final-state model approach on its 
principle, leaving aside all uncertainties in the additional assumptions.  This has 
been done in our recent paper16 on the basis of an exactly soluble model of 
sequential energy branching.  In this model, called the random parking problem, 
one can calculate exactly both the Fano factor and its representation by the final-
state model.  This approach has elucidated the principal drawback of the latter. 

The problem with all final-state models is that they postulate statistically 
independent final-state pair energies.  This leads to the Gaussian distribution (1) 
and further to Eq. (3)].  However, the kinetics of an ionization cascade produces a 
correlated energy distribution in the final state, so that for a pair of electrons in the 
final state with energies Ei and Ej one has < (Ei − ) (Ej − ) > ≠ δij  (<Ei >

2 −2 ). 
Correlations between different terms in E =  Ei  invalidate Eqs. (1) and (3), whose 
derivation was based on the central limit theorem.  

The importance of correlations can be easily illustrated in the shot-glass 
model: imagine that the man with the shot-glass watches what he is doing and 
compensates for an underfilled shot by following it with a shot with more than 
average filling, so that two successive glasses together scoop the same amount of 
water.  Evidently, the fluctuations will be strongly reduced compared to 
predictions of Eq. (3).  One can observe that this type of correlations is typical for 
energy branching: e.g., the division of initial energy between two particles 
produces a state where small energy of one particle is paired with large energy of 
the other.  We shall discuss these correlations further and show that they are of 
major importance at the final stage of the energy branching.  

Another relevant observation that follows from our exact model analysis16 is  
the importance of the shape of final energy distribution. It turns pout that the exact 
one-particle distribution has a narrow peak at small energies. Therefore, combined 
with exact statistics, Eq. (3) will always predict a lower bound estimate for F. 

3. Kinetics of energy branching: one-particle distribution function 

For a realistic band structure, phonon spectrum, and scattering matrix elements, the 
calculations are necessarily numerical. To analyze qualitative features, we discuss 
a kinetic approach to the distribution function and present analytical results for a 
simplified model, where the valence band is so narrow, that one can neglect the 
kinetic energy of created hole. In this case the energy at the every stage of the 
cascade is distributed between the two secondary electrons. This case and some of 
its generalizations permit of an analytical solution.14,15,17  
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Correlations in sequential energy branching are fully included in the so-called 
“crazy carpentry” (CC) model due to van Roosbroeck.17 It illustrates the branching 
process by random cutting of a wooden board into two peaces with the removal of 
a unit-length board from one piece (if its length is less than unity, the piece is 
discarded). The removed unit boards are stored and the process is repeated 
discarding all lengths less than unity until the entire board is used up. The initial 
board length is associated with the incident energy and the number of stored unit-
length boards with the number of e-h pairs produced in the sequential energy 
branching. The discarded pieces represent the residual kinetic energies of electrons 
and holes in the final state. 

An alternative but perhaps more transparent illustration of sequential energy 
branching is the so-called “random parking problem” (RPP).  It is equivalent to the 
CC model17 and leads to the same equations and analytical results.  In this model 
one studies the distribution of cars of unit size in a long linear parking lot, 
assuming that they arrive sequentially in time at random position in the lot.  A car 
is rejected if it lands at an occupied space.  The process is terminated when the so-
called “jamming limit” is achieved, i.e. when all remaining gaps between the cars 
do not exceed unit length.  The energy branching can be considered in terms of the 
RPP if one identifies the incident particle kinetic energy with the parking lot length 
and the pair creation energy with the car size.  The quantities of interest are the 
filling factor (average number of cars per unit length), equivalent to the average 
pair excitation energy, and the fluctuation of the number of cars in different 
realizations that can be represented by the Fano factor.  A number of generalized 
RPP problems have been studied, including the model of cars shrinking after they 
are parked18 that describes the case when the minimum pair creation energy is 
larger then the band gap (the energy removed from the system in pair creation), 
and the two-size parking problem19 that models the semiconductor with several 
minima in the conduction band (resulting in several impact ionization thresholds).  

