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Abstract

Recovering the three-dimensional (3D) information lost due to
the projection of a 3D scene onto a two-dimensional (2D) image
plane is an important research area in computer vision. In this
thesis we present a new approach to reconstruct a highly accurate
3D shape and focused image of an object from a sequence of noisy
defocused images. This new approach — Unified Focus and Defocus
Analysis (UFDA) — unifies the two approaches— Image Focus Anal-
ysis (IFA) and Image Defocus Analysis (IDA) — which have been
treated separately in the research literature so far. UFDA is based
on modeling the sensing of defocused images in a camera system.
The concept of a “Three-Dimensional Point Spread Function” (3D
PSF) in the (z,y, d) space is introduced, where @ and y are the im-
age spatial coordinates and d is a parameter representing the level
of defocus. The importance of the choice of this parameterization
is that it facilitates the derivation of a 3D convolution equation
for image formation under certain weak conditions. The problem
of 3D shape and focused image reconstruction is formulated as
an optimization problem where the difference (mean-square error)
between the observed image data and the estimated image data
is minimized by an optimization approach. The estimated image
data is obtained from the image sensing model and the current best
known solutions to the 3D shape and focused image. Depending

on the number of images in the sequence, an initial estimation of
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solution can be obtained through IFA or IDA methods.

Three optimization techniques have been applied to UFDA —
a classical gradient descent approach, a local search method and
a regularization technique. Based on these techniques, an efficient
computational algorithm has been developed to use variable num-
ber of images.

A parallel implementation of UFDA on the Parallel Virtual
Machine (PVM) is also investigated. Since one of the most com-
putational intensive part of the UFDA approach is the estimation
of image data that would be recorded by a camera for a given
solution for 3D shape and focused image . This computational
step has to be repeated once during each iteration of the optimiza-
tion algorithm. Therefore this step has been sped up by using the
PVM. PVM speeds up the computation process by utilizing the
power of multiple machines on a network. Experimental results
show significant speedup is obtained through parallelization.

UFDA shows the trade-off between (i) the amoumt of image
data, (ii) computation cost and (iii) accuracy. Experimental results

indicate UFDA to be useful in prcatical applications.
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Chapter 1

Introduction

1.1 Background

The 3D scene information that can be sensed by a camera are of two
types— geometric or depth-map and photometric or “brightness”. The 3D
shapes and distances of objects in the scene constitute the geometric infor-
mation while the image irradiance constitutes the photometric information.
There are many methods to recover these two types of scene information in
3D machine vision. They can be classified into two categories: active methods
and passive methods. Active methods project energy onto the object in the
scene and detect the reflected energy. Examples of this approach are sonar
ranging based on time-of-flight of sound, and laser ranging and structured-
light method based on triangulation. Due to the limitation of energy source,
these methods are impractical when the conditions of the object and environ-
ment exceed certain range. Passive methods, on the other hand, use ambient

illumination during data acquisition. Some well-known examples of passive



methods are— stereo vision, motion parallax, shape-from-shading, depth-from-
focus (image focus analysis or IFA) and depth-from-defocus (image defocus
analysis or IDA). Stereo vision takes two views from two different cameras
simultaneously and finds correspondence between points in the two images to
compute the disparity and then depth map. Motion parallax uses the dy-
namic properties of objects and relative movement between the camera and
environment as cues to determine 3D information. Shape-from-shading is a
photometric method to determine surface orientation from image brightness.
The image of a three-dimensional object depends on its shape, its reflectance
properties, and distribution of light source. Horn[4] showed how to determine
shape from shading by modeling the image formation process with the image

irradiance equation.

Among these methods, stereo vision is the most popular method. How-
ever, the major computational problems associated with stereo are the corre-
spondence problem and detection of occlusion. Recently, Image Focus Analysis
(IFA) [19, 67, 5, 31, 38, 48, 54] and Image Defocus analysis (IDA) methods
[14, 34, 41, 51] have attracted the attention of researchers as they do not suffer

from the problems associated with stereo.

IFA is a search method which searches the camera parameters that cor-
respond to focusing the object. Here, a large number of images is needed as
input to compute a focus measure (FM) in order to determine the focused
image and 3D shape. It needs mechanical motion of camera parts to change
camera parameters (e.g. lens position) in order to acquire images and hence

slow. Many IFA methods have been proposed in the literature. Subbarao



and Tae-Choi [48] proposed a Shape from Image Focus method which is based
on finding the best FM on a Focused Image Surface instead of over image
frames sensed by a planar image detector. In any IFA method the problem
of how to choose the best focus measure has also been investigated. Some
examples of focus measures are image energy, energy of Laplacian, and en-
ergy of image gradient[49]. Recently, Subbarao and Tyan [52] described two
metrics named AUM (Autofocusing Uncertainty Measure) and ARMS error
(Autofocusing Root-Mean-Square Error) for noise sensitivity analysis of focus

measures to select the the best one from a set of focus measures.

IDA, unlike IFA, is not a search method. It measures the amount of blur
in an image and needs as low as only two images to obtain the depth map of an
entire scene. It is faster than IFA but less accurate. In the literature [34, 35]
Pentland proposed a method that based on modeling a blurred step edge as
the result of convolving a focused image with a Gaussian PSF. He solved for
the blur parameter and the height of the edge by a linear regression method
to obtain the depth of the edge. He also proposed an algorithm for arbitrary
scene using two images. One of the images is a focused image formed by a
pin-hole camera, and the other is a defocused image obtained from a wide
aperture camera. This image is defocused by different amounts at different
positions depending on the distance of object points. He then obtained the
3D information by comparing the corresponding points in these two images
and measuring the change in focus. Enns and Lawrence [71] proposed a matrix
based regularization method. They used an iterative regularization method to

solve the inverse filtering problem for two blurred images to determine depth.



In comparison with other IDA methods, their method is computationally ex-
pensive and needs to calibrate the camera PSF.

Subbarao and Wei [68] have proposed a Fourier domain approach, called
DFDIF for obtaining depth using defocusing information. It computes six
one-dimensional Fourier coefficients from images to get depth map. Another
method named STM [51] (Spatial domain Convolution/Deconvolution Trans-
form Method) by Subbarao and Suyra uses spatial domain analysis approach.
In this method, two images recorded with two different camera parameter
settings and a local cubic polynomial model of image brightness are used to
obtain depth.

The method of our interest in this research falls into the category of focus
and defocus analysis. But unlike those IFA and IDA methods, the method we
propose here has the flexibility to deal with different conditions such as the
amount of image data, the knowledge of camera characteristics, the degree of
accuracy and computation cost in the applications.

In the following section, we will addressed the motivation for developing

this method.

1.2 Motivation

The purpose of this research is to find a method that can reconstruct
a better 3D shape and focused image in any circumstance compared to IFA
and/or IDA. To achieve this goal, the characteristics of IFA and IDA are

exploited. The IFA and IDA methods form two extremes of a range of methods



useful in 3D shape and focused image recovery. At one end of this range of
methods is the IFA method which uses a large amount of image data but
minimal information about the camera characteristics (e.g. the camera’s point
spread function). At the other end is the IDA method which uses minimal
image data but much information about the camera characteristics. Therefore,
a new theory that unified IFA and IDA is proposed in this work to tackle the
problem of 3D scene recovery. This new theory results in a unified approach
that suggests new methods that lie between the two extremes of the IFA and
IDA methods. The unified approach will be referred to as the Unified Focus
and Defocus Analysis or UFDA.

In this dissertation, the theory of UFDA, optimization techniques, compu-
tational algorithms, together with both sequential and parallel implementation

of UFDA are investigated to demonstrated the usefulness of UFDA.

1.3 Dissertation Overview

This dissertation is organized as follows. Chapter 2 provides the concepts
of Image Focus Analysis (IFA). Here, the basic principles, the definition of
Focused Image Surface (FIS), the advantages and disadvantages of IFA are
addressed. Following that, in chapter 3, we introduce Image Defocus Analysis
(IDA). In contrast to the IFA methods that involve the search of sharpest
focus measure in a large number of images, IDA methods require only a few
images for recovering the 3D scene of an object whether the images are focused

or not. Two methods of IDA are summarized in this chapter, one is a Spatial



Domain approach using S-Transform, the other is a Fourier Domain method
using one-dimensional Fourier coefficient. Theories of these two approaches

are briefly described in this chapter.

In chapter 4, the image formation model for the Unified Focus and Defocus
Analysis (UFDA) is presented. A Three-dimensional Point Spread Function
(3D PSF) is introduced here for the formation of images where the image data
is treated as a function sampled in the 3D space (x,y,d). The = and y are
image spatial coordinates and d is defined as blur parameter that represents
the level of defocus. The importance of this image formation model is the
way we parameterized the 3D PSF and the function of the image data in
terms of blur parameter d. For this choice of parameterization under certain
conditions, we can derive a 3D convolution expression for image formation. In
this chapter, both principles and derivations of this image formation model are
discussed. This model is later applied for the estimation of image data in the
UFDA optimization process. Our experiments show that this model produces
very accurate image data. We conclude this chapter with a discussion of two
other cases of this image formation model under different conditions which

enable us to apply UFDA.

In chapter 5, we propose a unified approach to image focus and defocus
analysis (UFDA). IFA and IDA can be viewed as two extremes in a range of
methods useful in 3D shape and focused image recovery. UFDA is investigated
by first exploiting the characteristics of IFA and IDA and their approaches to
the focus and defocus information in the image data. The theory of UFDA is

then established by linking IFA and IDA with the number of unknowns and



the number of constraints that are embedded in the image data. Therefore,
based on the image sensing model in chapter 4, the problem of 3D shape
and focused image reconstruction is formulated as an optimization problem
where the difference (mean-square error) between the observed image data and
estimated image data is minimized iteratively by an optimization technique.
Here, the estimated image data is obtained from the image sensing model
and the current best known solution to the 3D shape and focused image. An
initial solution can be obtained either from an IFA and/or an IDA method.
From our experiments, this UFDA approach shown that it reduces the error
in shape and focused image introduced by the image-overlap problem and
the non-smoothness of the object’s 3D shape. The theory and some practical
considerations of UFDA are discussed here. This chapter is concluded by the

discussion of how UFDA alleviate this image-overlap problem.

Chapter 6 shows the derivation of the 3D PSF based on geometric optics
in a single lens camera system. In practice, the point spread function of
each camera is different and can be obtained either from the manufacturer or
through a calibration procedure. The 3D PSF that we have proposed here is
a good approximation to the real camera point spread function in a certain
range of blur. Also, unlike two-dimensional shift-invariant type point spread
function, this 3D PSF states the response for each object point depending on

their distance to the lens.

In chapter 7, three optimization techniques that were applied to the
UFDA optimization process are presented. These techniques include a gra-

dient descent approach, a local search method and a regularization method.



This chapter begins with the discussion of gradient descent approach. The
gradient descent method is an iterative method that based on going downhill
with respect the error function to find the lowest point. In our case, the fo-
cused image surface in a certain image region is approximated by a piecewise
planar surface patch with three parameters - slope with respect to x-axis, slope
with respect to y-axis and z-axis intercept. Three search methods of this gra-
dient descent type have been tried in the experiments. They are a sequential
parameter search (SPS), a parallel parameter search (PPS) and a sequential
followed by a parallel parameter search (SPPS). The theory and implementa-
tion techniques of these methods are presented. Following the gradient descent
method, a local search method that is similar to a brute force search method
is introduced. This search method searches a limited range of depth around
the initial solution of each point of the focused image surface for the object
to find a local error minimum in each iteration. This method can obtain very
accurate result but is highly computation intensive. So far, both the gradi-
ent descent and local search method are applied to minimize the difference
between the observed and estimated image data directly. In particular, if a
perfect solution is found, then the difference of observed and estimated data
should converge to zero. On the other hand, for the third optimization tech-
nique, the problem of 3D shape and focused image recovery is formulated as an
ill-posed inverse optics problem in the sense of Hadamard and solve through
a regularization method. The regularization method that we applied to the
UFDA uses minimization the integral of the Laplacian Squared of the blur pa-

rameter d as the smoothness constraint for the intended solution. Therefore,



the cost functional to be minimized in this approach is a weighted sum of a
similarity functional— difference between observed and estimated image data
and a stabilizing functional— smoothness constraint with a regularization pa-
rameter A. In addition to the smoothness constraint, three constraints are also
used in the error minimization. They are - positivity of image brightness and
depth, and a local error control constraint. The first two capture the physical
reality and restrict the space of possible solution. The last prevents overshoots
and helps in fast converge of the solution during iteration. The theory of this
regularization, how to apply the regularization to the UFDA, derivation of
Euler-Lagrange equation, implementation techniques and how the value of A

affects the minimization are discussed.

Chapter 8 describes a computational algorithm specifically for the UFDA.
The importance of this algorithm is that it deals with variable number of input
images in an optimal fashion. This algorithm consists of two parts. First, how
to obtain an initial solution that is based on the number of images and available
methods. The second part is to solve the deconvolution problem for the focused
image in the UFDA optimization process. Details of this algorithm are covered
in this chapter and several experiments of UFDA are carried out here based
on this algorithm. These experiments are divided into two groups. One group
is to recover the 3D shape and focused image with many image frames while
the other one uses only a few image frames. The optimization techniques that
are described in chapter 7 are applied to these experiments and we conclude

this chapter by the performance comparison of these techniques in each group.

In chapter 9, a parallel implementation of UFDA by Parallel Virtual Ma-



chine (PVM) is presented. This part of research is a join work by Mr. Naiwei
Lo, Dr. Muralidhara Subbarao, Dr. Bradely S. Carlson and author. The moti-
vation of this work is to show that the computation cost of UFDA can be easily
reduced by the power of parallel processing. Also, this work demonstrates an
application of PVM to the problem of 3D scene recovery. In this chapter,
the identify of parallelizable part of UFDA, what is PVM, implementation
techniques, experimental configurations are described. The performance of
different configuration of network machine are also analyzed here.

Finally, in chapter 10, we conclude this dissertation by a summary of our

research and possible extension of this work for future investigation.
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Chapter 2

Image Focus Analysis

2.1 Image Focus Analysis (IFA)

In IFA, a large sequence of image frames of a 3D scene is recorded with
different camera parameters (e.g. focal length or/and lens to image detector
distance). In each image frame, different objects in the scene will be blurred
by different degrees depending on their distance from the camera lens. Fach
object will be in best focus in only one image frame in the image sequence.
The entire image sequence is processed to find the best focused image of each
object in the 3D scene. The distance of each object in the scene is then found
from the camera parameters that correspond to the image frame that contains
the best focused image of the object. The IFA methods are based on the
fact that for an aberration-free convex lens, (i) the radiance at a point in the
scene is proportional to the irradiance at its focused image [4] (photometric

constraint), and (ii) the position of the point in the scene and the position of
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Figure 2.1: Image formation in a convex lens

its focused image are related by the lens formula (geometric constraint)

S

1 _ % 4 (2.1)

where f is the focal length, w is the distance of the object from the lens plane,
and v is the distance of the focused image from the lens plane (see Fig. 2.1).
Given the irradiance and the position of the focused image of a point, its
radiance and position in the scene are uniquely determined. In a sense, the
positions of a point-object and its image are interchangeable, i.e. the image of
the image is the object itself. Now, if we think of an object surface in front of
the lens to be comprised of a set of points, then the focused images of these
points define another surface behind the lens (see Fig. 2.1). This surface is

defined to be the Focused Image Surface (FIS) and the image irradiance on
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Figure 2.2: Focused Image Surface

this surface to be the focused image. There is a one to one correspondence
between the FIS and the object surface. The geometry (i.e. the 3D shape
information) and the radiance distribution (i.e. the photometric information)
of the object surface are uniquely determined by the FIS and the focused
image. In traditional IFA methods (e.g. [5, 30, 48, 49] ) a sequence of images
are obtained by continuously varying the distance s between the lens and the
image detector or/and the focal length f (see Fig. 2.2 and Fig. 2.3).

