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MMSE Estimation of Nonlinear Parameters
of Multiple Linear/Quadratic Chirps

Hsiang-Tsun Li and Petar M. Djuri

Abstract—An iterative algorithm similar to our MMSE estimation pro-
cedure proposed in another paper by the authors is applied to parameter
estimation of multiple superimposed chirp signals in white Gaussian noise.
The necessary parameter initializations of the procedure are accomplished
by peak detections in the Choi—Williams time—frequency distribution
of the data followed by application of the least-squares principle. A
comparison between our scheme and the alternating projection (AP)
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where ay[n], 8k, ok, wi, ¢ are the real amplitude, quadratic chirp
rate, linear chirp rate, initial frequency, and phase ofitte signal,
respectively, ang = y/—1. The random samples[n] are complex

Gaussian, independent, and identically distributed whose real and

imaginary components have zero mean and unknown variaty
The number of chirpg is assumed to b&nown Suppose that the
amplitude of thekth signal can be decomposed fay basis functions,
or

Prp—1

Z ag,mk,1[n]

(=0

axln] @

method is demonstrated by computer simulation. where ax,; is the amplitude associated with tigh basis function

Nk, Of the kth signal. The amplitudes;, ; are unknown, whereas the
|. INTRODUCTION basis functions);; are known

Chirp signals are frequently encountered in many scientific andThe received data vectgrcan be written in a vector-matrix form
engineering areas. In sonar applications, radar, and physics, #€ording to
observed measurements are often modeled as amplitude modulated

2= \ ; : 3
chirp signals embedded in Gaussian noise. Many procedures have
been proposed for solving this problem, most of them based on hRere H is a (2N + 1) x L matrix whose columns span the signal
maximum likelihood (ML) principle or rank reduction techniquesspace,l = $¢_, px < (2N + 1),a is anL x 1 vector of complex
Much of the research over the past ten years has focused on dhgplitudes, andv is anL x 1 noise vector withw ~ CA(0, 021).
single chirp signal, [1], [4], and not until recently has the problenThe vectom is comprised of; concatenated amplitude vectors, which

related to multiple superimposed chirps been investigated [3], [%Jorrespond to the superimposed signals
However, the disadvantages of the above estimators are that they can

y=Hw,a Ba+w

either process only one signal and/or need fairly high signal-to-noise o =[ai a ay]
ratios (SNR’s) to have good performance. ere

In [6], we proposed a minimum mean square error (MMSE) _ » _
method for estimating the parameters of damped sinusoids. In this aj = [aroe’  ay e’ %F ap,py—1€" "]

correspondence, we extend the MMSE method proposed there to
chirp signals and show that it has excellent performance for ev@ﬂd the matrixH (w, &, §) is composed of; submatrices
low SNR’s and short data records. The method exploits the shape
of the posterior distribution of the chirp parameters and operates .
iteratively so that it processes only one chirp signal at a time. Thus, Hy(wq, aq,0q)]
the enormous computational burden of multidimensional integratiofhere theH ,'s are (2N + 1) x p, matricesk = 1,2,---,¢
is avoided, and the computational load is thereby drastically reduced.
An important issue in the implementation of the procedure is
its initialization. We propose an efficient initialization technique
that consists of two steps. First, the initial frequency estimates are
obtained from the data’s Choi—Williams distribution. Then, the initiz#nd
values of the corresponding chirp rates are found by a Ieast-squaresdk‘,(wk,ak’ /3k)1' = [nx.1[no] exp{gkng + apni + wino}
algorithm. Once these values are determined, the starting estimates of
the remaining nonlinear parameters of the strongest chirp signal are
estimated, followed by parameter estimation of the second strongest
signal, and so on.

H(w, «, ,3) = [H1 (’.»’1. 71, /31)H2(’.U2. 2, /32)

Hi(wg, ok, 0k) = [dkp (wk, ag, /fgk)dk,l(wkvaka /igk)
- dk,pk—l(wk: Qo ﬁk)]

= Ne,i[no 4 2N exp{Bi(no + 2]\7)3
+ ap(no + QN)2 + wi(no + 2N)}.