The key distinction of the CC and RPP models from the final-state models is 
the account of sequential energy branching that leads to correlations in the final 
distribution. In contrast, the final state models sample the energy repeatedly in an 
uncorrelated fashion.12 Nevertheless, application of the CC and RPP models to 
sequential energy branching in radiation detectors was viewed with some 
suspicion. The early calculations (including Monte-Carlo modeling) of the 
excitation energy and the Fano factor had led to the belief that reliable results 
require an almost infinitely long parking lot (corresponding to very high initial 
energy, at least E0 >100Eg ). At these high energies, processes other than impact 
ionization (e.g., plasmon emission, deep core electron excitation and so on) make 
the energy distribution between the secondaries highly inhomogeneous. This 
would render the results meaningless.12 However, we have shown18,19 that the 
recursion division process saturates at a much earlier stage of initial energies, E0  
7 to 10 Eg , after which the results become insensitive to the initial energy 
distribution. It was also shown18,19 that the recursive and the kinetic approaches are 
equivalent in the limit of infinitely high initial energy.  
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In this section, we consider kinetic evolution of the one-particle distribution 
function in the RPP model of sequential energy branching with a finite initial 
energy. Having obtained the exact single-particle distribution in the jamming limit, 
we then calculate the average excitation energy and the Fano factor using Eq. (3). 

The kinetic equation for the electron energy distribution function  f(E) can be 
written in the form 

 
  )  ,  

 
 

 (5

where  R(E )  is the impact ionization rate for an electron with initial energy E and 
P(E’,E)  is the probability of an impact ionization process with initial energy E’ 
and final electron energy  E. The DOS function (E) is for initial states.  The 
second term of Eq. (5) describes electron ionization resulting in a new electron in 
the state with energy E.  

The factor d  represents the degeneracy of the branching by impact ionization. 
For a narrow valence band, there are d = 2  final states with the same final energy 
of electrons; for a model with symmetrical conduction and valence bands, d = 3.  
In the RPP model, the function f(E,t) represents the distribution of gaps between 
cars at the moment t. The same new spacing can evidently be obtained either on 
the right or on the left side of the newly arrived car.   
 Kinetic equation (5) describes the evolution of the energy distribution in the 
branching cascade and evidently, it does not conserve the number of particles.  
However, it is consistent with the total energy conservation law in a form  
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Multiplying Eq. (5) by , integrating it over energy and 

using Eq. (6), one can find R(E) for any given P(E’,E).  Equation (5) should be 
solved with the initial condition f (E,t=0) = C  (E-E0) for the branching process 
initiated by a high-energy electron created by the initial Compton event; constant C  
can be easily found from (6), C=--1(E0). Next, the number of pairs is given by 
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so that the pair excitation energy equals 
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Equation (8) may seem to be at variance with the former definition of the pair 
excitation energy. But that definition referred to the limit Np >> 1, where the 
additional term in Eq. (8) is negligible.  For finite and especially the intermediate 
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stage of energy branching with E0  in the range of 3 to 5 Eth , this correction 
ensures the linear growth with energy of the number of created pairs.  

To study the kinetics of the energy branching, it is convenient to use the 
Laplace transformation in time,  
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Applied to Eq. (5) this gives 
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Two important observations are in order. First, Eq. (7) can be used for any initial 
energy E0 of the particle initiating the cascade process. Second, the Laplace 
transform function F(E,p) is expressed through F(E+Eth, p) and therefore it can be 
found recursively, starting from the energy range E0 − Eth  and then going down 
to lower energies. For the case of the narrow valence band, the temporal evolution 
of normalized energy distributions, 
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is shown in Fig. 1. Note the rapid decay of the high-energy tail of the distribution 
and growth of the peak near zero. This peak in the population of low-energy states 
leads to the underestimation of the Fano factor by the final-state model. 
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Figure 1.  Evolution of the energy l distribution function of electron in case of a 
narrow valence band from initial state with one particle with energy 20 Eth. 
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The final distribution can be easily obtained using the Heaviside expansion 
theorem for the Laplace transforms, which gives  
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Here F(E’,0) is the solution of Eq. (7) at p = 0, viz. 
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where f  (E) = f(E)/E0  (with E0  ) is the normalized distribution function, and 
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The normalized distribution function  f  (E,t   ) calculated for several initial 
energies E0  are shown in Fig. 2.  

 
Figure 2.  Average (over realizations) one-particle kinetic energy distribution 
functions after the energy branching termination
different initial particle energy 0  (in units of th).  
 