For each image in the sequence, a focus measure is computed at each pixel
(i.e. each direction of view) in a small (about 15 x 15) image neighborhood
around the pixel. At each pixel, that image frame among the image sequence
which has the maximum focus measure is found by a search procedure. The

grey level (which is proportional to image irradiance) of the pixel in the image
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Figure 2.3: Image Focus Analysis

frame thus found gives the grey level of the focused image for that pixel. The
values of s and f for this image frame are used to compute the distance of the
object point corresponding to the pixel. An example of a focus measure is the
grey level variance. IFA methods involve a search for the values of s or/and
f that results in a maximum focus measure and these methods require the
acquisition and processing of a large number of images. The disadvantage of
acquiring a large number of images is the amount of time required to adjust
the camera parameters (lens position s or/and focal length f) before recording
each image. This involves mechanical motion of camera parts which is often
slower than electronic computation. During the entire period of adjusting

camera parameters, the scene must remain stationary.
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Chapter 3

Image Defocus Analysis

3.1 Introduction

Recently some researchers [71, 34, 68, 41, 51] have proposed methods for
finding distance and focused image of an object which do not require focusing
the object.(see Fig. 3.1) They take the level of defocus of the object and the
corresponding camera parameter values into account in determining distance
and focused image. Therefore this approach is called Image Defocus Analysis
(IDA). IDA methods do not involve searching for f and s values which cor-
respond to focusing the object. Therefore these methods require processing
only a few images (about 2-3) as compared to a large number of images in
the ITFA methods. In addition, only a few images are sufficient to determine
the distance of all objects in a scene using the IDA methods, irrespective of
whether the objects are focused or not. The two main disadvantages of the

IDA methods are (i) they require accurate camera calibration for the cam-
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era characteristics (point spread function as a function of different camera
parameters), and (ii) they are less accurate than IFA methods. Here we sum-
marize two main approaches — Fourier Domain [56] and Spatial Domain [53]

approaches to image defocus analysis in the following sections.

3.2 Fourier Domain Approach

The image formation in a camera with variable camera parameters (s, f, D)
is shown in Fig. 2.1 Here s specifies the lens position, f the focal length, and D
the aperture diameter. The camera parameter setting is denoted by e; where
e; = (s, fi, D) is a vector representing the ¢ — th camera parameter setting .

According to paraxial geometric optics [13] the normalized radius of the blur
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circle is
D{1 1 1
(i o
2
where u 1s the object distance. For the sake of conceptual simplicity, let the

Point Spread Function (PSF) of the camera be a two-dimensional Gaussian:

1 22442
h(z,y) = ——¢ 20t (3.2)

27w o2

where the spread parameter o is proportional to the blur circle radius R.

Therefore we can write

oc=cR (3.3)

where ¢ is a camera constant. In this camera model, a blurred image ¢ of a
planar object at distance u having focused image f is given by the convolution
of the PSF & and the focused image f, i.e. ¢ = h* f. In the Fourier domain,
this relation becomes G(w,v) = H(w,v)F(w,v) where H(w,v) = ez (WHv)e?
For two blurred pictures g1, g2, taken with two different camera settings ey, ey,
we obtain Gy(w,v)/Gy(w,v) = e~z (W) (e1-03) or,

2 2 —2 |G1(W7V)|

— g2 = 1
ST T 2 [Galw, v)]

Further, from Egs. (3.1), (3.3) we have
Dy (1 1 1 Dy (1 1 1
0'1—07(%—;—5) 702—07(—————) 5 (35)

Eliminating 1/u from the above two relations we obtain

Dy 1 1 1 1
01 = aoy + # where a = — | =cD||———+ — — — 3.6
! ? ﬂ D, ﬂ ! (fl f2 52 81) ( )

Eqgs. (3.4), (3.6) together yield

—2 |G (w, V)]
2_1 2 2 2: 1 9
(a Jos + 2apos + 3 e H|G2(w,1/)|
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In the above equation o3 is the only unknown. The equation is quadratic
and therefore oy is easily obtained by solving it. The two solutions result
in a two-fold ambiguity. Methods for resolving this ambiguity are discussed
in [68, 51, 53, 56]. From the solution for o,, the distance u of the object is
obtained from Eq. (3.5).

The above discussion illustrates the conceptual feasibility of determining
distance from two defocused images. Repeating the above procedure in all
image neighborhoods, the depth-map of an entire scene can be obtained from
only two blurred images in parallel. The Gaussian PSF model results in closed-
form solution. However, in general, a closed-form solution cannot be obtained
for the actual PSF of a camera. A numerical method will have to be used.

Details for the case of arbitrary PSFs are presented in [56].

3.3 Spatial Domain Approach

A new spatial-domain convolution/deconvolution transform (S Transform)
is defined in [43]. The definition of the transform for the general case is quite
complicated. For two-dimensional images, it is even more involved. However,
a special case of the transform suffices for image defocus analysis. This case
turns out to be particularly simple.

For two-dimensional images, under a local cubic polynomial model, the
transform is defined as follows. If a focused image f is blurred by convolution
with a circularly symmetric PSF A to result in the blurred image ¢, then ¢ is

the forward S transform of f with respect to the kernel function &, and it is
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given by:
glw,y) = fle,y) + % V' f(z.y) (3.8)

where hy is the second moment of & with respect to x or y, i.e.

hy = //:1;2 h(z,y) de dy = //y2 h(z,y) dx dy (3.9)

and v7? is the Laplacian operator.
The inverse S transform of g with respect to the moment vector (1, hs) is

equal to f and it is defined as

hy

flay) = gley) =5 v2l(z,y) (3.10)

For a Gaussian PSF model used in the previous subsection, it can be
shown that hy = 0?/2. Therefore, if two blurred images ¢, and g, are acquired
with different camera settings e; and ey corresponding to blur parameters oy
and o5 we obtain

o? ol

[ = gl—jvzgl ., f= gz—fv292 (3.11)

From the above two relations, Eq. (3.6), and the fact that g = %¢s we

obtain
4(91 - 92)
Vi

where a and  are as defined in the previous section. Except for the right

(@® —1)os + 2af0y + f° = (3.12)

hand side, the above relation is similar to Eq. (3.7). Therefore we have a
quadratic equation in o, which can be easily solved. The distance u can be
obtained from oy from Eq. (3.5). Implementation details and experimental

results for this approach are described in [51, 53].
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Chapter 4
Image Formation Model

Consider the image formation in Fig. 2.1. The image irradiance or bright-
ness distribution produced on the image detector plane by a point light source
depends on its position in the object space and the camera parameters e. The
position of the point source can be specified in terms of a distance u and a
direction (z,y) where u is the distance of the point light source from the lens
along the optical axis and (x,y) is the point on the image detector where the
line passing through the point source and the optical center intersects the im-
age detector plane. Let h(x,y,a’,y’,e,u) represent the image brightness at
a point (2’,y’) on the image detector plane produced by a point light source
of unit brightness whose position is specified by distance v and the direction
(x,y), and when the camera parameter setting is e. The term unit brightness

is defined such that

/ / h(z,y, 2",y e, u) da’ dy' = 1. (4.1)
The function h is indeed the PSF of the camera system. Let a 3D scene

consist of only opaque objects so that along each direction of view (x,y) there
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is only one visible object point at a distance u(x,y) with a brightness of F(x,y)
units. In this case, the visible surfaces can be considered to be made up of a
collection of point light sources lying on a surface defined by u(x,y) and the
image brightness g(a',y’) observed at a point (2’,y’) on the image detector
is given by the sum of the image irradiances produced by each of the point

sources in the scene. Therefore we have

g(a',y') = /_OO /_OO F(z,y) h(z,y, 2"y, e, u(x,y)) do dy. (4.2)

For the sake of computational efficiency we will specify the dependence of the
PSF h in terms of two new scalar parameters d’ and d instead of the vector
parameter e = (D, f,s) and u(x,y). d' and d are defined as the blur parameter
of point light sources at distances u’ and u respectively where u’ is a known
reference distance. The blur parameter d is defined as the normalized blur
circle diameter of a point source at distance u. In Fig. 2.1, the diameter of the

blur circle can be shown to be

& = Ds (l L 3) (4.3)

The image magnification changes with s. In order to simplify our analysis
and the computational algorithms, all images recorded with different s are
normalized to have a fixed magnification. For example, an image recorded
with the image detector at s can be scaled to unit magnification by reducing
the dimensions of the image by a factor of s. The blur circle diameter in a

magnification normalized image is defined as the blur parameter and is given

- 1)

by
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Similarly, d’ is defined as

1 1 1
Note that

d = d’+D(i—l) (4.6)

d" will essentially replace the vector parameter e thus reducing the dimension-
ality of the PSF by two (since the 3 component vector e is replaced by the
scalar d'). The reference distance u’ can be arbitrary, but it is convenient to

choose it as

Lotk

u’ Umin  Umas
where u,,;, and ;.. are the minimum and maximum distances at which
objects may be present. Since d' depends on e and d depends on both e
and u(x,y), we may denote them as d’(e) and d(e,u(x,y)). Now, if a sequence
of images ¢;(2',y’) are recorded with different camera parameter settings e;

for ¢ =1,2,3,---, then Eq. (4.2) may be written as

gi(z',y') = /_O:o /:: F(z,y) h(z,y, 2"y d(ey,u(z,y)),d(e;)) do dy. (4.8)

In changing e; = (D, fi, s;) from frame to frame, one may change any one
parameter at a time, any two at a time, or all three simultaneously. The special
cases where only one or two parameters are varied at a time while keeping the
other parameters constant are of interest in practical applications. Consider if
changing the camera parameter settings involves changing f, or s, or both s
and f, but does not involve changing D. In this case, the image g;(2',y’) are

arranged so that d’' is monotonic as 7 increases. This image sequence can then
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be denoted by g(a',y’, d") instead of g¢;(2',y") and we obtain

g(a',y',d") / / (v,y,2',y' d,d") dz dy. (4.9)

It % is changed by ¢, or % is changed by ¢, or if both % and % are changed
so that the change in %—% is 6, then both d and d' change by the same amount

given by Dé. For this reason we can write

g2’y d") / / (v, 2" y,y',d — d) dx dy. (4.10)

In the case of paraxial optics model of image formation, the above expression

can be simplified to the following three-dimensional convolution expression:

o2y d) ///‘” (z,y,d) h(a'—x,y' —y,d —d) dz dy dd. (4.11)

where
F(z,y) if dle,u(z,y))=0o0rd =—-D (% — %) and
Fl(z,y,d) =
0 otherwise.
(4.12)
The above convolution expression can be abbreviated as
g(a',y',d) = F'(«',y',d) x h(a',y,d) (4.13)

where x denotes the convolution operator. It will be found that our choice of
parameterization of the PSF in terms of the normalized blur circle diameter
facilitates the derivation of the convolution expression. Other choices (that are

not linearly related to the blur circle diameter) will not lead to the derivation
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of the convolution expression. In particular, parameterising in terms of s or f
directly will not lead to the convolution expression.

In deriving the convolution expression above, we have assumed that D is
not changed in order to change e. However, if D is changed, the above result
will not hold because the value of d’ —d is not a constant with respect to object

point locations (z,y, u(x,y)) but varies depending on u(x,y) since

d—d = —D (i _ 1) (4.14)

u’ U

In this case we obtain

g2y, d) = /OO /OO /OO Fl(z,y,d) h(z' —x,y —y,d',d) de dy dd (4.15)

where F'(x,y,d) is as defined earlier.

In the (2/,y’, d') space or the (2',y’, e, u) space, the condition d(e,u(x’,y’))=0

. p(11) - -

specifies a hyper-surface that corresponds to the Focused Image Surface (FIS)
defined earlier. The brightness distribution on this surface is the focused im-
age.

In microscopy, images are acquired by moving the object specimen away
from the lens. In this case, the camera parameters e is not changed, but
u(z’,y’) is changed in equal increments. In this case we can still use the
(', y',d") space where d' is changed by changing v’ in equal but known values.
Relative motion of the object with respect to the lens along the optical axis

shifts the image position of points on the object by unknown amounts. This
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Figure 4.1: Correspondence problem in microscopy

gives rise to the correspondence problem encountered in the analysis of optical
flow in 3D computer vision (see Fig. 4.1.)

But in microscopes, the object will be close to the distance of focal length
and focal length is very small. Also object motion (microscope stage) will
be small. Under such conditions we may be able to ignore the problem of
correspondence. However, since the 3D PSF changes with object distance,
we cannot derive a convolution relationship. Suppose the change in object

movement is 6, then

d = D(————i) (4.17)

Now d' — d once again changes from point to point depending on u(x,y) and

therefore only Eq. (4.15) remains applicable but not the convolution expres-



sion.

Recording a sequence of images by changing the camera parameters (or
the object distance as in microscopy) should be treated as sampling the func-
tion g(a',y’,d’). The sampling period 6 along the d' dimension should be
roughly the same as in the (2/,y’) dimension (i.e. one pixel). Therefore in
acquiring a sequence of images, e should be changed from one image frame to
the other (resulting in a sampling period of ) such that d’ changes by about
1 pixel. The sampling period could be larger than this (), but choosing it
smaller would increase redundancy between two successive image frames.

The analysis in this section dealt with scenes with opaque surfaces. How-
ever, this analysis could be extended to 3D transparent objects as in confocal
microscopy. In this case we can use 3D Fourier analysis on the 3D convolution
expression Eq. (4.11). In comparison with the previous literature [21] our use
of (a',y',d') space is new compared to other camera parameters in place of d'.

The analysis in this section in terms of continuous functions can be easily
extended to the case of discrete sampled functions. The results in this section

are directly applied to the discrete domain in the following sections.
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Chapter 5

Unified Focus and Defocus Analysis (UFDA)

5.1 Introduction

The image focus and defocus analysis problem is briefly described in chap-
ter 2 and 3. We discuss this further to lay the foundation for UFDA. First, for
simplicity, consider a particular case of the IFA problem where the distance s
between the lens and the image detector is changed for focusing (see Figs. 2.1,
2.3, and 6.1). But the analysis here can be extended to the general case where
both s and f are varied for focusing. A sequence of images ¢;(7, k) are recorded
(see Figs. 2.2 and 5.1) with s = s, for¢ =0,1,2,--- , [—=1,j=0,1,2,---, J—1,
kE=0,1,2,---, K — 1, 89 = Spin < 81 < 83 < ---87_1. Usually, s,;p = f. J
and K are the number of rows and columns respectively in each image frame
and [ is the number of image frames (see Fig. 2.2 and Fig. 5.1). We can think
of this image sequence as sampled data of an image volume and denote the
image data as ¢(¢, j, k) (Fig. 5.1). In this image volume, the problem is to find

the set of pixels which lie on the focused image surface (FIS) of the object. For
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surfaces with a slope of up to 6 /d where 6 is the smallest distance between two
image frames and d is the pixel size (Fig. 2.3), for any given row j and column
k, there is only one pixel which lies on the FIS. If the slope exceeds this limit,
then there will be more than one pixel through which the FIS passes for a
given row j and column k. This problem can be avoided by either increasing
0 or decreasing d. We shall assume that the slope of FIS is less than or equal
to 6/d.