Given the observationg ¢, px., aAndr;k,,, the objective is to obtain
' Be b= 1,2,
Il PROBLEM STATEMENT the MMSE estimatesy., &y, and 3y, , q
Lety[n],n € Zn = {no,no+1, - ,n0+2N} be asetoRN+1
observed samples composed;afomplex quadratic chirps corrupted
by an additive white Gaussian noise process. That is

I1l. MMSE ESTIMATOR

The MMSE estimate ofw; is given by the following 3¢-
q dimensional integral

y[n] = Z ar[n] exp{j(Brn® + apn® + wen + é1)} +wln] (1)

k=1

Manuscript received October 15, 1995; revised May 13, 1997. This work
was supported by the National Science Foundation under Grant MIP-9506 7aiere f (w, e, Bly) is the posterior probability density function (pdf)
The associate editor coordinating the review of this paper and approvingft the signal parameter8, «, and w. The MMSE estimates ody;
for_r;r)]ublicattri‘on was Dr. tIr\:lotr;]iqug Farg:uest ¢ Eloctrical E . ?nd Bx are similarly defined.

e authors are wi e Department of Electrical Engineering, State ) .

University of New York at Stony Brook, Stony Brook, NY 11794-2350 USA The posterior pdf's are highly concentrated functions around the
(e-mail: djuric@sbee.sunysb.edu). true values ofw, @, and 8. Then, |f1 denotes the current iteration

Publisher Item Identifier S 1053-587X(98)02014-5. of our estimator, andJ“) A( ) andﬁ are the current estimates of

Wp = / wif(w,a, Bly) dB da dw 4
{w,0.8)

1053-587X/98%$10.00) 1998 IEEE

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 30,2010 at 17:26:23 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 3, MARCH 1998 797

T T T

T
50 CRLB v, — i

MMSE o —
o)

40 + Init. wi

10 log(x15E)
0
_10 F -
_20 1 1 1 1
-4 -2 0 4
SNR (dB)
@
100 T T T |
oL CRLBa; — ]
MMSE %ﬁ —_—
80 Init. Qy " T
50 —
40 - -
30 - -
20 Il 1 1 |
-4 -2 0 2 4
SNR (dB)
(b)

Fig. 1. Performance comparison of the MMSE and initial parameter estimates=fo2 (a) w = 0.06283, (b) « = 0.0003142.

w, g, and B, respectivelyk = 1,2,---,4, we can approximate IV. INITIALIZATION PROCEDURE
the posterior density (w. &, Bly) by To start the iterative algorithm, we need to determine the initial
B a0 estimates(3.”, 4\, (") of (Bx,ar.wr).k = 1,2,---,q. First,
flw . Bly) = fwi, o, Bely, @2 62y, B ) we outline the initialization procedure for linear chirp signals, i.e.,

q , , » for signals with3;, = 0, and then extend it to quadratic chirp signals.
: H 8(wr— o ar =&t 8= 3)  (5) Since the instantaneous frequency for Mie signal at the instant is

=
,¢,li. Orln] = 20m + wi, E=1,2-q (7)

where i:(?k ,d(,’;)k,, and 5(’3k denote the estimates of thgh W€ Can €xpress the value ok in terms ofa; as
iteration of all the frequencies and linear and quadratic chirp rates wi = @k[n] = 2apn. (8)
except the ones of theth signal. With this approximation, oug-

dimensional integral in (4) reduces gdndividual three-dimensional YSiNg (8), we propose an initialization that consists of two steps.
(3-D) integrals, that is The first step is the estimation of theth signal’s instantaneous

frequency atn = ng + N,@x[no + N] by detecting thekth

) ) ) () peak in the Choi—Williams time—frequency distribution of the data.
Yo = /{w,ak . wief(Whs ok, Bily, @ Z We choose the instant = no + N because the time—frequency
() ’ ) ’ distribution has the smallest variance rat= no + N. Since the
S0 B yy) Bk dag dwg. (6)  choi-williams distribution concentrates on the chirp’s instantaneous

frequency, we search along the frequency axis at no + N to
The estimates ofi;, and j; are obtained analogously. Theeforefind the frequencies corresponding to the peaks of the distribution
instead of solving (4), we compute integrals of the form given bgnd obtain the estimateék[no + N],k = 1,2,---¢q. Once the
(6). The estimates of the unknown parameters are found iterativelystantaneous frequency estimates for each signal at no + N
one at a time. The integrals in (6) can be solved efficiently by trere determined, we express the initial frequencies in terms,diy
adaptive Gaussian quadrature (AGQ) technique proposed in [6]. (8). Since the discrete Choi—Williams distribution is periodic with a
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(b)
Fig. 2. Performance comparison of the MMSE and alternating projection (AP) estimatars=far, N = 21,a; = ax = 1.0. (@) f1 = 0.2. (b) « = 0.01.