As the initial energy increases, one can observe a very rapid convergence of the 
distribution to its final form corresponding to E0 
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The obtained distribution functions are precise enough for the calculations of the 
average kinetic energy and the number of pairs in the final state (and thus both the 
pair excitation energy and its variance). 

Similar analysis can be done for a finite-width valence band (see the right 
panel of Fig. 2).  The rapid convergence is again in evidence.  This convergence, 
found to be a general property of the branching process,18,19  leads to an important 
conclusion: details of energy branching at the initial and intermediate stages are 
not important for the final state energy distribution, since they do not produce an 
excessive number of particles with small energy. Further averaging over the 
distribution of secondaries in the intermediate stages has no influence on the final 
distribution and hence on the energy resolution. 

This conclusion is very important for the energy branching problem and 
deserves to be further illustrated by the RPP model and formulated more 
accurately.  Suppose at the initial stages of filling the parking line the cars are 
trying to observe some rules, say, try to park regularly at a distance N1 Eth. Our 
conclusion is that the effect of this strong ordering on the final distribution 
function will be precisely described as 
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where fc (E) is the final state distribution function for the correlated parking, since 
the normalized distribution function f  (E) remains exactly the same.  The only 
effect of correlation is some increase of the number of particles in the final state 
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Figure 3.  Comparison of the distribution functions used in different final state 
models together with corresponding mean square deviations for the case of a 
narrow valence band.  
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Figure 3 compares several model final-state distribution functions used in the 
literature.13,14 Also shown is the mean square root deviation   for each model. In 
terms of  ,  the final-state model estimate of the Fano factor is F  =  2.  

One can observe that even though all final-state models predict values of the 
Fano factor below  0.1, their prediction capability is limited. Most significant is 
the fact that the exact one-particle distribution function gives the final-state 
(uncorrelated) value of the RPP Fano factor as Func = 0.044, whereas the exact 
value of the Fano factor for RPP model is known16 to be F =  0.051.  Calculations 
based on the exact two-gap distribution function, taking into account correlations 
between nearest-neighbor gaps only, produce a correction to Func that brings F 
very close to the exact value.16  This means that correlations between distant gaps 
are not as important as the nearest-neighbor correlations.  

4.  Two particle correlations and Fano factor energy dependence 

The noted drawback of the final-state models is the assumption of uncorrelated 
energy distribution between the secondary particles in the final state.  To further 
elucidate this point, we return to the narrow valence band model represented by 
RPP.  In this model, the residual energy of pair creation is distributed between two 
secondary electrons.  Consider now a special case of random parking on a lot 
whose length is triple the size of a single car, see Fig 4.  One can readily see that 
two cars will always park in this lot, with no fluctuation of this number (the unique 
case of three tightly parked cars with no gaps has zero probability).  Accordingly, 
when in a random sequence of energy branching a particle of energy equal to 3 Eth 
is created, the next energy branching will produce exactly 2 particles with no 
fluctuation, irrespectively of the fluctuating kinetic energies of these particles.  
When the initial energy is close to 3 Eth , the 2-particle final state will dominate.  
Correlations of this type will have an influence on the fluctuations of the final 
number of particles in all cases when at intermediate stage one of the created 
secondaries has a small energy.  This clearly compromises the validity of Eq. (3).  
In principle, one can take such correlations into account in the kinetic approach.  
One needs to study the kinetics of the fluctuations of the distribution function, in 
such a way that the source of these fluctuations is itself modified by the 
correlations in the energy distribution.21  This approach is involved mathematically 
and has not yet been developed in full.  
 
 
 
 
 
Figure 4. Random parking on a line L = 3. Two cars are always able to park, while 
three cars can never do it. Therefore, even though the spacing between cars 
fluctuates, there are no fluctuations of the number of cars.  
 