The image frame number ¢, to which this pixel belongs depends on (j, k)
and therefore it can be expressed as a function ¢,(j, k). This function 7,(7, k)

represents the FIS and the grey level on the FIS given by
F(j. k) =g(iv(s, k), 5, k) (5.1)

represents the focused image. Now the image focus analysis problem can be
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stated as— given the image sequence ¢;(j, k) and the camera parameters s; and
f, find i,(j, k) and F(y, k) in some image region or over the entire image. In
order to find the function 7,(j, k) which specifies the FIS, we use the fact that
the focus measure computed over F(j, k) (or ¢(i,(j,k),7,k)) is a maximum
over all possible functions z,. A search for the function ¢, is computationally
expensive, and typically the FIS is assumed to be a smooth surface in solving
for 7,. In the autofocusing problem, only some of the images in the image
sequence are used to find the lens position s; that results in focusing the
image in a narrow region. The object imaged in the narrow image region is
assumed to be approximately planar and normal to the optical axis. A detailed
treatment of the IFA methods can be found in [49, 48]. A comparison of some
of the features of IFA and IDA methods is useful in relating them to the unified
approach above. The IDA or image defocus analysis problem can be stated as—
given two of the images ¢.,(J, k) and ¢, (j, k) in the image sequence g¢;(J, k), the
camera parameters e,, and e, corresponding to these two images, and the the
camera’s point spread function as a function of the camera parameters, find
iy(J, k) and F(j, k) in some image region or over the entire image. The values of
iy(J, k) and F(j, k) are both unknown at each of the Jx K pixels. Therefore the
total number of unknowns is 2./ K. Given the two images g, (j, k) and g,,(J, k),
we can write Eq. (5.3) — (which is a discrete version of Eq. (4.11).) at each
of the J x K pixels in the two images. This results in 2JK constraints, i.e.
the solution for ¢,(j, k) and F'(j, k) must be consistent with the observed data
gm (7, k) and g,(j, k). Therefore (ignoring border effects due to blurring) the

number of unknowns and the number of constraints match. It is known that
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the spatial domain method of image defocus analysis STM [51] can be used to
solve for both i,(j, k) and F'(j, k) at each pixel (under some weak assumptions).
If the camera aperture diameter remains the same while recording ¢,,(J, k) and
gn(J, k), then the solutions for ¢,(j, k) and F(y, k) are unique. Otherwise a two-
fold ambiguity may result which can be resolved by recording a third image
9p(7, k) with different camera parameter settings. Theoretically only two or
three images are sufficient to solve for 7,(j, k) and F(j, k) under some weak
assumptions. However, as is clear from the experiments reported in [51], due
to noise and lack of sufficient contrast information in very small image regions,
a few (about 1 or 2) image frames more than the theoretical minimum would
be needed in practical applications. Further ¢,(j, k) may need to be smooth

or piecewise constant in small image regions depending on image contrast.

In summary, IDA methods use the minimum amount of image data (2 or
3 image frames) needed, but require full information about the camera point
spread function h(e;,i,7,k). In contrast with IDA methods, IFA methods
require a large number of image frames to be recorded and processed, but
they need little information about the camera point spread function. The IFA
methods do not need calibration of the camera system to determine the PSF
(h) as a function of the camera parameters (e;) but the IDA methods need
the calibration. The computational algorithm in the IFA methods is simple
relative to that in the IDA methods and the accuracy is better (by a factor of

2 in the experiments reported in [51]).

Let the image volume data ¢(¢,j, k) with I image frames be used in an

IFA method. Using the same data, in the unified approach we can write Eq.
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(5.3) at each of the [ x J x K pixels. This is an over constrained system (for
I > 2). However, in the traditional IFA methods, information about the PSF
h is not used. Therefore the image data yields just about sufficient constraints

to obtain an approximate solution to i,(j, k) and F(y, k).

5.2 UFDA

The unknowns in both the IFA and IDA methods are ¢,(j, k) and F(y, k).
If the image frame size is J rows and K columns, then the number of unknowns
for 4,(7, k) and F(j, k) are both JK. Therefore the total number of unknowns
is 2JK. In order to determine these unknowns, a number of image frames
g:(j, k) are recorded at different camera parameter settings e; = (s;, fi, D).
The image frame data can be represented as 3D image volume data ¢(¢, 7, k)
where ¢ is the frame number (Fig. 5.1). This recorded image volume data
depends on the camera parameters e;, the FIS ¢,(j, k), and the focused image
F(j,k). This dependence is specified by the camera characteristics (e.g. point
spread function) [47]. In order to illustrate the concepts, the paraxial geometric
optics model of image formation will be used. Under this model, we introduce
the concept of a 3D point spread function h(e;, i, 7, k) defined as the image
volume data ¢(z, j, k) recorded by the camera with camera parameter setting
of e; when the scene in front of the camera contains only a single point light
source such that when it is perfectly focused onto a single pixel, the brightness
recorded by the pixel is 1 unit (grey level). In this case, for an arbitrary scene

with focused image F'(j, k) and FIS ¢,(j, k), the observed volume image data



g(t,7, k) can be expressed as

g(t, 5, k) = ZZF(m, n) hieit,7,k,m,n) (5.2)

m n

Under certain conditions (see chapter 4), ¢(¢, j, k) above can be approximated

by ¢'(¢,j, k) where

g'(i,5,k) = Z ZF(m, n) hiei i —i,(m,n),j —m,k —n) (5.3)

m n

Then the problem of 3D shape and focused image reconstruction is formu-
lated as an optimization problem where the difference or mean-square error
FE between the observed image data ¢(1, j, k) and the estimated image data

g'(,7, k) is minimized where

E= ZZ;(g(i’j’ k) —g'(i.j. k)’ (5.4)
i
The estimated image data ¢'(¢, j, k) is obtained from Eq. (5.3) using the PSF
h and the current best known solutions to the 3D shape i,(j, k) and focused
image F'(j, k). An initial estimation of the solutions is obtained through tra-
ditional IDA and IFA methods. This solution is improved iteratively by an
optimization technique.

This approach reduces the errors in shape and focused image introduced
by the image-overlap problem and the non-smoothness of the object’s 3D
shape. Efficient computational techniques for obtaining a unique solution for
iy(J, k) and F(j, k) need to be developed. For example, a smoothness con-
straint may be added (as in the regularization technique) to the error term

as

E=3"%"3"(gli, 5, k) = ¢'(i,,k))* + A4, k))? (5.5)

v 7k
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where A is a weighting parameter.

The above approach unifies the traditional IDA and IFA techniques. This
becomes clear from the previous discussion. Since in terms of the amount of
image data used, and the amount of information used about the camera PSF h,
the IFA and IDA methods may be viewed as two extremes in a range of possible
methods. One can devise methods that are “in between” these two extremes
in the sense that they use less amount of image data than the IFA methods
but more than the IDA methods, and possibly more information about the
camera PSF than the IFA methods but less than that of the IDA methods.
One can also introduce the camera parameters e; as additional unknowns into

the problem.

In practical applications, using only 2 or 3 images in the IDA methods
do not yield reliable results in the presence of noise. In this case, one might
like to obtain reliable results using more image data, but not as much data as
in traditional IFA methods. In this case, there is a need to device a method
that is in a sense a combination of IDA and IFA methods. It is necessary to
avoid acquiring and processing of excessive number of image frames. There is
need for an algorithm that helps in guiding the acquisition of the most useful
image data while avoiding image data that would contribute only marginally
to improving the accuracy of estimated FIS and focused image. In a sense, the
solution to 7,(j, k) and F(j, k) should progressively improve in accuracy with

the acquisition and processing of additional image data.

One algorithm that incorporates these features is outlined here. Suppose

that a 3D scene contains many objects of different shapes at different distances.
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First a few image frames (about 3 to 5) placed far apart in the image volume
data are acquired. IDA methods are applied using these images to get a rough
estimate of ¢,(j, k). Then additional image frames are recorded only in regions
surrounding the values taken by estimated 7,(j, k). No image frames need to
be recorded outside the range of estimated ¢,(7j, k) because the objects would
be more blurred in those image frames than in the image frames recorded near
the estimated values of 7,(7, k). More blurring increases border effects and the
image-overlap problem both of which lead to larger errors in the estimation of
iy(J, k). Then the image focus analysis and interpolation are used to obtain
improved estimate of ¢,(j, k). This solution is further refined using the unified
approach described earlier. One can also use the unified approach directly
on as few as only two images (as in traditional IDA) methods, but, in the
absence of good starting solutions, the method will become computationally
intensive. If more than two images are given, then one may use the unified
approach to minimize the effects of noise by solving an over-constrained system

or introduce additional unknowns in the form of camera parameters.

Blurring has no effect on uniformly bright image regions and it’s effect
increases with rapid variations in image brightness. Therefore, in the presence
of noise, image regions with slowly varying brightness provide less reliable in-
formation than those regions with rapidly varying (e.g. near edges) brightness.
Therefore, one may compute a weighted least square error where the weight
at a point can be a function that increases with increasing image gradient.
Solutions for the FIS and the focused images may be obtained by minimizing

this weighted mean-square error.
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One can apply derivatives (e.g Laplacian) or other linear shift invariant
(LSI) filters (e.g. Laplacian of Gaussian) on either side of Eqs. (5.2,5.3).
Then we may solve for the FIS by minimizing the least square error between

the derivative (or filtered) observed data and the predicted data.

5.3 Image Overlap Problem

It is pointed out earlier that UFDA reduces the error caused by image-
overlap problem. In this section, we explain the image-overlap problem and
how UFDA deals with it. Image-overlap occurs when two or more near-by
point sources in the scene are defocused on the image detector plane and their
blurred images overlap (Fig. 5.2). In particular, the brightness near the border
of an image region is affected by the defocused objects in the surrounding
image regions. This phenomenon introduces error in 3D shape recovery using
IFA and IDA methods when an image is divided into small regions and each
region is processed independently. This error may be reduced by selective
illumination or by multiplying the image intensity by center-weighted masks,
but these methods are not always satisfactory. In UFDA the image sensing
model takes into account the contribution from all object point sources in
estimating the observed image brightness at a given point. In particular, the
image brightness near the border of an image region is computed by taking into
account all possible object point sources— both those inside the image region

and those outside but close to the border. Therefore the error in 3D shape
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Figure 5.2: Image overlap problem
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recovery is minimized. However, near the border of the whole image (field stop
boundary) the error due to the image-overlap problem persists since image data
outside the whole image is not available. Techniques for minimizing this error

will be investigated in the future research.
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Chapter 6

Three-dimensional Point Spread Function

(3D PSF)

In this chapter we first discuss the point spread function for geometric
optics model of image formation and derive an expression for the 3D PSF.
Figure 2.1 shows the optical system described in chapter 2. According to
paraxial geometric optics the blurred image of a point has the same shape as
the lens aperture but scaled by some factor. This holds irrespective of the
position of the point in the scene. The blurred image of a circular aperture
lens will then have a circular shape referred as the “blur circle” with uniform
brightness inside the circle and zero outside. This blur circle is the response
of the optical system to a point source in the object space. Therefore it is the
Point Spread Function (PSF) of the optical system and is denoted by h(z,y).
We define ¢ to be the scaling factor where ¢ = 2R/ D.

In Fig. 2.1, from similar triangles we have

2R §— [1 1]
qg = — = = 8

D v v s

v S
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Substituting for L from the lens formula (1) we obtain,

it 62

(6.3)

Note that, from Eq.(4.3), v = d”/2. The magnification normalized radius of
the blur circle is r = d/2. If the camera is a lossless system (i.e. no light is

absorbed) then the PSF satisfies the condition

//h(:z;,y) de dy = 1 (6.4)

The PSF is a given by cylindrical function:
Wl? if 22 4 y% < r?

0 otherwise.

In IFA and IDA, researchers approximate the depth of a 3D scene to
be a constant in small image regions in order to model the defocus process
as a Linear-Shift-Invariant (LSI) process. Under such assumption the results
obtained are approximate because the shape of a 3D object could vary within
an image region. In UFDA, this approximation is avoided by considering a 3D

PSF that takes depth variation into account in modeling the image formation.

Unlike the PSF of shift-invariant case, in UFDA the blur circle in 3D

image space is varied according to the position of point in the object space.
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D : Camera Aperture
r : Blur circleradius

f: Focal Length

Optical Axis

i (j,k) : image frame number when pixel (j,k) isfocused
i : Image frame number

Figure 6.1: 3D PSF
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Figure 6.1 illustrates the 3D PSF in the 3D image volume space where the lens
position s is varied. It is a double cone with its axis parallel to the optical axis.
The tips of the two cones meet at the focused point. The image brightness
outside the cone is zero and inside the cone it is 1/(7r?) where r is the radius
of the cone cross-section. This radius r is also the radius of the blur circle

which is the image of the point light source. In Fig. 6.1, the radius is given by
r=(—1,(j,k))- 06 tand (6.6)

where ¢ is image frame number on which the blur circle is observed, 7,(7, k)
is the frame number of the focused image point at pixel (j, k), ¢ is the distance
between two successive frames, D is the diameter of lens aperture, 8 is the

half-cone angle given by

D D
anf = ~ — .
T RV R o

This angle 6 depends on the focused position ¢,(j, k) but we approximate it

to be a constant. We normalize the image magnification so that all image
frames have the same magnification as that of the frame at s = f. In these
magnification normalized images, the blur circle radius becomes:

D

The 3D PSF is then expressed in terms of the blur circle radius derived above

as

m inside the cone, i.e. 72 + k? < r?

h(i,j, k)= (6.9)

0 outside the cone
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For a circularly symmetric optical system as in this case, h(i, 7, k) can be
represented by a two-variable function h(i,r) were r = /52 + k2. By taking
the reference distance u’ to be infinity, the 3D PSF can be expressed in terms
of the blur parameter d = 2r as h(x,y, d). The image sensing model developed
earlier for this case is used to generate defocused image data and to recover

3D information.
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Chapter 7

Optimization Techniques

The 3D shape and focused image reconstruction is formulated as an op-
timization problem where the difference between the sensed image data and
the estimated image data is minimized. To achieve this minimization, three
optimization techniques are proposed in this chapter. They are a gradient
descent approach, a local search method and a regularization approach. The
first two methods perform parameter searches for the local error minimization
to this optimization problem. But for the third method, this problem is fur-
ther defined as an ill-posed inverse problem. In order to solve this particular
problem, principles from the calculus of variations are applied. The objective
here is to develop a method that can take advantage of the structure of UFDA
and obtain a more accurate solution with less computation. Theories and im-
plementation techniques of these three methods are presented in the following

sections.
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7.1 Gradient Descent Approach

This methods is based on the iterative gradient descent with respect to
the error function to find the lowest point. The direction of gradient downhill
is defined as the direction of a negative gradient vector. In our applications, a
piecewise planar approximation is applied for the 3D shape where the focused
image surface in a small image region (of about 8x8 size) is approximated by

a plane equation of
iy(J, k) = io+ tand, j + tan, k. (7.1)

In the above expression g is the distance where the plane containing the pla-
nar patch intersects the optical axis, tanf, is the slope with respect to the x
axis and tanf, is the slope with respect to the y axis. The gradient vector
is represented by the partial derivatives of the error function with respect to
the parameters ¢, 0, and 6, in this case. Optimization is carried out with
respect to the three parameters ¢, tan 6, and tan 6,. The initial solution
for 3D shape is obtained by an IFA and/or IDA method. In each iteration,
an improved estimate of the parameters is obtained by adjusting their values
based on the error gradient. The iterative search for the parameters that min-
imize the error stops when the error stops decreasing. The final error value
depends on the shape and focused image of the object. Three variations of
gradient descent approach have been used in our research. In the first method,
a search for the parameters that minimize the error is made by considering
one parameter at a time. We call this the Sequential Parameter Search (SPS)

method. In the second method, the parameter space is searched considering all
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parameters(gradient vector) simultaneously. We call this the Parallel Param-
eter Search (PPS) method. In the third method, first SPS is applied and then
PPS is applied. This is called the Sequential and Parallel Parameter Search

(SPPS) method. More details on these methods are provided below.

