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Abstract

A new approach is presented for 3D shape recovery

of local planar surface patches from two shift/space-

variant defocused images. It is based on a recently

proposed technique for inverting the shift-variant blur-

ring in a camera system. It is completely localized, ap-

plicable to general point spread functions, and facili-

tates fine-grain parallel implementation and computa-

tionally efficient recovery of 3D shape. The shape of a

visible object at each pixel is specified by the distance

and slopes of a local planar surface patch that approx-

imates the object surface at that pixel. The theory un-

derlying the new approach and experimental results are

presented. Results of both simulation and real exper-

iments indicate that the new approach is effective and

useful in practical applications.

1. Introduction

Image defocus analysis has been investigated by

many researchers for 3D shape recovery. In the case of

object surfaces normal to the direction of view, blurring

is modeled by a shift-invariant/convolution operation.

This case has been addressed through both frequency

domain and spatial domain techniques ( [7], [9], [8],

[6], [10]). Recently, the problem of 3D shape recovery

from space/shift-variant defocused images has been in-

vestigated by several researchers. This problem arises

when the surface of an object in the scene is not normal

to the direction of view, but slanted and possibly curved.

It also arises in the presence of various optical aberra-

tions away from the center of the field of view. Convo-

lution based methods can be used in this case assuming

a blockwise/piecewise shift-invariance approximation,

but the results would be inaccurate.

Favaro and Soatto [1] formulate the image blurring

process as an inner product in Hilbert space and solve

the inverse problem using regularized functional sin-

gular value decomposition. Rajagopalan and Chaud-

hury [3] model the focused image and scene related

blur parameter as Markov Random fields and recover

them through Maximum a Posteriori criteria. Favaro et

al. [2] convert shift variant integral equation to inho-

mogeneous diffusion equation and solve shape related

diffusion coefficients through gradient flow approach.

The new method presented here is an extension of the

S Transform approach [6] for shift-invariant (convolu-

tion) blurring. It is based on the recently developed Rao

Transform (RT) [4, 5] for image restoration and linear

integral equations. In the new method, the computa-

tions are completely localized (i.e. solution at a pixel

is computed using image data in a small neighborhood

around that same pixel), efficient, and suitable for fine-

grain parallel implementation. The effectiveness of the

new approach is demonstrated with both simulation and

real experiments. Results of the experiments show that

the new method is useful in practical applications.

2. Shift-variant Blurring

In this section we consider image blurring in a thin

lens camera, and derive an interesting result that the blur

circle radius R of a planar surface patch on an object is

a linear function of image coordinates. This result pro-

vides the crucial relation between the shift-variant blur

parameter σ proportional to R and the 3D shape para-

meters of the planar surface patch. Using this relation,

we obtain the 3D shape parameters given the blur para-

meters at each pixel.

Figure 1 shows a schematic diagram of image for-

mation by a thin lens L with diameter D, focal length

f , object point P at distance u, focused image p′ at dis-

tance v, image detector ID at distance s, and blur circle

with radius R. Using the lens formula 1/f = 1/u+1/v
we can derive

R =
s − v

v
.
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In order to compare images captured with different

parameters s, image magnification is normalized with

s = s0. In this case, the normalized radius R′ is given

by

R′ = (D s0/2)(1/f − 1/u − 1/s) (2)

Using a world coordinate system with its origin at the

Figure 1. Camera Model

optical center Q and Z-axis along the optical axis, the

image p′′ of the object point P at (X, Y, Z) has the im-

age coordinates (x, y) given by perspective projection

relations:

x = s0X/Z and y = s0Y/Z. (3)

The equation of the tangent plane of the object surface

at point P can be expressed as

Z(X, Y ) = Z0 + ZXX + ZY Y (4)

where Z0 is the distance of the plane along the optical

axis, and ZX and ZY are slopes along the X and Y axes

respectively. The three parameters Z0, ZX , and ZY ,

are the 3D shape parameters to be determined. Using

u = Z(X, Y ), Eq. (2), Eq. (3), and Eq. (4), we can

derive

R′(x, y) = R0 + Rxx + Ryy (5)

where

R0 = (Ds0/2) (1/f − 1/Z0 − 1/s)

and Rx = DZX/(2Z0), Ry = D ZY /(2Z0)
(6)

Note that the blur circle radius R′ is a linear function of

the image coordinates (x, y) for a planar surface patch.

