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MMSE Estimation of Nonlinear Parameters
of Multiple Linear/Quadratic Chirps

Hsiang-Tsun Li and Petar M. Djurić

Abstract—An iterative algorithm similar to our MMSE estimation pro-
cedure proposed in another paper by the authors is applied to parameter
estimation of multiple superimposed chirp signals in white Gaussian noise.
The necessary parameter initializations of the procedure are accomplished
by peak detections in the Choi–Williams time–frequency distribution
of the data followed by application of the least-squares principle. A
comparison between our scheme and the alternating projection (AP)
method is demonstrated by computer simulation.

I. INTRODUCTION

Chirp signals are frequently encountered in many scientific and
engineering areas. In sonar applications, radar, and physics, the
observed measurements are often modeled as amplitude modulated
chirp signals embedded in Gaussian noise. Many procedures have
been proposed for solving this problem, most of them based on the
maximum likelihood (ML) principle or rank reduction techniques.
Much of the research over the past ten years has focused on the
single chirp signal, [1], [4], and not until recently has the problem
related to multiple superimposed chirps been investigated [3], [5].
However, the disadvantages of the above estimators are that they can
either process only one signal and/or need fairly high signal-to-noise
ratios (SNR’s) to have good performance.

In [6], we proposed a minimum mean square error (MMSE)
method for estimating the parameters of damped sinusoids. In this
correspondence, we extend the MMSE method proposed there to
chirp signals and show that it has excellent performance for even
low SNR’s and short data records. The method exploits the shape
of the posterior distribution of the chirp parameters and operates
iteratively so that it processes only one chirp signal at a time. Thus,
the enormous computational burden of multidimensional integrations
is avoided, and the computational load is thereby drastically reduced.

An important issue in the implementation of the procedure is
its initialization. We propose an efficient initialization technique
that consists of two steps. First, the initial frequency estimates are
obtained from the data’s Choi–Williams distribution. Then, the initial
values of the corresponding chirp rates are found by a least-squares
algorithm. Once these values are determined, the starting estimates of
the remaining nonlinear parameters of the strongest chirp signal are
estimated, followed by parameter estimation of the second strongest
signal, and so on.

II. PROBLEM STATEMENT

Let y[n]; n 2 ZN = fn0; n0+1; � � � ; n0+2Ng be a set of2N+1
observed samples composed ofq complex quadratic chirps corrupted
by an additive white Gaussian noise process. That is

y[n] =

q

k=1

ak[n] expfj(�kn3 + �kn
2 + !kn+ �k)g+ w[n] (1)
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whereak[n]; �k; �k; !k; �k are the real amplitude, quadratic chirp
rate, linear chirp rate, initial frequency, and phase of thekth signal,
respectively, andj =

p�1: The random samplesw[n] are complex
Gaussian, independent, and identically distributed whose real and
imaginary components have zero mean and unknown variance�2=2:
The number of chirpsq is assumed to beknown. Suppose that the
amplitude of thekth signal can be decomposed bypk basis functions,
or

ak[n] =

p �1

l=0

ak;l�k;l[n] (2)

where ak;l is the amplitude associated with thelth basis function
�k;l of thekth signal. The amplitudesak;l are unknown, whereas the
basis functions�k;l are known.

The received data vectoryyy can be written in a vector-matrix form
according to

yyy = HHH(!!!;���; ���)aaa+www (3)

whereHHH is a (2N + 1)� L matrix whose columns span the signal
space,L = �q

k=1 pk � (2N + 1); aaa is anL� 1 vector of complex
amplitudes, andwww is anL� 1 noise vector withwww � CN (0; �2III):
The vectoraaa is comprised ofq concatenated amplitude vectors, which
correspond to the superimposed signals

aaa
T = [aaaT1 aaa

T
2 � � �aaaTq ]

where

aaa
T
k = [ak;0e

j�
ak;1e

j� � � � ak;p �1e
j� ]

and the matrixHHH(!!!;���; ���) is composed ofq submatrices

HHH(!!!;���; ���) = [HHH1(!1; �1; �1)HHH2(!2; �2; �2)

� � �HHHq(!q;�q; �q)]

where theHHHk’s are(2N + 1)� pk matricesk = 1; 2; � � � ; q
HHHk(!k; �k; �k) = [dddk;0(!k; �k; �k)dddk;1(!k; �k; �k)

� � �dddk;p �1(!k; �k; �k)]

and

dddk;l(!k; �k; �k)
T = [�k;l[n0] expf�kn30 + �kn

2
0 + !kn0g

� � � �k;l[n0 + 2N ] expf�k(n0 + 2N)3

+ �k(n0 + 2N)2 + !k(n0 + 2N)g]:
Given the observationsyyy; q; pk; and�k;l; the objective is to obtain

the MMSE estimateŝ!k; �̂k; and �̂k; k = 1; 2; � � � ; q:

III. MMSE ESTIMATOR

The MMSE estimate of!k is given by the following 3q-
dimensional integral

!̂k =
f!!!;���;���g

!kf(!!!;���; ���jyyy) d��� d��� d!!! (4)

wheref(!!!;���; ���jyyy) is the posterior probability density function (pdf)
of the signal parameters���; ���; and!!!: The MMSE estimates of�k

and �k are similarly defined.
The posterior pdf’s are highly concentrated functions around the

true values of!!!;���; and���: Then, if i denotes the current iteration
of our estimator, and̂!(i)

k ; �̂
(i)

k and �̂(i)k are the current estimates of

1053–587X/98$10.00 1998 IEEE

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 17:26:23 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 3, MARCH 1998 797

(a)

(b)

Fig. 1. Performance comparison of the MMSE and initial parameter estimates forq = 2 (a) ! = 0:06283, (b) � = 0:0003142.

!k; �k; and�k; respectively,k = 1; 2; � � � ; q, we can approximate
the posterior densityf(!!!;���; ���jyyy) by

f(!!!;���; ���jyyy) ' f(!k; �k; �kjyyy; !̂!!
(i)

(�k)
; �̂��

(i)

(�k)
; �̂��

(i)

(�k))

�

q

l=1
l 6=k

�(!l � !̂
(i)

l ; �l � �̂
(i)

l ; �l � �̂
(i)

l ) (5)

where !̂!!
(i)

(�k)
; �̂��

(i)

(�k)
; and �̂

(i)

(�k)
denote the estimates of theith

iteration of all the frequencies and linear and quadratic chirp rates
except the ones of thekth signal. With this approximation, our3q-
dimensional integral in (4) reduces toq individual three-dimensional
(3-D) integrals, that is

!̂
(i)

k =
f! ;� ;� g

!kf(!k; �k; �kjyyy; !̂!!
(i)

(�k)

� �̂��
(i)

(�k)
; �̂��

(i)

(�k)) d�k d�k d!k: (6)

The estimates of̂�k and �̂k are obtained analogously. Theefore,
instead of solving (4), we compute integrals of the form given by
(6). The estimates of the unknown parameters are found iteratively,
one at a time. The integrals in (6) can be solved efficiently by the
adaptive Gaussian quadrature (AGQ) technique proposed in [6].

IV. I NITIALIZATION PROCEDURE

To start the iterative algorithm, we need to determine the initial
estimates(�̂(0)k ; �̂

(0)

k ; !̂
(0)

k ) of (�k; �k; !k); k = 1; 2; � � � ; q: First,
we outline the initialization procedure for linear chirp signals, i.e.,
for signals with�k = 0, and then extend it to quadratic chirp signals.
Since the instantaneous frequency for thekth signal at the instantn is

~!k[n] = 2�kn+ !k; k = 1; 2 � � � q (7)

we can express the value of!k in terms of�k as

!k = ~!k[n]� 2�kn: (8)

Using (8), we propose an initialization that consists of two steps.
The first step is the estimation of thekth signal’s instantaneous
frequency atn = n0 + N; ~̂!k[n0 + N ] by detecting thekth
peak in the Choi–Williams time–frequency distribution of the data.
We choose the instantn = n0 + N because the time–frequency
distribution has the smallest variance atn = n0 + N: Since the
Choi–Williams distribution concentrates on the chirp’s instantaneous
frequency, we search along the frequency axis atn = n0 + N to
find the frequencies corresponding to the peaks of the distribution
and obtain the estimateŝ~!k[n0 + N ]; k = 1; 2; � � � q: Once the
instantaneous frequency estimates for each signal atn = n0 + N

are determined, we express the initial frequencies in terms of�k by
(8). Since the discrete Choi–Williams distribution is periodic with a
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(a)

(b)

Fig. 2. Performance comparison of the MMSE and alternating projection (AP) estimators forq = 2; N = 21; a1 = a2 = 1:0. (a) f1 = 0:2. (b) � = 0:01.

period of � instead of2�, the initial estimates are given either by
~̂!k[n0+N ]� 2�̂

(0)

k
(n0+N) or ~̂!k[n0+N ] +�� 2�̂

(0)

k
(n0+N):

The decision as to which one will represent the initial estimate is
made in the second step of the initialization, which involves a search
for best initial estimates of the chirp rates.