7.1.1 Sequential Parameter Search (SPS)

The shape and focused image obtained using an IFA and/or IDA method
in small (8x8) image regions is read in as the initial solution. Then the fol-
lowing steps of parameter search are carried out for each image region in a

sequential manner for the SPS.

1. Searching for 1
Adjust ¢9 by one depth unit to near or far side in the 3D image volume
space and convolve the adjusted shape with its corresponding 3D PSF
to generate a new sequence image data. Compute the error between this
generated image data and sensed image data. Iterate this step until no

further improvement is possible in minimizing the error.

2. Searching for 8,
Take the solution obtained in the previous step as initial solution. Change
0. by tilting the planar surface patch in the 8x8 image region about the
vertical axis in steps of 15° in the range —60° to +60°. Find the value
of 8, that minimizes the error between the sensed image data and image
data generated corresponding to the current solution. This results in an

improved estimation for shape. The reason for searching in 15° intervals
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is because of the proportion of pixel size ( 0.013 mm) to depth unit (inter

frame distance :0.03mm).

3. Searching for 0,
This step is similar to the previous step except that the planar patch is
tilted about the horizontal axis instead of the vertical axis. This step
improves the solution for 8,. The result of this step is the solution for

shape and focused image.

4. Repeat above steps for another image region (8x8) until the whole image

has been processed.

7.1.2 Parallel Parameter Search (PPS)

In this method, the gradient vector which contains partial derivatives
of error with respect to all three parameters is used. Partial derivatives are
obtained by computing the change in error when the current solution is incre-
mented by a small amount. A solution that results in a local minimum for
the error is obtained by searching along the direction of the negative gradient
vector. At the local minimum, a new negative gradient vector is computed
and a new search is then started. This process is iterated until certain criteria

is met.

7.1.3 Sequential and parallel Parameter Search (SPPS)

In the Sequential and Parallel Parameter Search (SPPS) method, first

SPS method is applied. Then, using the result of SPS as initial solution, PPS
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is applied. Experimental results indicate that a somewhat better solution can
be obtained by this method at the cost of increased computation. However,

the percentage decrease in error is marginal compared to applying only SPS

or only PPS.

7.2 Local Search Method

The local search method is an iterative error minimization method similar
to a brute force search method. The difference is that this approach searches
for the best 3D shape of FIS in a narrow range around the initial solution at
each pixel. In our implementation, the initial solution is obtained from the
SPS method. This solution is refined by adjusting the shape of FIS at each
pixel by one unit at a time iteratively along the direction which decreases
the error. The estimated 3D shape is continually updated until no further
improvement is possible. This method provides a very accurate result but it

needs a lot of computation.

7.3 Regularization Method

7.3.1 Introduction

In this section we extend UFDA by proposing a regularization technique

to recover focused image and 3D depth-map of scenes. This approach provides
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substantial improvement in performance in comparison with the gradient de-
scent approach used earlier by us for optimization. The problem of 3D shape
and focused image recovery from defocused image data is formulated as an
ill-posed inverse optics problem. The definition of a well-posed problem (by
Hadamard) is that its solution exists, is unique, and depends continuously
on the initial data. In the inverse optics problem considered here, presence
of noise in defocused image data and effects of defocusing at borders makes
the solution non-existent. Even if noise were absent, the solution will not be
unique in those image regions where there is lack of sufficient image contrast.
Many ill-posed inverse problems in vision have been solved using the regular-
ization approach so far [62, 65]. A matrix based regularization technique was
used by Ens [3] for image defocus analysis. This paper presents the application

of regularization to UFDA.

The cost functional to be minimized in our approach is a weighted sum
of a similarity functional E; and a stabilizing functional F,, given by £, +
A E;. FE;is the difference between the observed image data and estimated
image data computed based on an initial solution for depth-map and focused
image. F; is a smoothness constraint based on the Laplacian squared of a
local blur parameter, and A is the regularization parameter. Our choice of
the smoothness term based on the Laplacian squared of the blur parameter
instead of surface curvature simplifies the derivation of the Euler-Lagrange
equation. It also ensures the smoothness of surface structure. Three important
constraints are used in minimizing the cost functional. They are— positivity

of image brightness and depth, and a local error-control constraint. The first
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two capture physical reality and restrict the space of possible solutions. The
last prevents overshoots and helps in fast convergence of the solution during

iteration.

The performance of the regularization approach was compared with that
of two other approaches. One is a gradient descent type approach and the other
is a local search approach. The regularization approach performed better than

the other two approaches in our experiments.

7.3.2 A Regularization Approach to UFDA

Form the image formation model of UFDA | the observed defocused image
data is denoted by ¢,(x,y,d). It can be thought of as an image volume in the
(x,y,d) space. The focused image of the scene will be denoted by F,(a',y’)
and the FIS of the scene will be denoted by d,(z’,y"). The observed image
data is related to the focused image and FIS by Eqs. 4.11, 4.12. Given
an initial estimate of the solution for focused image to be F.(2',y") and for
FIS to be d.(2',y'), the estimated image data g.(x,y,d) corresponding to the
estimated solution can be computed using Eqs. 4.11,4.12. Now we can define

the similarity functional F; as

go= [ [ [ e d—gayd)dedydd  (72)

The similarity functional is a quadratic error term that represents the mean-

square difference between the observed and estimated image data.

We formulate the stabilizing functional F; as a function of Laplacian
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square of the estimated FIS d.(2',y"):

b, = /_O:o /_O(:;(vzale(ac,y))2 dx dy (7.3)

The stabilizing term reflects the physical property of the 3D scene that surfaces
are usually smooth. Our choice of the stabilizing term based on the FIS
expressed in terms of the blur parameter d.(2',y’) instead of surface curvature
simplifies the derivation of the Euler-Lagrange equation. In addition, it offers
computational advantages in the UFDA framework.

The cost functional £ to be minimized is obtained by combining the

similarity functional E; and the stabilizing functional F; as
E=FLE+A\E, (7.4)

The regularization parameter A is a weighting factor which controls the close-
ness of the solution to the data with the degree of regularization. This formu-
lation transforms the ill-posed problem into a well-posed problem.

The solution to the above minimization problem is subjected to additional
constraints —positivity of depth and image brightness (for 8 bits/pixel grey-
level):

0 < wul(z"yy') , and 0 < g.(x,y,d) < 255. (7.5)

Another constraint which was found to be useful is a local error-control con-
straint. We require that a measure of local error decrease from one iteration
to the next. If this is not satisfied, then the solution is not updated in the
current iteration. However, it may be updated in the subsequent iterations.

This is expressed by

ef(z,y) < e (a,y) (7.6)
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where n denotes the iteration number and

eley) = [ (lesyd) = gelo,y.d)) dd (77)

The local error-control constraint is used to constrain the solution when the
regularization process overestimates or underestimates the solution. This sit-
uation arises when the difference between the estimated and observed image

data change dramatically from point to point.

According to calculus of variations[1, 4, 65], minimizing the functional Eq.
(7.4) is equivalent to solving the associated Euler-Lagrange equation. In order
to derive the desired Euler-Lagrange equation, we need to first express £ in
Eq. (7.4) more explicitly in terms of the dependent variables and functions.
This is made possible by reexpressing the image formation equations 4.11,
4.12 in an unusual way. We define a new function F/(z',y’,d") = F.(2',y’)
where F.(a',y') is the estimated focused image. Note that F is constant with
respect to d’. The structure of the estimated FIS in the (a,y', d") space is
specified by é(a',y’,d" — d.(2',y")) where 6(-) is the Dirac delta function. Now

the estimated image data g¢.(x,y, d) can be expressed as:

ge(z,y,d) = /Oo /Oo /Oo Fl'(z' y' d)-6(2,y,d'—do (2, y")) h(z—a',y—y', d—d') da’ dy' dd’
(7.8)
Now, by the sifting property [58] of the é(-) function, the above equation

becomes

glayd) = [ [T Ry ) b=ty — o d = di(a,y)) da’ dy
(7.9)



In the above equation, unlike Eq. 4.11, integration with respect to d does not
appear. Since the focused image is located only at d.(x,y), the above equation

can be written as

(z,y,d / / F.(2',y") bz —2a',y—y',d—d.(z,y)) dz’ dy'. (7.10)

Derivation of the above equation which does not involve integration with re-
spect to d' facilitates derivation of the Euler-Lagrange equations for optimiza-
tion.

Now the functional £ can be expressed as

E= // Fd,, 7% (,y)) dv dy (7.11)

where

Fld.dtay) = [ o= [ [Py (12)

hz —a',y —y' d —de(e,y)) de’ dy')* dd + X - (V*de(z.y))?

Hence, the necessary condition to minimize F is the following Euler-Lagrange
equation [1]:

0? 0?
(=3 ‘Fde.r.r

6 2 dy?

where Fy, , Fy.,, and Fy,,, are partial derivatives of F with respect to d., dez.

Fu + —Fiyy = 0 (7.13)

and d.,,. Here d.,; and d.,, are the second order partial derivatives of d. with
respect to x and y. The derivation of the Euler-Lagrange equation is included
in Appendix A.

From Eq. 7.12 we obtain

82
82

de_ad

- ge) dd} and a—fdem

a 2 Fdeyy = 2)‘ V (Vzde)

(7.14)
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Therefore the Euler-Lagrange equation becomes

0
ad.

U (9= g.0ddy +20 - VA(T.) = 0 (7.15)

The results in this section so far in terms of continuous functions can be
easily extended to the case of discrete sampled functions. Therefore we do not
present explicitly the discrete domain equations in order to be concise. In the
subsequent parts of this paper, sometimes we refer to the continuous domain
equations as if they were discrete domain equations. The context should make
our intention clear.

The discrete version of Eq.(7.15) is obtained by the following procedure.
First, the discrete version of Laplacian of Laplacian of blur parameter term
Vi(y%d.) is expressed in the form [4] & -(d;x - d; 1) where (7, k) are the discrete
pixel coordinates corresponding to image coordinates (x,y). d; is the blur
parameter at (7, k) which represents the level of defocus there. d; 1, and x can
be obtained by convolving d;; with a computational molecule derived from a

molecule that is appropriate for the biharmonic operator(see Fig. 7.1).

It can be shown that

— 1
dix = %[8 Adjpr 6+ djpr1 +dj—1p + djg—1) (7.16)
=2 (djs1 41 F dijgr -1 + djm1 g1 + dj15-1)
—(djjg2 + djror +dj—ok + djr—2)]

and k = 20. The first term in Eq. 7.15 is 8%6‘7:’ and it is estimated by a
finite difference method. The discrete version of the Euler-Lagrange equation

is

Z(go - 96)2 + 2k - (dj,k - Ej,k) =0 (7.17)
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Figure 7.1: Biharmonic operation mask

This leads to an iterative formula of the form

- 1 0
A = T - 3 (g — g (7.18)
ok PEC2Xk 9de 5

Using this equation, the estimated solution of the 3D shape is updated itera-

tively.

7.3.3 Iterative Algorithm and Different Implementa-

tions

The following iterative algorithm was implemented for the regularization

approach.
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1. Record the observed image data g,(x,y,d) of a given 3D scene with
focused image F,(2',y") and depth-map u/(z,y’). Let the FIS corre-

sponding to this depth-map be d, (', y’).

2. Obtain an initial estimate of the solution for focused image and FIS by
applying IFA and/or IDA to the observed image data. Let the estimated

focused image be F.(2',y") and FIS be d.(2',y").

3. Update the initial solution iteratively using Eq. 7.18. In each iteration,
the updated solution is checked for the depth and brightness positiv-
ity constraints and the local error-control constraint. If necessary, the

solution is modified appropriately to satisfy the constraints.

4. Stop iterating when certain criterion is met (e.g. error stops decreasing

or a certain maximum number of iterations has been completed).

It is necessary to select a good A in order to attain a balance between
the data similarity error (£;) and smoothness of FIS (£;). Depending on the
initial solution, the derivative of the quadratic error term changes from point
to point. Locally this variation may be small, but it can change substantially
from one image region to another. This phenomenon makes the choice of
the regularization parameter A difficult. After a few trials, a value of 50
for A was found to give satisfactory results. Further, the second term that
gives the adjustment value at any iteration was limited to a magnitude of
0, +1le, +2¢, £3¢ where € was the sampling interval (roughly equal to the size
of one pixel) along the d dimension. In one variation of our algorithm the

maximum adjustment value was taken to be 3e in the first two iterations, 2¢ in
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the next two iterations, and 1¢ in the subsequent iterations. However there was
no significant difference in its performance. The results of the regularization

approach were compared with two other approaches explained later.

7.4 Conclusion

The principles of a gradient descent approach, a local search method and
the theory of a regularization approach to UFDA are presented. Among these
methods, the local search is most straight forward followed by the gradient
descent method. The regualrization method is much more complicated in
terms of mathematics and implementation. But for a smooth object, the
regularization approach is much faster and gives better result compared to
the other two type of methods. One disadvantage of this approach is that it
involves the selection of the regularization parameter A where a different choice
of A will result in noisy solution(under smoothing), or in the loss of relevant
curvature information(over-smoothing)[80]. The gradient descent approach
also performs well and is useful in the case of rough (non-smooth) objects for
which the regularization approach is unsuitable. In particular, SPS offers a
good balance between accuracy and computational time. The pixel-by-pixel

search improves upon the accuracy of SPS at the cost of high computation.