period of = instead of2x, the initial estimates are given either bychange smoothly withe. Since the instantaneous frequency for the
oi'k[no +N]- 9(¥k0)(llo + N) or O [no+ N]+7— 2uk )(no + N). kth signal is
The decision as to which one will represent the initial estimate is
made in the second step of the initialization, which involves a search
for best initial estimates of the chirp rates.

The second step is based on the following criterion:

orln] = 30kn” + 204 4w, k=1,2---q  (10)
we can expressy and oy in terms of ;. as

L~ ~ o

. . ap = 7 (Dr[n + 1] — &k[n — 1] — 12n8;) (11)

[w,&o),(,\cseo)] = arg max y' P(u) o, 0 1)y !
e

kzlvzv'“vq (9) and

. . wi =wgn] — 380> — 20,m

where i, = {wi[ne + N] — 2a(no + N),we[no + N] + 7 —

2a(n0 + N)}.04ms = (2,600,010, a0 5 &) =uln] = 30en® = §(@aln + 1] = Guln ~ 1] = 1205h).
andf, = 0 (empty set), andP(w, «,8,_1) is a prOjectlon matrix (12)
defined by

Again, we first estimate the instantaneous frequencigh, +
P(w,a.0p_1) :H(w,a',ek_1)(Hﬂ(w,a,ak_ﬁ N],k = 1,2,---¢ from the largest peaks of the Choi—Williams
- dlstrlbutlon Slmllarly, we estimaté[no + N + 1] and &x[no +
o 1y IT w.
H(w 0, 860)) " HE (w00 810)- — 1] so that these estimates satigfy[no + N + 1] — Dplno +

The chirp rate of the strongest component is estimated first, foIIow@’d| < |°°" [0+ N +1] = &ifno + N1| and|x o + N = 1] = & [no +
by the estimates of the chirp rate corresponding to the secofld N —1] _““l[”o'i'-\” for i # k. Finally, we obtain
strongest signal, and so on. the initial estimates ofuy, o, and gx by the criterion

The extension of the above procedure to quadratic chirp signals o (o) A(o
is straightforward. We assume that the instantaneous frequencies for
each signal around the instamt= n, + N are well separated and k=1,2,---, (13)

3(0)] = arg gl}@x y P(JJ ks 3,0k-1)y
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Fig. 2. (Continued Performance comparison of the MMSE and alternating projection (AP) estimatorg for 2, N = 21,a; = a2 = 1.0. (¢)
fo = 04. (d) az = 0.02 (experiment 2).

where Fr. = {g[no + N] — 24x(no + N) — 33(ny + also see that the SNR threshold of our algorithm is lower than the
N2, Oglno + N+ 7 — 2ar(no + N) — 38(no + N)?}, ax thresholds of other schemes reported in the literature, such as the 3
0.25(0k[no + N 4+ 1] — @xfno + N — 1] — 12(no + N)3), 0, dB in [5] for one linear chirp signal. In [5], the parameter estimator
(09,4 30 .. 20 4O 30 andg, = (empty set). was based on the ML estimator implemented by the iterative Newton
procedure. The Newton’s method, however, is very sensitive to the
initial search points, particularly when the data records are small.
In our method, the sensitivity to initialization is smaller because the