The second step is based on the following criterion:

[!̂
(0)

k
; �̂

(0)

k
] = arg max

!2F ;�
yyy
H
PPP (!;�; ���k�1)yyy

k = 1; 2; � � � ; q (9)

where Fk = f~̂!k[n0 + N ] � 2�(n0 + N); ~̂!k[n0 + N ] + � �

2�(n0 +N)g; ���k�1 = [!̂
(0)

1 ; �̂
(0)

1 ; � � � ; !̂
(0)

i ; �̂
(0)

i ; � � � ; !̂
(0)

k�1; �̂
(0)

k�1];

and ���0 = ; (empty set), andPPP (!;�; ���k�1) is a projection matrix
defined by

PPP (!;�; ���k�1) =HHH(!;�; ���k�1)(HHH
H
(!;�; ���k�1)

�HHH(!;�; ���k�1))
�1
HHH

H
(!;�; ���k�1):

The chirp rate of the strongest component is estimated first, followed
by the estimates of the chirp rate corresponding to the second
strongest signal, and so on.

The extension of the above procedure to quadratic chirp signals
is straightforward. We assume that the instantaneous frequencies for
each signal around the instantn = n0 + N are well separated and

change smoothly withn: Since the instantaneous frequency for the
kth signal is

~!k[n] = 3�kn
2
+ 2�kn+ !k; k = 1; 2 � � � q (10)

we can express!k and�k in terms of�k as

�k =
1

4
(~!k[n+ 1]� ~!k[n� 1]� 12n�k) (11)

and

!k = ~!k[n]� 3�kn
2
� 2�kn

= ~!k[n]� 3�kn
2
� 1

2
(~!k[n+ 1]� ~!k[n� 1]� 12n�k):

(12)

Again, we first estimate the instantaneous frequencies~!k[n0 +

N ]; k = 1; 2; � � � q from the largest peaks of the Choi–Williams
distribution. Similarly, we estimate~!k[n0 + N + 1] and ~!k[n0 +

N � 1] so that these estimates satisfyj ~̂!k[n0 + N + 1] � ~̂!k[n0 +

N ]j< j ~̂!k[n0+N+1]� ~̂!i[n0+N ]j andj ~̂!k[n0+N�1]� ~̂!k[n0+

N ]j< j ~̂!k[n0 +N � 1]� ~̂!i[n0 +N ]j for i 6= k: Finally, we obtain
the initial estimates of!k; �k and�k by the criterion

[!̂
(0)

k ; �̂
(0)

k ; �̂
(0)

k ] = arg max
!2F ;�

yyy
H
PPP (!; �̂k; �; ���k�1)yyy

k = 1; 2; � � � ; q (13)
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(c)

(d)

Fig. 2. (Continued) Performance comparison of the MMSE and alternating projection (AP) estimators forq = 2; N = 21; a1 = a2 = 1:0. (c)
f2 = 0:4. (d) �2 = 0:02 (experiment 2).

where Fk = f~̂!k[n0 + N ] � 2�̂k(n0 + N) � 3�(n0 +

N)2; ~̂!k[n0 + N ] + � � 2�̂k(n0 + N) � 3�(n0 + N)2g; �̂k =

0:25(~̂!k[n0 + N + 1] � ~̂!k[n0 + N � 1] � 12(n0 + N)�); ���k =

[!̂
(0)

1 ; �̂
(0)

1 ; �̂
(0)

1 ; � � � ; !̂
(0)

k
; �̂

(0)

k
; �̂

(0)

k
]; and���0 = ; (empty set).

V. COMPUTER SIMULATION EXAMPLES

To verify the performance of our MMSE estimator, we conducted
two Monte Carlo experiments. In the first experiment, the data
represented two linear chirp signals and were generated according to

y[n] = (a10 + a11n+ a12n
2
) expfj(�1n

2
+ !1n+ �1)g

+ (a20 + a21n+ a22n
2
) expfj(�2n

2
+ !2n

+ �2)g+ w[n]

wherea10 = 0:02672; a11 = 0:05343; a12 = �0:0005343; �1 =

0:0003142; !1 = 0:06283; �1 = 1:047; a20 = 0:0013; a21 =

0:001; a22 = �0:000234; �2 = 0:0010142; !2 = 1:00283; �2 =

0; andn = 0; 1; 2; � � � ; 100: The results are shown in Fig. 1, where
the plots (a) and (b) display the performance in estimating the initial
frequency and chirp rate of the first signal, respectively. It is clear
that the MMSE estimation performance is close to the CRLB when
the SNR exceeds approximately�2 dB. Note that the CRLB’s
are obtained by computer matrix calculations. From the figure, we

also see that the SNR threshold of our algorithm is lower than the
thresholds of other schemes reported in the literature, such as the 3
dB in [5] for one linear chirp signal. In [5], the parameter estimator
was based on the ML estimator implemented by the iterative Newton
procedure. The Newton’s method, however, is very sensitive to the
initial search points, particularly when the data records are small.
In our method, the sensitivity to initialization is smaller because the
MMSE is a more robust estimator.