Chapter 8

A Computation Algorithm to UFDA

In this chapter we present a computational algorithm for UFDA which
uses variable number of images in an optimal fashion. The proposed computa-
tional algorithm consists of two main steps. In the first step, an initial solution
is obtained by a combination of IFA, IDA, and interpolation. The initial so-
lution is refined by minimizing the error between the observed image data
and the image data estimated using a given solution and the image formation
model. Optimization techniques introduced in chapter 7 are used for error
minimization. Our experiments indicate that the most difficult part of the
algorithm is to obtain a reasonable solution for the focused image when only
a few image frames are available. We employ several methods to address this
part of the problem. The algorithm has been implemented and experimental

results are presented.
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8.1 Introduction

A new theory named Unified Focus and Defocus Analysis (UFDA) [76, 77]
is proposed in chapter 5 which provides a unified theoretical framework for IFA
and IDA. For UFDA to deal with variable number of input images, we need to
devise a systematic scheme to use the available image data effciently in order
to maximize to power of UFDA. For instance, we can use either IFA, IDA
or both TFA and IDA adaptively to find the depth and focused image as the
initial solution to the UFDA optimization process to search a better solution.
Four examples of how to applied IFA and IDA to obtain an initial solution

adaptively are described as follows.

1. If the number of input images are sufficient, an IFA or a multiresolution

IFA can be applied to obtain a fast and accurate result, or

2. IDA can be applied to two of the blurred image in the image sequence to
find a rough depth map first and then a number of images can be taken

around this preliminary solution to apply IFA to get a refined estimation.

3. If there are few input images (3 ~ 5), IFA can be applied to these images
and determines which one among them is in better focus and then IDA
is used to this image with one of its nearby neighboors to obtain new

estimation.

4. It only two image are available, an IDA approach can be applied to

estimate the depth and focused image.
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In this chapter, we propose a computational algorithm for UFDA to deal
with variable number of images. Our computational algorithm is demonstrated
with several experiments on simulated image data. Depending on the num-
ber of image frames, these experiments are separated into two groups. In the
first experiments group, UFDA is used to reconstruct the 3D shape and fo-
cused image from many image frames. Here, three optimization techniques -
the gradient descent(SPS, PPS, SPPS), the local search, and the regulariza-
tion methods are applied to a spherical object for error minimization. In the
second experiments group, UFDA is applied to the case when few images are
available. In this group, two experiments are carried out. One experiment uses
three image frames to solve for the distance and focused image for a planar
object. The gradient descent(SPS) is applied here for optimization. The other
experiment uses five images frames and a regularization approach for a spher-
ical object. One critical problem need to be addressed here is how to obtain
good estimation on the focused image when only few image data is known. In
the case of many images are available, regardless of what method is used to get
depth information, the estimated focused image can be obtained by retrieving
the image data directly from those image frames or a quadratic interpolation
among the image frames is good enough to do the estimation. However, when
small number of images are known, above methods will not valid. Therefore,
how to get the focused image is indeed a deconvolution problem in such case.
Several methods have been tried here to solve this problem for comparison.
These methods include a Spatial Domain Convolution/Deconvolution method

by Subbarao and Gopal[51], a Fourier domain method with wiener filter[56]
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and a cubic spline interpolation method[2]. For the case of many images are
available, experimental results show that UFDA can attain a very accuracy
result with the cost of processing of more images. On the other hand, for the
few image case, experimental results show that obtaining a reasonable solution
for focused image from only a few image frames is difficult but important in

obtaining a good solution for the 3D depth-map of a scene.

8.2 Computational Algorithm

The computational algorithm we propose consists of two main steps. The
first is the estimation of initial solution for 3D shape and focused image, and
the second is the iterative improvement of the initial solution through error
minimization. This algorithm extends the research on UFDA in two respects.
The first extension is a systematic way to deal with variable number of images,
from minimum needed to maximum possible. The second extension is an
investigation of different techniques for estimating the focused image for the
case of variable number of images.

We present the computational algorithm for a specific case based on an
actual camera that we use in our laboratory, but it can be generalized easily.
Our camera has the following specifications: focal length =35 mm, aperture
diameter D=9 mm, width of square pixels p=0.013 mm, and lens displacement
for each step of a stepper motor is approximately 0.030 mm. Let the observed
image data be represented by ¢(x,y,d) where x and y are pixel indices and d

is the blur parameter index. The image data will be represented with 8 bits
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per pixel and therefore g will be assumed to take integer values: 0,1,2,---255.
We choose the blur parameter d to be the blur circle diameter of a point light
source at infinity. It is given by d = Ds(1/f — 1/s) where s is the distance
between the lens and the image detector. Based on the actual camera in our
laboratory, d will be specified in units of 0.6 times the width of a pixel (e.g..
d = 2 means the blur circle diameter is equal to 1.2 times the width of one
square pixel). Large images are divided into many smaller subimages and
processed. We take the subimages to be of size 32 x 32. Therefore x and y
will take integer values: 0,1,2,---31. Based on our camera, we will assume
that d takes integer values: 0,1,2,---99. The focused image surface d,(x,y)
which represents the 3D shape of the scene will also take integer values in the

range 0 to 99.

The image data g(x,y,d) can be thought of as an “image volume” in the
(x,y,d) space. The FIS d,(x,y) is embedded in this volume. The value of the
image volume data on the FIS gives the focused image F'(x,y) of the scene,
ie.

Fla,y) = g(w,y, du(x,y)) (8.1)

An image volume corresponds to a small and fixed field-of-view of the camera.
In each image volume (or field-of-view) FIS d,(x,y) can be approximated by
a piecewise constant or a planar or a smooth curved surface. The 3D shape
parameters of this surface (i.e. FIS d,(x,y)) and the focused image F(x,y)

are obtained by processing all or some of the image volume data.

A sequence of image frames consists of cross sections of the image volume

g(x,y,d) taken at different values of d. Let the values of d where the cross
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sections are taken be dy,dy, - - d,.

IFA: Application of IFA to the image sequence consists of computing a
focus measure in small image regions, say 8 x 8, for all images in the sequence
and finding the value d = d; for which the focus measure is a maximum. The
FIS in the 8 x 8 region is given by d,(x,y) = d; and the focused image in the

8 x 8 region is given by F(x,y) = g(x,y,d;).

Combining IFA and Interpolation: The solution provided by IFA can be
improved through interpolation by fitting smooth curves. For example, let
M(d) be the focus measure function of the 8 x 8 image region around the
position d = d; estimated by IFA described above. Then a smooth curve can
be fitted to the points M(d;_1), M(d;), and M(d;1+1), and the position d = d;
where M(d) is a maximum can be obtained [22]. Once we find d,(z,y) =
ds, the focused image F'(x,y) = g(x,y,d;) can be obtained by interpolating
the points g(x,y,di—1), g(x,y,d;), and g(«,y,d;+1) and perhaps other nearby

points.

IDA: In contrast to IFA which requires many image frames, IDA can be
applied to only two image frames, say for d = d; and d = dj. It can provide

an estimate of d,(x,y) and the focused image F'(x,y).

Combining IFA and IDA: Given a sequence of images as above, [FA and
IDA can be combined as follows. First IFA is applied as above and the position
d = d; where the 8 x 8 image region is in best focus is found. This will be
g(x,y,d;). Also the second best focused image close to d; is found (at d;_; or
d;+1) based on the computed focus measures. Let this be g(x,y,d;+1). Then

IDA is applied to these two most focused images to get a solution for shape
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and focused image. If the distance measured along the d dimension between
successive image frames in an image sequence is high (about 5 or more), then
combining [FA and IDA is better than combining I[FA and interpolation. IDA

gives better results than interpolation when the image frames are far apart.

The solutions for shape and focused image in 8 X 8 image regions are
synthesized to obtain a solution for the entire 32 x 32 image. The solution thus
obtained can be taken as initial solution in UFDA and it is further improved

through error minimization as discussed in the previous section.

It n image frames are given, we assume that these frames are roughly
uniformly placed along the d dimension and cover the entire range of values
taken by the FIS d,(z,y). An algorithm for obtaining the initial solution can

be summarized as follows.

If the distance between image frames is only one along the d dimension,
then use IFA as it will give very good results. If the inter-frame distance is
about 2 to 4, then IFA combined with interpolation should be used to get
good results. If the inter-frame distance is 5 or more, then the method that
combines IFA and IDA described earlier should be used. In all cases, if the
number of image frames given is only two—the minimum required, then only

IDA can be applied.

It the images can be recorded dynamically, then first only two image
frames are recorded far apart (say at d = 20 and d = 50 for our camera
specified earlier). Then IDA is applied to find a rough depth map. Based on
this the approximate minimum d,,,;,, and maximum d,,,, of the FIS d,(z,y) are

found. After this, further image frames are recorded for d only in the range
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dpnin 10 dpar. This avoids recording and processing of unnecessary image
frames.

In the error minimization step, in each image region, it is sufficient to
consider a few image frames (about 5) around the most focused image frame
in that image region.

In the algorithm outlined above, the problem of estimating the focused
image given an estimation of 3D shape is a very difficult one when the num-
ber of available image frames is limited. The focused image will have to be
estimated from a few image frames which are in best focus through deconvo-
lution. If a piecewise constant approach is used for 3D shape, then a Fourier
domain deconvolution can be applied (e.g. Weiner Filter).In other cases a
spatial domain method will have to be used. We have found that the STM
method based on IDA in [46] gives good results. Even then, deconvolution in
the presence of quantization and noise is found to be a very difficult problem

but satisfactory results can still be obtained.

8.3 3D shape and Focused Image Recovery

from many image frames

8.3.1 Imitial Solution

For this case the initial solution can be obtained by an IFA method or IFA

with interpolation approach. A traditional shape from focus method is applied
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here to find the initial solution. First the defocused image data is recorded by
the camera system. Then the image frames are divided into 8x8 subimages and
in each such subimage a focus measure is computed at every two or four image
frame interval. We used the energy of the Laplacian as the focus measure.
In each 32x8x8 image space (for 32 image frames), the subimage which has
the maximum focus measure is determined. The position of such subimages
are used to compute the 3D shape. The focused images in the different image
regions are synthesized to obtain the focused image of the entire object. In
this method, since all pixels in an image region are assigned the same depth, a
piecewise constant approximation is used for the object shape. The procedure

for obtaining the initial solution is summarized below.

1. Partition each observed (sensed) image into 8x8 subimages.

2. Compute a focus measure by summing square of image laplacian in each
8x8 window at every two or four image frame interval. If the focus
position is neither the nearest position nor the farthest position of the
sensed image frame then apply quadratic interpolation to the initial focus
distance and its neighboring positions to find the focus position. After
obtaining the focus position of this subimage we assign this focus position
(depth) to every point in this subimage. Then use this focus position in
quadratic interpolation on three neighboring image frames (centerd at

this position) to find the focused image.

3. Repeat (2) until the whole image region has been processed.
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The above steps yield an initial estimation for the 3D shape and focused image
of the scene. This will be used as the starting solution in the optimization
process. Three optimization techniques are used here for the experiments.

The implementation procedure and experimental results are presented next.

8.3.2 Experiment with Gradient Descent Approach

A particular case of the UFDA approach that has been implemented by us
is described in this section. In this case, among the three camera parameters
(D, f,s), only s is changed. Also, paraxial-geometric optics model of image
formation is used in deriving the PSF. Fig. 6.1 shows the PSF h(e,1,j, k) of
Eq.(4.4) in the 3D image volume space. From the derivation of 3D PSF in
chapter 6 we obtain Eq.(6.9). This PSF was used in the following experiments.
A 32 X 32 X 32 size image volume data was synthesized where the FIS i,(7, k)
was a hemispherical object (with radius 24) and the focused image F'(j, k) was
a checker board (see Figs. 8.1 and 8.2).

The observed image data ¢(¢, j, k) was synthesized using Eq.(5.3). Then
an initial solution for the focused image F'(j, k) and the FIS ¢/ (j, k) was ob-
tained using an IFA method. In the IFA method, a focus measure (energy of
image Laplacian) was computed in 8 X 8 non-overlapping regions. A piecewise
constant approximation to the FIS in each 8 x 8 image region was obtained by
finding the position ¢/ (j, k) where the focus measure was a maximum. These
estimated solutions and the 3D PSF were used to compute the estimated im-
age data ¢'(7,j,k) using Eq.(5.3). Then the error F between the observed

image data ¢(7,j, k) and the estimated image data ¢'(¢,7, k) was computed



using Eq.(5.4). This error was minimized using a gradient descent approach.
In order to apply a gradient descent approach for error minimization, the FIS
was approximated by a piecewise planar surface patch in 8 x 8 image regions
where each surface patch was expressed by Eq.(45). The error £ was mini-
mized in 8 X 8 X 8 image volume regions surrounding the initial estimates of

the solutions with respect to the three parameters ¢, 6,, and 8,.

Three variations of gradient descent appraoches— SPS, PPS, and SPPS,
were tried. These three methods were applied for two sets of data, one set
with only quantization noise and another with both quantization noise and

zero-mean Gaussian random noise with standard deviation 1.0.

Experimental results on accuracy and computation time are presented
here for each of the three optimization methods. The initial solutions obtained
by IFA method are shown in Figs. 8.3 and 8.14. The improved solutions
obtained by SPS, PPS and SPPS are shown in Figs. 8.5, 8.6, and. Figs. 8.7,
8.8and. Figs. 8.9, 8.10 respectively. The results show that SPPS obtains
the most accurate data among the three methods. The processing times for
SPS, PPS, and SPPS, are approximately 32, 40, and 55 minutes respectively
on a SUN Sparcstation 1. SPPS attains a small improvement in accuracy
at the cost of much more computation than SPS or PPS. Also the rate of
convergence for SPS and PPS is faster than SPPS. From these comparisons
we feel that use of SPS alone will be adequate in practical applications in
terms of both accuracy and computational efficiency. Further, these results
show that, as expected, the improvement obtained by the optimization method

is small in image regions where the slope of the object surface is small, but the
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Table 8.1: Error percentage of gray level per pixel for each method

IFA Method | SPS | PPS | SPPS

Quantization Noise 8.75% 5.25% | 7.25% | 4.75%

Quantization and Electronic Noise 8.5% 5.8% | 7.8% | 5.26%

improvement is significant in regions where the slope is large. The percentage
error in grey level between the observed image and the images estimated from

the best solutions are shown in Table 8.1.
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Figure 8.2: Original Focused Image (32x32)
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Figure 8.6: Focused Image by SPS
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8.3.3 Experiment with Regularization Approach

The same image model of a 32 x 32 x 32 size image volume data was
applied here. (see Figs. 8.1, 8.2) . Another similar but larger 64 x 64 x 32
size image volume data was generated where the FIS was a hemispherical
object (with radius 24) and the focused image was a checker board the same
as the 32 x 32 x 32 model. From UFDA, the observed image data ¢(¢,7, k)
was synthesized using Eq.(4.11) with camera parameters (D=9mm, f=35mm,
s= 35mm to 35.9mm). Then an initial solution for the focused image and
the estimated 3D shape was obtained using same procedure as in the gradient
descent method experiment. These estimated solutions and the 3D PSF were
used to compute the estimated image data ¢'(¢, j, k) using Eq.(4.11). The error
E; between the observed image data ¢(1, j, k) and the estimated image data
g'(i,7, k) was computed using Eq.(7.2). The regularization method that we
derived earlier in chapter 7 was applied to the image volume data.