Next, we consider the recursive approach, which is another purely statistical 
technique, specifically developed for branching processes.  It studies the moments 
of the final-state energy distribution as functions of the initial energy.  Due to the 
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self-averaging properties of the branching process, the moments of distribution for 
the state emerging from high values of the initial particle energy can be recursively 
evaluated through the moments of the distribution for smaller initial energy.  The 
recursive equations for the RPP were first derived by Rényi22 and applied to the 
energy branching problem by van Roosbroek.17 

The structure of recursive equations can be nicely illustrated in the RPP 
model. Consider the mean square of the number of cars placed along a line of 
length L.  If there is a car at a distance x from the left end of the line, then the 
whole line is divided by this car into two lines of lengths  x and L−x−1. The 
average  < N 2(L) >  can then be written in the form  

 22 )1()(1)(  xLNxNLN  .                                                         (12) 

Here the average is taken not only over all realizations of branching for the 
intervals x and L−x−1 but also over the variation of x in the range 0 < x < L − 1. 
Since both the left and the right sides of this division are equivalent, we find   

)1()(2)(4)(21)( 22  xLNxNxNxNLN .                           (13) 

The last term in (13) correlates the number of cars that will be subsequently placed 
in the intervals x and  L−x−1. This correlation is negligible for large L and  x,  but  
it is important for small L, x and thus affects the resulting value of the Fano factor.  
Equation (13) should be accompanied by an equation for the mean < N(L) >, which 
by the same reasoning is of the form  

)(21)1()(1)( xNxLNxNLN   .                                          (14) 

Due to the uncorrelated nature of the branching itself, one can use the solution of 
Eq. (14) to calculate the correlation function in (13). We obtain 

222 )(4)1()(2)(2)( xNxLNxNxNLN  ,                     (15) 

Note that all terms in the right-hand side of Eq. (15) are of the order of N 2  but 
their difference is of the order of N.  The correlation effects are therefore not 
negligible and sufficient accuracy is required in calculations.  For the case of RPP 
and for several generalized RPP models, exact solutions of Eqs. (13-15) can be 
obtained18,19,22 using Laplace transformation of the recursive equations, which 
leads to differential equations for the Laplace transforms.  These solutions are 
helpful in assessing the errors introduced by various approximations.   

We have applied the statistical recursive approach to the calculation of the 
particle number fluctuations in the energy branching problem, considering the 
cases of a narrow valence band, symmetric (parabolic) bands, bands with constant 
DOS, and the case when the valence band has a finite energy.  

The kinetic energy variance is shown in Fig. 5 as function of the initial particle 
energy (which is needed for calculations of the Fano factor). For large E0 > 6 Eth 
the variance grows linearly with  E0 , which manifests the sub-Poissonian statistics 
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with a constant Fano factor. For small E0 < 6 Eth one see a strong variation of the 
variance indicating the importance of correlation effects.  For the narrow valence 
band the variance goes to zero at  E0 = 3 Eth , as discussed above. A dip in the 
variance near 3 Eth remains also in the wide valence band model, although the 
effect there is less pronounced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Dependence of the kinetic energy variance on the initial energy for a 
model with two symmetrical bands (dots on a line) and also for the case of a narrow 
valence band.  
 

All exactly solvable models indicate the insensitivity of the results to the 
initial distribution for large energies, starting with E > 5 Eth. This makes the 
recursive approach eminently tractable, even using realistic branching models.  In 
the small range of energies where the results are sensitive to the initial distribution, 
one can obtain the solution of Eqs. (13-15) – with realistic models – by direct 
recursion, i.e. by starting from a small initial energy interval and then calculating 
the number of particle in a final state for progressively growing initial energy.  

Calculations of the Fano factor are presented in Fig. 6.  The variation F (E0)  

follows the kinetic energy variance.  Values of the Fano factor vary in the range 
from F = 0.051 to F = 0.763 depending on the model and grow further when the 
threshold energy is shifted to higher energy by the phonon emission. 

The results of both the kinetic and the recursive approaches are supported by 
Monte Carlo modeling, in which one can exploit the fact (proven above) that in the 
final state the linear dependence on E0  of both the average kinetic energy and its 
variance is exponentially accurate, starting from a reasonably small E0 , certainly 
not exceeding  E0   10 Eth.  As a result, both the average number of created pairs 
and its variance can be determined with Monte Carlo simulations with moderate 
values of E0 . To be sure, in order to achieve the same accuracy as that obtained for 
large E0 , the results must be averaged over a sufficient number of realizations. 
This, however, takes little memory or time. 
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Figure 6. Fano factor dependence on the initial energy calculated recursively for a 
model with two symmetrical bands and for the case of a narrow valence band. 
Dotted line shows results obtained for the case of a narrow valence band in the 
final-state mode, using Eq. (5) with exact one-particle energy distribution function.  
 