In the second experiment, we simulate a scenario of two linear
chirps that are closely spaced in the time–frequency domain The data
y[n] were obtained from

y[n] = exp j2�
0:01

2
n
2
+ 0:2n

+ exp j2�
0:02

2
n
2
+ 0:4n + w[n]

where n = �10;�9; � � � ; 9; 10: The results are shown in Fig. 2
and compared with the results of the alternating projection (AP)
method. Clearly, for low SNR’s, the MMSE algorithm significantly
outperforms the AP method. This is so because the shape of the
likelihood function is not a sharp peak in thef � � plane but a
multitude of smaller peaks. This entails that the AP method becomes
sensitive to initialization, which strongly deteriorates its performance.
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In our method, however, this sensitivity is reduced by applying the
concept of integration of multimodal functions withM2 = 2 (see
[6]). In addition, the MMSE algorithm implemented by the adaptive
Gaussian quadrature numerical technique is much faster than the AP
method.
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Detection of the Number of Signals in the Presence
of White Noise in Decentralized Processing

Madhusudan Bhandary

Abstract—The problem of estimating the number of signals under
a white noise model is solved when the data are received from many
different places that are widely apart by using modified information
criterion proposed by the author. This criterion involves the eigenvalues
of the sample canonical correlation matrix. Some simulation results are
also presented.

Index Terms—Canonical correlation, information criterion, signal pro-
cessing, white noise.

I. INTRODUCTION

In the area of signal processing,q signals are observed atn
different time points from different sources top different sensors
where(q <p): However, due to atmospheric interference, the signals
received by the sensors do not remain undistorted. Signals are
affected by a noise factor. In this area, a model often used is that
the observed signal vector is the sum of a random noise vector
and a linear transform of a random signal vector. One of the
important problems in this case is to estimate the number of signals
transmitted. This problem is equivalent to estimating the multiplicity
of smallest eigenvalue of the covariance matrix of the observation
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vector. Anderson [2], Krishnaiah [3], and Rao [5] considered the
problem of testing the hypothesis of the multiplicity of the smallest
eigenvalue of the covariance matrix. The problem of estimation of
the number of signals by information theoretic criteria proposed by
[1], [6], and [7] were condidered in [8], [10], and [11].

In this correspondence, we consider the problem of estimation of
number of signals when the signals are coming from the same source
but received by sensors placed at many different locations.

In Section II, we consider the model and assumptions for signal
processing, and in Section III, we explain the model for our problem.
Section IV describes the solution of the problem, and some simulation
results are presented in Section V.

II. M ODEL AND ASSUMPTIONS

The following model [9] is used in signal processing:

xxx(t) = Asss(t) + nnn(t) (2.1)

wherexxx(t) = (x1(t); � � � ; xp(t)) is thep � 1 observation vector at
time t; sss(t) = (s1(t); � � � ; sq(t))

0 is the q � 1 vector of unknown
random signals at timet; nnn(t) = (n1(t); � � � ; np(t))

0 is the p � 1

random noise vector at timet; andA is thep� q matrix of unknown
parameters associated with the signals.

Under the assumption given in [9], we can say from model (2.1)
that

xxx(t) � Np(0; A	A
0

+ �1):

The number of signals transmitted isq (<p), which is the rank of
A	A0: Therefore, in this case, the estimation of the number of signals
is equivalent to the estimation of the rank ofA	A0:

III. M ODEL FOR THE PROBLEM

Our problem is described as follows: Suppose thatq signals are
going top sensors in some location and top sensors in some other
location that is widely apart from the first location and top sensors
in some other location that is widely apart from the first two, and so
on. Suppose in this way that there arek widely separated locations,
each containingp sensors.

The statistical model in this case will be described by thek

equations

xxxh(t) = Ahsss(t) + nnnh(t); h = 1; 2; � � � ; k (3.1)

wherexxxh(t) is thep�1 observation vector at timet at thehth place.
sss(t) is the q � 1 vector of unknown random signals,nnnh(t) is the
p� 1 random noise vector at timet at thehth place.Ah is thep� q

matrix of unknown parameters at thehth placeh = 1; 2; � � � ; k:

Under the assumptions given in [9], it is trivial from model (3.1)
that

xxxh � Np(0;�hh + �
2

hIp)

where�hh = Ah	A
0

h is the nonnegative definite matrix of rank
q (<p), and

Cov(xxxh(t); xxx
0

h(t)) =Ah	A
0

h

=�hh ; h (6= h
0

) = 1; 2; � � � ; k

=matrix of rankq (<p): (3.2)

We haven observationsxxxh(t1); xxxh(t2); � � � ; xxxh(tn) at the hth
place forh = 1; 2; � � � ; k, and on the basis of these observations, we
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