The original focused image surface and focused image for the 32 x 32 x 32
and 64 x 64 x 32 image model are shown in Figs.( 8.11, 8.12, 8.15) . The initial
solution for these two images are shown in Figs.( 8.13, 8.14, 8.16). The results
for the regularization method (7 iterations) are presented in Figs.( 8.17, 8.18).
For 64 x 64 x 32 image data, the results of the regularization method for 2 to
7 iterations are shown in Figs.( 8.19, 8.20, 8.21, 8.22, 8.23, 8.24). The error
percentage of gray level per pixel for 32 x 32 x 32 and 64 x 64 x 32 image

models at different number of iteration are shown in Table 8.2.
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Figure 8.12: Original Focused Image
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Figure 8.14: Initial Solution for Focused Image from an IFA method
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Figure 8.18: Focused Image by regularization (7iter.)
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Figure 8.22: FIS(64x64) recovered (5 iters.)



20 -
15

/]
10 Fff

20

15

/]
10 Fffz

81

i
fd

«\W&ﬁ@ i

i

W\
%‘tﬁm‘y v 70
o 60
:,',Avkw
P y axis (pixel )
A 10
x axis (pixel ) 60 o= 0
Figure 8.23: FIS(64x64) recovered (6 iters.)
70
60
y axis (pixel )

30 4
x axis (pixel ) 60 0

Figure 8.24: FIS(64x64) recovered (7 iters.)



Table 8.2: Error percentage of gray level per pixel for regularization method

at different iteration.

Number of iteration | Image model: 32x32x32 | Image model: 64x64x32
1 6.00% 4.53%
2 4.43% 3.59%
3 3.14% 3.15%
4 2.58% 2.90%
5 2.32% 2.72%
6 2.13% 2.69%
7 2.02% 2.67%
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Figure 8.25: FIS (32x32) by local search method
8.3.4 Experiment with a local search method

The same 32 x 32 x 32 image model is used here for the experiment. The
initial solution also obtained from the procedures described in section 8.3.1.

The results for local search method are shown in Figs.( 8.25, 8.26).

8.3.5 Performance comparison

The performance of these three optimization methods in above experi-
ments are compared to see which one is most useful in practical applications.
A percentage error in gray level per pixel between the observed image and the
images estimated from the best solutions for the 32 x 32 x 32 image volume of

these experiments and a comparison of the computation time for each method



Figure 8.26: Focused Image by local search method

are shown in Table 8.3. All the simulation time is measured on a Pentium
166 MHz personal computer. From Table 8.3 and those reconstructed 3D
shapes and focused images we conclude that for this test image model ,the
regularization approach performed better than other approaches in terms of
accuracy and computational time. Although the local search method also can
obtain a good estimated solution but it involves to much computation. Also
the gradient descent approach only attained moderate accuracy. Therefore,

we recommend this approach for smooth objects in practical applications.
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Table 8.3: Performance comparison of different methods

SPS | PPS | SPPS | Local Seaech | Regu. (7 iters.)

% of gray level | 5.25% | 7.25% | 4.25% 2.89% 2.02%

Computation time 4 5 7 14 5

8.4 3D shape and Focused Image Recovery

from few image frames

In the following sections, we present e the results of two experiments where

only a small number of image frames (3 and 5 respectively) are used.

8.4.1 Planar Object

We generated simulated image data for a CCD camera with the same
parameters specified earlier: focal length f=35 mm, aperture diameter D=9
mm, square pixel width p=0.013 mm, and unit of image frame distance 0.6
pixel (i.e. d=1 corresponds to 0.6 pixel). In this experiment, an image volume
of 32x32x32 was considered and three defocused image frames at position
d = 5,16, 27 were synthesized using Eq. (9.1). The FIS of the scene was a pla-

nar object given by d,(x,y) = 13 and the the focused image is a checker board
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pattern (see Figs.( 8.27, 8.31)). According to the proposed computational al-
gorithm, an IFA method is first applied to these three images. Focus measures
were computed over the entire 32 x 32 image frames without dividing them
into smaller subimages. The two best focused image frames were determined
based on the focus measures. These two frames were used in an IDA method
(STM proposed in [51]) to find an initial solution for distance of the planar
object and the focused image. This STM method uses a blur parameter o to
obtain 3D depth map and focused image. This parameter is related to the
blur circle diameter d of point light sources by [42, 53] & = d/(2v/2). The IDA
method (STM) was implemented exactly as described in [51]. This involves
constructing a histogram of o obtained at each pixel in the 32 x 32 image and
taking the mode of the histogram as the solution for FIS d,(z,y).

After estimating the FIS as above, the focused image was estimated using
three different methods to investigate and evaluate their relative performance.
The first was based on a spatial domain deconvolution formula (inverse S
transform) derived under some weak assumptions in [51]:

0.2

Fa,y) = gle,y) = v2l(z,y) (8.2)

where g(x,y) is the least defocused image available. The second method was
based on Wiener filter in the Fourier domain as described in [46]. The third was
using cubic spline interpolation [2] method on the three given image frames.
The solution obtained for FIS and focused image (from each of the three
methods) was used as initial solution in UFDA based on a special case of
gradient descent approach presented in [76]. It is a sequential parameter search

(SPS) method with only one parameter— the distance of the planar object.
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The estimated solutions and the 3D PSF were used to compute the estimated
image data ¢.(x,y,d) using Eq. (9.1). Three images frames were estimated
corresponding to the three frames of observed data ¢,(x,y,d). The error £
between the observed image data g,(z,y,d) and the estimated image data
ge(x,y,d) is computed using Eq. (9.4). The error was minimized iteratively
using the gradient descent method for estimating FIS and the three different

methods of focused image estimation.

The initial solution from the IFA method are shown in Figs.( 8.28, 8.31).
The position of the planar object is estimated to be at position 16 and the
focused image is the image data at this position. The initial solution from the
IFA method followed by the IDA (STM) method are shown in Figs.( 8.31, 8.30).
The estimated position of the planar object is 14 and the focused image is ob-
tained from Eq. (8.2). The reconstructed 3D shape from the UFDA optimiza-
tion with STM, Fourier method, and cubic interpolation are positions 13, 14,
14 respectively (Fig. 8.31). The focused image obtained using SPS and STM
is shown in Fig. 3. The results from these three methods are also presented in
terms of the percentage error in gray level per pixel between observed image

data and estimated image data in Table 8.1.

These results show that the STM method is better than the other two.
This can be explained as follows. The checker board test image that we used
will introduce error into the Fourier method because of the periodicity property
of the discrete Fourier transform. As for the cubic spline interpolation method,
since there are only three observed images that are far apart, interpolation

gives very poor results as expected.
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Figure 8.27: Original Focused Image

Figure 8.28: Focused Image from an IFA method
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Figure 8.29: Focused Image by an STM method

Figure 8.30: Focused Image by SPS with STM
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Figure 8.31: Focused position form IFA, IDA and SPS

31

90



8.4.2 Spherical Object

The second experiment is for an object whose FIS has a spherical shape
shown in Fig. 8.32. In a 32x32x32 image volume similar to the first ex-
periment, the FIS has a radius of 24 (Fig. 8.32). The focused image is the
same checker board pattern shown in Fig. 8.33. Five image frames at posi-
tions d = 4,10, 16, 22,28 are used. These images are processed first by an [FA
method followed by an IDA method (STM) as before for the planar object. In
this case, due to the curved shape of the object, the 32 x 32 image frames are
divided into 4 x 4 subimages and processed separately. A combination of IFA
and IDA are applied separately in 4 x 4 image regions separately. In applying
IDA (STM), the smoothing and differentiation filters proposed by Meer and
Weiss[28] were choosen to be of size 3x3. One estimate of the blur parameter
o (and hence d,(x,y)) is obtained at each pixel by integrating over the 3 x 3

region around the pixel.

This initial solution is used in the UFDA optimization method based on
a regularization approach proposed in [77]. The five observed image frames
and the corresponding five estimated image frames are used in computing the
error measure. The error was minimized iteratively subject to the smoothness
of the FIS as in [77]. In each iteration, after a solution for FIS was obtained,
the solution for the focused image was estimated by two different approaches.
One was the STM method described earlier and the other was the cubic spline

interpolation method.

The initial solution from an IFA method and an IFA followed by an IDA
method are shown in Figs.( 8.34, 8.35, 8.36, 8.37). In these figures, we see that
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Figure 8.32: Original FIS of a 32x32 Hemisphere

the focused image from STM is much better than that from a traditional IFA
method but the 3D shape has only limited improvement. This is because the
IFA and IDA methods operate on very small image regions (4x4) and STM
is very sensitive to noise if the window size is too small. The solution for the
regularization method after five iterations is shown in Figs.( 8.38, 8.39). The
same results are presented in terms of percentage gray level error in Table
8.2. The results for the interpolation method were poor and therefore are not
included here. The improvement of initial solution by UFDA optimization
based on regularization is limited. The main reason for this is the difficulty in
obtaining good estimates of the focused image for curved objects which result

in very poor initial solutions for FIS as in our experiment.
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Figure 8.35: Focused Image from an IFA method
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Figure 8.36: FIS by an IDA method (STM)
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Figure 8.37: Focused Image from an IDA method (STM)

y axis (pixel )
15 20 -
x axis (pixel ) 30 —~=

Figure 8.38: FIS by regularization(5 iters)
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Figure 8.39: Focused Image by regularization(5 iters.)

Table 8.4: Error percentage of gray level per pixel for planar object

IFA

IFA and IDA

SPS + STM

SPS + Interpolation

SPS + Fourier method

13.8%

7.6%

6.6%

8.8%

12.1%




Table 8.5: Error percentage of gray level per pixel for Sphere object

IFA | IFA and IDA | Regu. + STM (5 iter.) | Regu. + Interpolation (5 iter.)

7.3% 6.7% 5.3% 11.5%

8.5 Conclusion

A computational algorithm for the Unified Focus and Defocus Analysis
has been demonstrated with several experiments. This algorithm deals with
variable number of input images in an optimal fashion. With this algorithm,
UFDA is more efficient because it uses the image data in a better way and
avoid unnecessary data acquisition and computation. Also, it can attain more
accurate result since it process the most useful data and obtain the solution
from the most suitable method for the situation. Experimental results show
that estimating focused images from a small number of defocused images (the
“deconvolution” problem) is difficult. Further research is needed to obtain a
good solution to this problem. This will facilitate further improvements in the
performance of UFDA. However, if the number of available images is not few

but many, then UFDA provides good results useful in practical applications.
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Chapter 9

Parallel Implementation of UFDA by Parallel

Virtual Machine (PVM)

A unified approach to image focus and defocus analysis (UFDA) is pro-
posed us for three-dimensional shape and focused image recovery of objects.
One version of this approach which yields very accurate results is highly com-
putationally intensive. In this chapter we present a parallel implementation
of this version of UFDA on the Parallel Virtual Machine (PVM)!. One of the
most computationally intensive parts of the UFDA approach is the estimation
of image data that would be recorded by a camera for a given solution for 3D
shape and focused image. This computational step has to be repeated once
during each iteration of the optimization algorithm. Therefore this step has
been sped up by using the Parallel Virtual Machine (PVM). PVM is a software
package that allows a heterogeneous network of parallel and serial computers

I This research is a join work by Mr. Naiwei Lo, Dr. Muralidhara Subbarao, Dr.

Bradely S. Carlson and author.
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to appear as a single concurrent computational resource. In our experimental
environment PVM is installed on four UNIX workstations communicating over
Ethernet to exploit parallel processing capability. Experimental results show
that the communication overhead in this case is relatively low. An average of
1.92 speedup is attained by the parallel UFDA algorithm running on 2 PVM
connected computers compared to the execution time of sequential processing.
By applying the UFDA algorithm on 4 PVM connected machines an average
of 3.44 speedup is reached. This demonstrates a practical application of PVM

to 3D machine vision.

9.1 Introduction

The recovery of three-dimensional (3D) scene information of objects from
images is a problem of inverse optics. Methods to solve this problem normally
involves intensive computation in modeling the image formation process. De-
veloping a highly accurate model for the image formation process that requires
a reasonable amount of computation is an important problem. One way to
handle this problem is to use a parallel algorithm implemented on a parallel
computer. In this paper we present a parallel implementation of the Uni-
fied Focus and Defocus Analysis (UFDA) [76] for 3D information recovery on
a local area network (LAN). The communication interface between different
machines is provided by the Parallel Virtual Machine (PVM) [73, 79]. PVM
is a portable message-passing programming system designed to link separate

host machines to form a “virtual machine”.
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UFDA was proposed by us recently [76] for accurate reconstruction of 3D
shape and focused image from a sequence of defocused images. This tech-
nique unified two distinct approaches — Image Focus Analysis (IFA)[5, 30, 48]
and Image Defocus Analysis (IDA)[3, 51]. The unification of IFA and IDA
to UFDA is achieved by exploiting the relationship between the number of
constraints embodied in the defocused images of these two approaches to the
number of unknowns in the 3D shape and focused image. The framework
of UFDA is based on modeling the sensing of defocused images in a cam-
era system. A “Three-Dimensional Point Spread Function” (3D PSF) in the
(x,y,d) space for this image formation model is introduced. Here 2 and y are
the image spatial coordinates and d is a parameter representing the level of
defocus. The problem of 3D shape and focused image reconstruction is for-
mulated as an optimization problem where the difference (mean-square error)
between the observed image data and the estimated image data is minimized.
The estimated image data is obtained from the image sensing model and the
current best known solutions to the 3D shape and focused image. An initial
estimation to the solutions is obtained through traditional shape-from-focus
methods. This solution is improved iteratively by a gradient descent approach.
As we showed in [76] this is a very computationally intensive process, especially
the part of estimating image data for a given solution to the 3D shape and
focused image. This part has to be repeated to update the estimated image
data during each iteration of the gradient descent search. One efficient opti-
mization technique to UFDA has been proposed in [77]. This paper presents a

parallel version of UFDA implemented on PVM. Our experiments show that
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PVM provides a means to distribute heavy computation load of practical im-
age recovery application on a LAN and improve the performance with respect

to the total execution time.

9.2 3D Shape and Focused Image Recovery

by UFDA

9.2.1 UFDA

UFDA [76] is a new theory that unifies IFA and IDA. To briefly illustrate
IFA and IDA in terms of the definition of the problem for the 3D shape and
focused image recovery, consider the following. The image coordinates of a
point light source are denoted by (2’,y’) and the image coordinates of a point
where the brightness is measured on the image detector are denoted by (x,y).
The camera parameters are € = (D, f,s) where D is the diameter of camera
aperture, f is the focal length of the lens, and s is the distance between
the lens and the image detector. An image sequence can be thought of as
sampled data of an image volume and denote the image data as g(x,y,d) for
+r=0,1,2,---,J-1,y=0,1,2,--- . K —-1,d=0,1,2,---, 1 — 1, where J and
K are the number of rows and columns respectively in each image frame and
I is the number of image frames. Whereas [FA uses many image frames, IDA
uses only 2 or 3 images from this image sequence. d,(2',y’) represents the 3D

shape and F(2',y') is the focused image. The problem for IFA can be stated
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as— given the image sequence g(x,y,d) and the camera parameters s and f,
find d,(2',y") and F(2',y’) in some image region or over the entire image.
Similarly, the problem for IDA can be stated as— given two of the images
gm(x,y) and ¢,(x,y) in the image sequence g(x,y,d), the camera parameters
e, and e, corresponding to these two images, and the camera’s point spread
function as a function of the camera parameters, find d,(2',y’') and F(2',y")

in some image region or over the entire image.