 One can compare the computed values of the Fano factor with a hypothetical 
model in which the kinetic energy distribution of the particles in the final state is 
totally random within the interval 0 < E < Eth.  Since this distribution retains 
constant total energy for any number of pairs it can be viewed as a distribution of 
hard rods of length Eth along a segment of fixed total length E0.  The random 
energy distribution should then be similar to the spatial distribution of particles 
shaped as hard rods in a one-dimensional gas (1D HR).  For this problem one can 
calculate all multi-particle distribution functions,23 which can be factored into 
products of pair correlation functions. The gaps in the 1D HR model are 
distributed in accordance with Poisson statistics, and F can be expressed in terms 
of the filling factor f (yield) exactly, viz. F = (1 − f )2.  In this model, there is no 
jamming limit and the filling factor can be as large as  f = 1, but Eq. (3) is exact. 
The 1D HR model can also be modified to allow for two-band branching and the 
phonon shift of the E .  th

The 1D HR model is an attractive alternative to the shot-glass model, since in 
this model the one-particle distribution function is flat, but the main effect of the 
Fano statistics – the distribution of a constant initial energy between energies of 
the particles in the final state – is already exactly incorporated.  Since, in contrast 
to the shot-glass model, the 1D HR model requires no additional assumptions 
about one-particle distribution, it can be viewed as a way to estimate the Fano 
factor for the known branching yield (the latter being determined by the pair 
excitation energy).  For example, for a model of wide conduction and valence 
bands with square-root DOS, the yield is  f = 0.653, giving F = 0.120. Inclusion of 
phonons further increases the Fano factor. 
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Consider the predictions of the 1D HR model for the exactly soluble RPP 
model. In this case, the jamming limit is exactly at  f = 0.74759... (the Rényi 
constant23) and the predicted Fano factor is F = 0.064.  It is clearly an upper bound 
to the exact RPP value F = 0.051.  

5. Discussion and conclusion 

Our analysis shows that the range of variation of the Fano factor with 
parameters of the material is not very broad.  One can point out the features that 
would lead to an anomalously high value of the Fano factor, above F = 0.1.  It is 
more intriguing to find such parameters that minimize the Fano factor.  Our 
discussion suggests this may be achieved with a specially engineered alloy band 
structure, in which the valence band is either narrow or, which is more common, 
has sharp peaks in the density of states, so that the narrow valence band model 
becomes applicable. Correlation effects are  more strongly pronounced in the 
narrow valence band limit. It would be most interesting to see some manifestation 
of the strong suppression of fluctuations by the correlation effects near E0 = 3 Eth , 
illustrated in Fig. 4. One possibility would be to look for these effects in the 
dependence of noise in semiconductor X-ray detectors on the frequency h of 
incident X-ray flux of constant intensity.  For h producing E0 near 3Eth one can 
expect suppression of the noise component associated with the branching of energy 
of photoabsorbed quanta.   

There is also a tantalizing possibility to employ these correlations in practical 
-detectors, where the energy is, of course much larger than 3Eth. The possibility 
relies on the established fact that at high electron energies the dominant loss 
mechanism – up to the final stage of the branching process – is plasmon emission. 
This brings the initial energy (for the final stage of energy branching through the 
impact ionization cascade) close to the plasmon energy which is  16 eV in all 
common semiconductors. This energy is  4.5 times larger than the pair excitation 
energy   for Si  but only  3.5 times larger than that for CdZnTe and only  2.5 
times larger than   for GaP.  Therefore, it is perhaps possible to find a compound 
crystal in which the ratio of the plasmon energy to Eth is optimal for the Fano 
factor reduction. The problem is not easy to handle theoretically with sufficient 
precision, because the threshold energy is based not only on the band structure but 
involves competition between phonon emission and impact ionization.  

We conclude that correlation effects are important for the correct 
understanding of Fano statistics.  Depending on the details of energy branching 
they can lead to either enhanced or suppressed value of the Fano factor and may be 
of value in the design of radiation detectors. 
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	Multiplying Eq. (5) by , integrating it over energy and using Eq. (6), one can find R(E) for any given P(E’,E).  Equation (5) should be solved with the initial condition f (E,t=0) = C ( (E-E0) for the branching process initiated by a high-energy electron created by the initial Compton event; constant C  can be easily found from (6), C=(--1(E0). Next, the number of pairs is given by
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