V. COMPUTER SIMULATION EXAMPLES

To verify the performance of our MMSE estimator, we conducte MSE is a more robust estimator
two Monte Carlq experiment_s. In the first experiment, the d,ataln the second experiment, we simulate a scenario of two linear
represented two linear chirp signals and were generated accordln%ﬁﬁps that are closely spaced in the time—frequency domain The data

y[n] = (a0 + arin + a1an®) exp{j(ain® + win + ¢1)} y[n] were obtained from
(a2 +azn + a‘22n2) exp{j(awz rean y[n] = exp {jQTF <%nz + ().27’>}
+ $2)} + wln] 2
- {0.02 ,

wherea;o = 0.02672,a11 = 0.05343,a12 = —0.0005343, 7 = + exp {]QW <Tn + 0.471)} + wln]
0.0003142,w; = 0.06283,¢1 = 1.047,a20 = 0.0013,a21 =
0.001, az2 = —0.000234, 2 = 0.0010142,w, = 1.00283,¢2 = wheren = —10,-9,---,9,10. The results are shown in Fig. 2
0,andn =0,1,2,---,100. The results are shown in Fig. 1, whereand compared with the results of the alternating projection (AP)

the plots (a) and (b) display the performance in estimating the initiadethod. Clearly, for low SNR’s, the MMSE algorithm significantly
frequency and chirp rate of the first signal, respectively. It is cleautperforms the AP method. This is so because the shape of the
that the MMSE estimation performance is close to the CRLB whéikelihood function is not a sharp peak in the— « plane but a

the SNR exceeds approximately2 dB. Note that the CRLB’s multitude of smaller peaks. This entails that the AP method becomes
are obtained by computer matrix calculations. From the figure, vgensitive to initialization, which strongly deteriorates its performance.
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In our method, however, this sensitivity is reduced by applying theector. Anderson [2], Krishnaiah [3], and Rao [5] considered the
concept of integration of multimodal functions withl, = 2 (see problem of testing the hypothesis of the multiplicity of the smallest
[6]). In addition, the MMSE algorithm implemented by the adaptiveigenvalue of the covariance matrix. The problem of estimation of
Gaussian quadrature numerical technique is much faster than thetA® number of signals by information theoretic criteria proposed by
method. [1], [6], and [7] were condidered in [8], [10], and [11].
In this correspondence, we consider the problem of estimation of
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that

z(t) ~ N, (0, ATA 4+ 3).

The number of signals transmitted ¢s(< p), which is the rank of
Detection of the Number of Signals in the Presence AW A, Therefore, in this case, the estimation of the number of signals
of White Noise in Decentralized Processing is equivalent to the estimation of the rank .¢fi A’

Madhusudan Bhandary ll. M ODEL FOR THE PROBLEM

Our problem is described as follows: Suppose thaignals are
Abstract—The problem of estimating the number of signals under 90ing top sensors in some location and gosensors in some other

a white noise model is solved when the data are received from many location that is widely apart from the first location andptsensors
different places that are widely apart by using modified information in some other location that is widely apart from the first two, and so
criterion proposed by the author. This criterion involves the eigenvalues on. Suppose in this way that there drevidely separated locations
of the sample canonical correlation matrix. Some simulation results are ) h L '
also presented. eac Contqln[ng) sensors. _ _ _

The statistical model in this case will be described by the

Index Terms—E€anonical correlation, information criterion, signal pro- equations

cessing, white noise.
xp(t) = Ahs(t)—i—nh(t), h=1,2,---,k 3.1)

I. - INTRODUCTION wherez;, (1) is thep x 1 observation vector at timeat thehth place.

In the area of signal processing, signals are observed at (1) is the ¢ x 1 vector of unknown random signala,, () is the
different time points from different sources jo different sensors p x 1 random noise vector at timeat thehth place.4, is thep x q
where(¢ < p). However, due to atmospheric interference, the signafBatrix of unknown parameters at tih¢h placeh = 1,2, -- -, k.
received by the sensors do not remain undistorted. Signals ard/nder the assumptions given in [9], it is trivial from model (3.1)
affected by a noise factor. In this area, a model often used is tfiaat
the observed signal vector is the sum of a random noise vector
and a linear transform of a random signal vector. One of the
important problems in this case is to estimate the number of signaleereT';,, = A,T¥ A} is the nonnegative definite matrix of rank
transmitted. This problem is equivalent to estimating the multiplicity (< p), and
of smallest eigenvalue of the covariance matrix of the observation

zp ~ Ny(0.Thp + 0 1,)

COV(Ih (t)* z’h (t)) = AAh‘IIA;z’
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