The TFA and IDA methods can be viewed as two extremes of a range of
methods useful in 3D shape and focused image recovery. At one end of this
range of methods is the IFA method which uses a large amount of image data
but minimal information about the camera characteristics (e.g. the camera’s
point spread function). At the other end is the IDA method which uses mini-
mal image data but much information about the camera characteristics. The
theory of UFDA results in a unified approach that suggests new methods that
lie between the two extremes of the IFA and IDA methods. The unknowns in
both the IFA and IDA methods are d,(2',y’) and F(2/,y’). If the image frame
size is J rows and K columns, then the number of unknowns for d,(z', y’) and
F(a',y") are both J x K. Therefore the total number of unknowns is 2JK. In
UFDA, to determine these unknowns, a number of image frames g(x,y, d) are
recorded at different camera parameter settings. This recorded image volume
data depends on the camera parameters e, the 3D shape d,(2',y), and the
focused image F'(2',y"). This dependence is specified by the camera charac-
teristics (e.g. point spread function) [47]. A three-dimensional point spread

function (3D PSF) h(x,y,e,d) that is based on paraxial geometric optics is
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developed in [76].

The problem of 3D shape and focused image recovery in UFDA can be
stated as — given a sequence of images obtained by sampling ¢(x,y,d) and the
image formation model, find d,(z',y’) and F(2',y").

Under certain weak conditions we can derive a three-dimensional convo-

lution expression[76]:

ornd) = [ [ [P ) W gy dd) d dydd (9.1)
where

F'(a'y') if d =d,(',y") and
Fl(a',y,d") = (9.2)

0 otherwise.

The above convolution expression can be abbreviated as
g(z,y,d) = F'(2',y,d) ~ h(z',y' d), (9.3)

where * denotes the convolution operator. Details on the 3D PSF and the
derivation of the 3D convolution equation are reported in [76].

Here the problem of 3D shape and focused image reconstruction is formu-
lated as an optimization problem where the difference or mean-square error
FE between the observed image data g,(x,y,d) and the estimated image data

ge(x,y,d) is minimized.

= /_O; /_O; /_O;(go(xay,d) — ge(2,y,d))* da dy dd (9.4)

The estimated image data g.(x,y, d) is obtained from Eq. (9.1) using the

3D PSF & and the current best known solutions to the 3D shape d,(a’,y’)
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and focused image F(2',y"). An initial estimation of the solutions is obtained
through traditional IDA and/or IFA methods. This solution is improved iter-

atively by an optimization technique.

9.2.2 Optimization

In the optimization a gradient descent approach is used to minimize the
error £ in Eq. (9.4). It is based on an iterative approach of going downhill
with respect to the error function to find the lowest point. The focused image
surface in a small image region is approximated by a piecewise planar surface
patch with three parameters— slope with respect to x-axis, slope with respect
to y-axis, and z-axis intercept. Error gradient with respect to these three
parameters are used in the gradient descent error minimization. A sequential
followed by a parallel parameter search (SPPS) is used for this method. First,
the optimization is done with respect to one parameter at a time. After that,

three parameters are searched simultaneously.

9.2.3 Sequential Implementation

Three image models (16 x 16 X 16 , 32 x 32 x 32 and 64 X 64 x 32 size image
volume data) are synthesized where the focused image surface of each model
is a hemispherical object (with radius 12, 24, 24) and the focused image is a
checker board. From UFDA, the observed image data ¢(x,y,d) is synthesized
using Eq. (9.1) with camera parameters (D=9mm, f=35mm, s= 35mm to

36.5mm). Then an initial solution for the focused image and the estimated
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3D shape of these image models is obtained using an IFA method. In the IFA
method a focus measure (energy of image Laplacian) is computed in a small
window of size 4 x4 (for 16 x 16 x 16 ) or 8 x 8 ( for 32x32x32 and 64 x 64 x 32
) non-overlapping regions. A piecewise constant approximation to the focused
image surface in each of the above window regions is obtained by finding the
position where the focus measure is a maximum. These estimated solutions
and the 3D PSF are used to compute the estimated image data g.(z,y,d)
using Eq. (9.1). The error E between the observed image data g¢.(x,y,d)
and the estimated image data g.(x,y,d) is computed using Eq. (9.4). The
SPPS gradient descent method is applied to improve the estimated solution
iteratively.

This UFDA approach reduces the errors in shape and focused image intro-
duced by the image-overlap problem and the non-smoothness of the object’s
3D shape. Experimental results are reported in [76] where accurate recon-

structed 3D shape and focused image are obtained at the cost of computation.

9.3 Parallelizable Portion of UFDA

The highly intensive computation load of the UFDA approach is mainly
due to the iterative estimation of image data in the image formation process
using Eq. (9.1). The algorithm for convolving an estimated 3D object with 3D
PSF is described below.

for i =1 to N do /* i: frame index */
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for y =1to N do /* j: row index */
for k=1to N do / * k: column index */
sum= 0;
form =1to N do /* m: row index */
forn =1to N do /* n: column index */

sum = sum —+
F(m,n) k(i —d,(m,n),j —m+ S, k—n+ )
end /% n loop */
end /% m loop */
if (sum>255)
then sum = 255;
9(i,j, k) =sum;
end /% k loop */
end /% j loop */

end /* @ loop */

Here ¢(i,j, k) (i.e. sum) denotes the gray level in the image volume, h(¢,j, k)
is the 3D PSF, d,(m,n) is the focused image surface, F'(m,n) is the gray level
on the d,(m,n), N represents the total number of image frames and image

size for the corresponding index respectively. This algorithm explains explic-



itly the way we do convolution. From an accuracy point of view, this image
sensing model takes into account the contribution of all object point sources in
estimating the observed image brightness at a given point. In particular, the
image brightness near the border of an image region is computed by taking
into account all possible object point sources— both those inside the image
region and those outside but close to the border. Therefore the error in 3D
shape recovery is minimized. However, the price paid to minimize the error is
a heavy computation workload. The computational complexity of this algo-
rithm is O(n®) in each iteration. The solution is refined iteratively to improve
accuracy. In the next section we consider data parallelization of the above

algorithm.

9.4 Parallel Implementation of UFDA

In this section we describe the structure of Parallel Virtual Machine, the
PVM environment in our laboratory, and implementation of the parallel UFDA
algorithm.

Parallel Virtual Machine (PVM) [78], created in the summer of 1989 at
Oak Ridge National Laboratory (ORNL), is a software system that permits
a network of heterogeneous UNIX computers to be used as a single large
memory-distributed parallel computer. Therefore, the computation power of
a cluster of workstations/computers can be aggregated to solve large compu-
tational problems. In [72], the viability of network computing on a cluster of

workstations for many large scientific applications has been established. In

107



this paper we are interested in the viability of network computing for practical

applications such as UFDA.

PVM provides the functions to start up tasks on the virtual machine and
allows the tasks to communicate and synchronize with one another. A compu-
tation unit in PVM is defined as a task usually analogous to a UNIX process.
Applications written in Fortran77 or C can be parallelized by using message-
passing constructs. Thus, under careful design an application can run multiple
tasks in parallel by sending and receiving messages between tasks (processes).
In order to function correctly in a heterogeneous computer environment PVM
handles all data conversion between computers with different data formats as
necessary. PVM also allows application tasks to exploit the architecture best
suited to their solution and provides heterogeneity at the application, machine,

and network level.

The PVM system contains two parts — a daemon and an interface library.
Any user with a valid login can install the daemon on a machine. When a user
wants to run a PVM application, she/he first creates a virtual machine by
starting up PVM. The PVM application can then be executed from a UNIX
prompt on any of the hosts registered in the virtual machine environment.
Multiusers and multitasking are supported in the PVM system. The PVM
library includes user callable routines for message passing, spawning processes,
coordinating tasks, and modifying the virtual machine. In order to use the

PVM system all application programs must be linked with this library.

The PVM system adopts a two-process setting technique. The details are

shown in Fig. 9.1. The PVM daemon process is responsible only for commu-
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process boundary

application PVM daemon
— process
7
user-level
} kernel-level

Operating System

network =

Figure 9.1: The structure of PVM system (data paths are indicated by solid

arrow lines and scheduling control paths are marked by broken arrow lines).

nication. Scheduling of the application process and communication process
is done by the operating system’s scheduler. To exchange messages between
two application processes, the data is copied across the process boundary into
and out of the PVM daemon process. The messages are communicated across
the network by means of the UDP /IP protocol. The PVM daemon process
is responsible for retransmitting lost UDP packets and resolving reordering
of packets to provide reliable communication. In recent versions of the PVM
system, a direct TCP connection between two communicating application
processes is established for message passing. This implementation reduces the
total communication latency by a factor of 3-4. In [74, 75] new designs using
multithread implementation to further hide the communication latency are

discussed.
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In our experiments two PVM environments are set for collecting related
information. The first PVM environment is composed of two SUN SPARC [PX
workstations with 16 and 32 megabyte main (RAM) memory on the two ma-
chines respectively. The second PVM environment connects four SUN SPARC
5 workstations with 64 megabyte RAM on each machine. Every computer has
its own hard disk drive and both environments use 10 megabits/sec Ethernet

to connect machines.

In the first environment the parallel programs include a master part and a
slave part. The master program is implemented on the SUN SPARC IPX with
32 megabyte memory on board and the slave program is installed on the other
computer. Once the PVM daemon processes on both machines are activated
by executing the PVM console program from the master machine, the master
parallel program is executed and its corresponding slave parallel program is
invoked through the network automatically. All data communication work is
handled by PVM connection function calls. For example, pvim_send() and
pvim_recv() are the functions to send and receive data between two appli-
cation processes respectively. To execute the parallel programs on a larger
network, we apply a polling scheme to distribute equal amounts of workload

from a master program/machine to other slave programs/machines.

To utilize the computation power of the local area network efficiently data
communication overhead among computers must be reduced to a minimum
extent. In our implementation of the parallel estimation algorithm, initial
data is transmitted over the network from the master machine to the slave

machine at the first iteration of estimation. Initial data includes estimated
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focus image, observed image volume, estimated 3D shape, and precomputed
3D PSF data. For the regular data communication only the current estimated
3D shape and the new estimated image volume are transmitted back and forth
at each iteration of estimation.

To get significant performance improvement from parallel execution the
computation complexity of parallelized algorithm (process) should be at least
two orders of magnitude greater than the complexity of communication over-
head. From section 9.3 we know the computation complexity of the sequential
estimation process is O(n®) where n is the corresponding image size. The com-
plexity of communication overhead, O(n?), is bounded by the transmission of
new estimated image volume at each iteration. Therefore, we predict that the
overall execution speed of our application can be improved by using a parallel

implementation.

9.5 Experimental Results

The first important issue for a parallel application/experiment is to gen-
erate correct results as its sequential counterpart does. In our UFDA experi-
ments the output results from both parallel and sequential versions are identi-
cal. In the 32 x 32 x 32 image volume case the original focused image surface
(FIS), the initial solution obtained from the IFA method, and the recovered
focused image surface are shown in Figs. 9.2, 9.3 and 9.4, respectively.

In order to eliminate the performance inconsistency and degradation of

both parallel and sequential UFDA applications caused by the dynamic net-
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Figure 9.2: The original 32 x 32 x 32 focused image surface (FIS).
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Figure 9.3: The initial solution of 32 x 32 x 32 focused image surface generated

by the IFA method.



Figure 9.4: The recovered 32 x 32 x 32 focused image surface generated by

parallelized UFDA.

work workload, all performance measurements in our experiments are recorded
with only the UFDA user process(es) and essential system daemon processes

running on the workstation(s) of the network.

In Table 1 the performance details of sequential UFDA under different
sizes of image volume are presented. Both SPARC IPX and SPARC 5 com-
puter environments are used to execute the sequential UFDA program to get
the performance information as reference values for the parallel version. Notice
that the total execution time is equal to the user time plus the system time.
For the parallel UFDA the corresponding results measured on the master ma-
chine are shown in Tables 2, 3 and 4. In parallel UFDA the total execution
time is composed of user time, system time, and communication overhead.

The user time is defined as the execution time spent by the user process. The
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definition of system time is the execution time spent by the system (UNIX
kernel). The communication overhead is caused by the internal data process-
ing delay of ethernet cards (data copy from kernel to card memory) and the
transmission latency of the local network. Because the shared data between
machines has to be processed before sending and after receiving it, a portion
of the measured user time of the parallel UFDA algorithm is contributed by
the added data preprocessing and postprocessing programs. Measured entries

in all tables are reported in seconds.

Compared to Table 1 the values of user time in Table 2 are lower because
the computation workload is shared by two workstations. On the contrary the
values of system time in Table 2 are greater than the ones in Table 1. The
reason is that PVM procedure calls invoke some kernel functions. Therefore,

the system time increases when more PVM procedure calls are executed.

To describe the speed advantage of a parallel algorithm compared to a
serial reference algorithm the speedup ratio must be defined. Let m represent
the problem size (that is, the size of image volume in our case). Suppose that
we have a parallel algorithm that uses r processors that terminates in time
T.(m). Let T'(m) be the time required by the serial (uniprocessor) reference

algorithm for this problem. The speedup of the parallel algorithm is defined

as S,(m) = jz(m). The speedup ratios of the parallel UFDA algorithm var-
ied from 1.49 to 1.97 for 2 networked computers, and from 2.17 to 3.56 for
4 networked computers as shown in Fig. 9.5. The speedup diagram indicates
that if the image volume is large enough the communication overhead is not

the dominant factor of the total execution time. The percentage of total ex-
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Table 9.1: Measured execution times for sequential UFDA.
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Computer Model

Image Volume

Total Execution Time

User Time

System Time

SPARC IPX 16 x 16 x 16 70.6 70.4 0.2
SPARC IPX 32 x 32 x 32 2345.2 2344.4 0.8
SPARC IPX 64 x 64 x 32 35421.5 35406.0 15.5
SPARC 5 16 x 16 x 16 26.5 26.5 0.0
SPARC 5 32 x 32 x 32 895.3 895.1 0.2
SPARC 5 64 x 64 x 32 13661.5 13661.0 0.5
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Table 9.2: Measured execution times for parallel Implementation using Two

SPARC IPXs.

Image Volume

Total Exe. Time

User Time

System Time

Comm. Overhead

16 x 16 x 16 41.5 36.6 0.7 4.2
32 x 32 x 32 1242.0 1168.8 2.9 70.3
64 x 64 x 32 18009.2 17784.8 21.1 203.3

Table 9.3: Measured execution times for parallel Implementation using Two

SPARC 5s.

Image Volume

Total Exe. Time

User Time

System Time

Comm. Overhead

16 x 16 x 16 17.8 15.0 0.3 2.5
32 x 32 x 32 479.5 441.3 1.2 37.0
64 x 64 x 32 6956.8 6787.7 7.3 161.8




Table 9.4: Measured execution times for parallel Implementation using Four

SPARC 5s.
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Image Volume | Total Exe. Time | User Time | System Time | Comm. Overhead

16 x 16 x 16 12.2 9.0 1.1 2.1
32 x 32 x 32 270.1 242.4 2.3 25.4
64 x 64 x 32 3835.2 3698 18.6 118.6

ecution time spent on communication overhead under different image models
presented in Fig. 9.6 also reveals the same result. The communication over-
head is significant in 16 x 16 x 16 image model case of parallel UFDA algorithm
because the total computation workload is not large enough to hide the com-
munication latency caused by sending initial data from the master machine to
the slave machine. However, since the computation complexity of the parallel
UFDA algorithm (O(n®)) is two orders of magnitude greater than its corre-
sponding communication complexity (O(r?)), the communication overhead of
initial data transmission between two workstations is shared and hidden by

iterative computation for large image volumes.

In Fig. 9.5 we notice that the speedup performance with 2 SPARC IPXs

is higher than the one with 2 SPARC 5 machines. The reason is that the
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Figure 9.5: Speedup analysis for different image models.
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Figure 9.6: The percentage of total execution time spent on communication

overhead in different image models.
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computation capability of SPARC 5 is better than SPARC IPX. Therefore,
for a given amount of data to be processed and a given network environment
(10 megabits/sec ethernet) SPARC 5 spends less time to complete the data
computation but about the same amount of time as SPARC IPX to transmit
data between machines. Therefore, the speedup ratio of SPARC 5 model is
lower than the SPARC IPX model. As the image size increases, the time
spent on data computation grows faster than the communication overhead,
and therefore the speedup of SPARC 5 model catches up with the speedup of

SPARC IPX model.

From Tables 2 and 3 we observe that the communication overhead of
SPARC 5 model is less than the one for SPARC IPX model. Again, this is be-
cause the SPARC 5 model is faster and has more main memory. Therefore the
data copying from kernel memory to ethernet card takes less time in SPARC
5 than in SPARC IPX. Since the data transmission time is the same for both
models, the communication overhead of SPARC 5 model must be less than for

SPARC IPX.

From Tables 3 and 4 we observe that the communication overhead of 4
SPARC 5s is less than that of 2 SPARC 5s. This result is counter-intuitive,
but correct. Recall that we define the communication overhead as the internal
data processing delay of ethernet cards and the transmission latency of the
local network. Assume that the data transmitted between the master and
the slave have the same size. Let T. be the data processing delay of ethernet
card, T; be the transmission latency of the local network, and 7T, be the data

computation time of the master machine in a PVM environment with 4 com-
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puters networked. Because T, T; and T}, are all proportional to the amount
of data (image size), we can easily estimate their values when only one or two

Processors are used.

Shown in Fig. 9.7 is the time-line comparison of an application execution
with different numbers of processors. In our PVM environment the data distri-
bution from the master machine to the slave machines uses a polling scheme.
In this scheme the master machine first copies data from its kernel memory
to the ethernet card buffer which is then transmitted to the slave machine
over the network. While the ethernet card is sending data to one of the slave
machines from its buffer over the network, the master machine can simultane-
ously copy the data into the ethernet card buffer for another slave machine for
transmission. A similar overlap of copying and transmission occurs when the
master machine receives data back from the slave machine. The communica-
tion overhead of 4 processors is 47, 4+ 21} and the communication overhead of
2 processors is 41. +4T;. Therefore, the communication overhead of 4 SPARC
5s 1s less than that of 2 SPARC 5s. If we assume that the sizes of the sent
and received data are different, then we have two different data processing
delays, T.; and T.; and two different transmission latencies, T}y and T},. We
can derive that if Ty + Ty + T > 1.1, then the conclusion is the same. In
our experiments the size of shared data at each iteration is small (16k bytes

or less). T, is about the same value as Ty, and Ty & Tio.
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9.6 Conclusion

In this paper a parallel implementation of the UFDA using PVM is pre-
sented. One important characteristic of UFDA 1is the trade-off between the
accuracy of 3D shape and focused image recovery and the computation load.
Higher accuracy is obtained at the cost of additional image acquisition and
processing. PVM helps to speed up the most computationally intensive part
of UFDA- the computation of estimated image data for a given solution.

Parallization of UFDA through PVM offers a solution to reduce the total
execution time of the UFDA application and provides an example of utilizing
the distributed computation power of a local area network. In our experi-
ments with two and four computers networked the parallel UFDA application
depending on the size of image data achieves a speedup in the range of 1.49 to
1.97 and 2.17 to 3.56, respectively. Our experiments demonstrate the advan-
tage of using PVM to solve computation intensive problems in machine vision

applications such as UFDA.
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Chapter 10

Conclusion

10.1 Summary

In this dissertation, we present a new theory that unifies Image Focus
Analysis (IFA) and Image Defocus Analysis (IDA). IFA methods are based
on computing focus measure to search the most focused image and depth
information . During this search, no information about camera’s point spread
function is required. One of the advantages of IFA is that it does not suffer
from the correspondence and occlusion problem associated with methods like
stereo. Also, it can be implemented on a single image system which facilitates
its applications to a variety of systems. On the other hand, for this type of
method to get a good result, it has to process a large number of images in
order to cover the range of focus. This leads to a long time in the acquisition
of image data due to the mechanical motion of camera. In addition, due to

the specs of some applications, it is possible that there are not enough image
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data for IFA to obtain a reasonable result.

IDA methods, in contrast to IFA, are based on computing Fourier or
Spatial domain convolution/deconvolution transform. They can use as little as
two image at different camera parameter settings to find the relations between
the 3D scene and the degree of blur in determine the depth and focused image
for entire scene. This process involves the knowledge of very accurate camera’s
point spread function to make this method feasible. Since IDA needs only two
images and the object are not necessary in focus. It alleviates the limitations
due to the available images and data acquisition for the IFA. However, the
IDA method requires accurate camera calibration for the information of point

spread function.

Based on these distinctions of IFA and IDA, it is necessary to devise a
method that incorporates the advantages from both methods and then able
to make an adjustment by itself depends on the requirements of applications.
This consideration leads us to the new theory and an unified approach to the
image focus and defocus analysis (UFDA). The theory of UFDA is formed by
linking the number of unknowns and constraints in the image data for IFA and
IDA respectively. The unified approach is then built up based on modeling
the sensing of defocused in camera system. In the proposed image formation
model, a 3D PSF is used here for accurately imitate the actual response of a
real camera system. The goal here is to obtain a better solution compared to
IFA or IDA methods. This is attained by using a computational algorithm for
the UFDA which processes different number of input images in an optimal fash-

ion to improve accuracy and computational efficiency. Besides, the 3D shape
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and focused image recovery problems formulated as an optimization problem
where the difference between the acquired image data and the estimated image
data is minimized. Here, several optimization techniques that aim on this par-
ticular problem have been investigated. The analysis of these approaches for
UFDA in different aspects depending on their characteristics and the smooth-
ness of the object are presented. Also, a parallel implementation of UFDA by
PVM has be conducted. This experiments give us a indication of when the
computing resource can be fully utilized then the UFDA can obtain a very
accurate solution in a desired time.

Our work so far on UFDA provides a reasonably complete theoretical
and implementation framework for application of UFDA in practical machine
vision. Experimental results shown UFDA offers trade-off between (i) the
number of image frames used, (ii) the accuracy of results, (iii) the amount of

computation used, and (iv) the knowledge of known camera characteristics.

10.2 Future Research

Analysis of defocused image data for 3D shape and focused image recovery
is our primary goal. A major topic of our future research is the development of
computationally efficient and accurate techniques for solving the optimization
problem in UFDA. For this purpose, this research can be further in following
ways.

First, a dynamic local error minimization scheme can be applied to ob-

tain a accurate solution while reduce the computation time. To perform this

126



scheme, the observed image data are only acquired at a certain limited blur
range with respect to the estimated solution at a small image region. Since
the image data that acquired at large blur area will only make marginal effect
for the total local error minimization. Hence, using such scheme, we should
able to improve the computation efficiency dramatically without sacrifice the
accuracy. This method can be applied to practical application like microscopy.
In microscopy, 3D shape and focused image are recovered for very small ob-
ject like Ball Grid Array (BGA). In this application, the desired image is first
divide into small regions to perform IFA. When IFA is applied to the image
frames to produce a initial solution, UFDA with the dynamic local error min-
imization scheme can then be applied to reconstruct the shape and focused

image.

Another method that possibly to try in the future is the multiresolution
IFA method or a combination of multiresolution IFA with above dynamic
local error minimization. The multiresolution is achieved by applying the IFA
method at a certain range based on previous estimated solution to obtain the
initial solution progressively. The advantage of this method is that it can

reduce the computation cost with the processing of most useful data.

The other direction for future research is the investigation of advanced
optimization techniques for UFDA to further improve the accuracy and reduce
computation. Methods using probability principles like Bayesian estimation or
simulation annealing can probably make improvement using different aspects

of the structure of UFDA compared to the regularization that we have tried.

And finally, a possible exploration of 3D Fourier Analysis of defocused im-
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age data as in 3D microscopy. Since the traditional approach in 3D microscopy
differs from ours in terms of problem formulation and parameterization of de-

focus.



Appendix A
Derivation of Euler-Lagrange Equation

proof the Euler-Lagrange equation of

T2 Y2
T = /x /y f(l'vyaf,fxx,fyy) dxr dy

is
0? 0?
Fr+ @}—fm + a—yz}—f” =0
(Proof :)

Functional F depends on the unknow functions f, f,, and f,,.

Assume the surface pass through (x1,y1) , (21,92) , (22, y1) , (22, y2).

n(x,y) is a test function and € be a small value.

By definition [1], function f has continuous derivative up to order 1. So we

can write following boundary conditions.

o f(z1,y) = z1(x1,y) ; Z(x1,y) is a set of the values for each (x,y)

along the line from (z1,y1) to (x1,y2) for 11 <y < ys.

o f(xa,y) = Z3(wa,y) ; Z5(x2,y) is a set of the values for each (x,y)

along the line from (x4, y1) to (22,y2) for 11 <y < ys.
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o f(x,y1) = za(x,y1) ; Z3(x,y1) is a set of the values for

along the line from (1, y1) to (z2,y1) for t1< @ < a4,

o f(x,y2) = zi(x,y2) ; Zy(x,ys) is a set of the values for

along the line from (1, y2) to (z2,y2) for t1< @ < a4,

o fu(x1,y) = Z5(a1,y) ; Zs(x1,y) is a set of the values for

along the line from (z1,y1) to (x1,y2) for 11 <y < ys.

o fi(xa,y) = Z5(as,y) ; Zs(x2,y) is a set of the values for

along the line from (x4, y1) to (22,y2) for 11 <y < ys.

o fu(x,y1) = 22(x 1) 5 Zr(w,y1) is a set of the values for

along the line from (1, y1) to (z2,y1) for t1< @ < a4,

o fu(x,y2) = Z5(x,y2) ; Zs(,y2) is a set of the values for

along the line from (1, y2) to (z2,y2) for t1< @ < a4,

o f,(x1,y) = Z5(x1,y) ; Zs(x1,y) is a set of the values for

along the line from (z1,y1) to (x1,y2) for 11 <y < ys.

o f,(x2,y) = Z5(x2,y) ; Zs(2,y) is a set of the values for

along the line from (x4, y1) to (22,y2) for 11 <y < ys.

o f,(x,y1) = Z2(x, 1) ; Zr(x,y1) is a set of the values for

along the line from (1, y1) to (z2,y1) for t1< @ < a4,

o f,(x,y2) = Zs(x,y2) ; Zs(,y2) is a set of the values for

along the line from (1, y2) to (z2,y2) for t1< @ < a4,

each (z,y)

each (z,y)

each (z,y)

each (z,y)

each (z,y)

each (z,y)

each (z,y)

each (z,y)

each (z,y)

each (z,y)
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By above B.C.s , we can write

n(z1,y) =0, y1 <y <y
n(x2,y) =0, 1<y <y
n(x,y1) =0, 1 < a2 < 2.
n(x,y2) =0, 1 < a2 < 2.
ne(z1,y) =0, y1 <y <y
Ne(22,y) =0, y1 <y <y
nx(xvyl) =0, 7 <7 < Ty
Ux(il?ayz) =0, 7 <7 < Ty
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ny(21,y) =0, 1 <y <y
ny(22,y) =0, 1 <y <y
ny(z,y1) = 0, r <z < x,.
ny(2,y2) = 0, r <z < x,.

From Taylor series theorem

F(xvyvf + en(xvy)vfxx + enﬂﬁﬂﬁ(xvy)?fyy + ﬁnyy(l'vy)) = f(x,y,f, fxxvfyy) + (Ag)

6 (x )af(xvyvafxmfyy) af(xvyvafxmfyy) af(x7y7f7fl’l’7fyy)
ned of 0f e Df v

+e(higher order terms)

+ ez, y)

+ ﬁnyy(l‘,y)

Plug Eqn.25 into Eqn.23 | 7 can be rewritten as

z2 Y2
T = /l’ : {F(wvyva fl’l’vfyy) + en(wvy)Ff + ﬁnxw(w,y).;rfmm + ﬁnyy(l',y).;rfyy + 6} dx d@AZL)

By
0T
E |E:0: 0 (A5)

we get

z2 Y2
L e )T 4 sl ) Fp 4 ) F ) dedy = 0 (A6)

Y1

=z.1 =x.2 =x.3



Use integration by parts

X.2 =

z2 Y2
/ / Nea(T,y) Fy,, dv dy

Y1

B N [ O
— [ g Fr [ d) dy

(A7)

y2 0 0
/ {nz(z2, ) Frw — n2(21,y) Fpo b dy — /y1 {U(wzvy)a—xffm - U(wlvy)a—xffm} dy +

y2 0>
/@/1 /xl n(x,y)@ffm dx dy

Further expand Eqn. x.2 and applied B.C. =

y2 y2 y2

=/ Ne(w2,y)Fp,,dy — nx(xl,y)ffmdy—/
K K

1 un

0
n(xz,y)a—xffm dy +

1

=0 =0 =0
2

y2 0 y2 ;2 0
/y n(xl,y)a—xffm dy+/yl /m n(x,y)@ffm dz dy

1

=0
2

y2 rxo 0
= /y1 /I1 U(ﬂ?ay)@fm dx dy

Similarly to Eqn. x.3 = we get

y2 a2
Y1

PE
= / / ffyy dx dy
So Eqn 28 becomes
2

zo Y2 a 82
/x ; {n(z,y)Fs+ n(x,y)@ffm + n(x,y)a—yffyy} dy de =0 (A.10)

Reorganize it, we get

0 0
| /y (e Fr 4 5Pt 5P} dy dr =0 (A1)
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Since it must satisfy all the test function n(x,y) , so the desired Euler-Lagrange

equation is

0? 0?
Fr+ @}—fm + a—yz}—f” =0 (A.12)
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