The blur spread parameter σ (square root of the sec-

ond central moment of PSF) for real camera systems is

known to be roughly proportional to this radius [6], and

therefore this σ can also be approximated as a linear

function of the image coordinates. One popular model

of point spread function (PSF) corresponding to this

blur circle radius is the cylindrical function:

h(x, y, u, v) =

{

1/(πR′2(x, y)) for u2 + v2 ≤ R′2

0 otherwise

The blurred image g(x, y) is related to the focused im-

age f(x, y) through the Rao Transform (RT) [4, 5] rela-

tion:

g(x, y) =

∫ x−a

x−b

∫ y−c

y−d

h(x − u, y − v, u, v) × (7)

f(x − u, y − v) du dv.

The above RT based blurring model is valid for gen-

eral PSFs, and not restricted to just cylindrical PSFs.

Inverting this transform for a general shift-variant PSF

(SV-PSF) is presented in the next section.

3. Inverting Shift-Variant Blur

The shift-variant blurring in Eq. (7) can be inverted

to solve for the focused image f(x, y) using the RT

theory [4, 5]. A summary of the inversion results are

presented below. We use superscript (m, n) to denote

the mth partial derivative with respect x and nth partial

derivative with respect to y, and the subscript p, q to de-

note (p, q)th moments with respect to u, v, so h
(m,n)
p,q is

defined as:

h(m,n)
p,q =

∫ x−a

x−b

∫ y−c

y−d

upvqh(m,n)(x, y, u, v) du dv

for m, n, p, q = 0, 1, 2, . . . .

Using the above notation, the truncated Taylor series

expansion of f(x − u, y − v) around (x, y) up to order

N and h(x−u, y−v, u, v) around the point (x, y, u, v)
up to order M will be used below. For example, we

express

h(x − u, y − v, u, v) ≈

M
∑

m=0

am

m
∑

j=0

Cm
j um−jvjh(m−j,j) (8)

where Cn
i and Cm

j denote the binomial coefficients and

am = (−1)m/m!. Substituting the truncated Taylor-

series expansions of h and f into the RT in Eq.(7) and

simplifying, we get

g(x, y) ≈

N
∑

n=0

n
∑

i=0

Sn,if
(n−i,i) (9)



where

Sn,i = anCn
i

M
∑

m=0

am

m
∑

j=0

Cm
j h

(m−j,j)
m+n−i−j,i+j (10)

We can now write expressions for the various partial

derivatives of order (p, q) of g with respect to x, y, as

g(p,q) ≈

N
∑

n=0

n
∑

i=0

∂p

∂xp

∂q

∂yq
[Sn,if

(n−i,i)]T (n + p + q)

where

T (n + p + q) =

{

1 if n + p + q ≤ N

0 otherwise
(11)

assures that terms with derivatives of f of order greater

than N are set to zero, for p + q = 0, 1, 2, . . . , N .

The above equation for g(p,q) for p, q =
0, 1, 2, . . . , N , and 0 ≤ p + q ≤ N constitute (N +
1)(N + 2)/2 equations in as many unknowns f (p,q).

The system of equations for g(p,q) can be expressed in

a vector-matrix form as











g(0,0)

g(1,0)

...

g(0,N)











=











k00 k01 · · · · · ·
k10 k11 · · · · · ·

...
...

. . .
...

· · ·





















f (0,0)

f (1,0)

...

f (0,N)











(12)

or

gx,y = Kx,y fx,y (13)

where the subscripts (x, y) make explicit the depen-

dence of the vectors/matrix on (x, y). This matrix equa-

tion can be solved to obtain f (p,q), by inverting the ker-

nel matrix Kx,y. The solution can be written in the form

fx,y = K′

x,y gx,y (14)

where K′

x,y = K−1
x,y.

4. Shape Recovery

RT (Eq. (13)) and inverse RT (Eq. (14)) provide re-

lations between the shift-variant blurred image g(x, y)
and the focused image f(x, y) in terms of the para-

meters of the Shift-Variant PSF (SV-PSF) h(x, y, u, v)
specified by Kx,y . Inverse RT (Eq. (14)) can be used

to solve for the shape parameters (Z0, ZX , ZY ) using

two shift-variant blurred images g1(x, y) and g2(x, y)
of the object recorded with different camera parameter

settings, e.g. s = s1 and s = s2. From Eq. (14), we

have

f = K′

1 g1 and f = K′

2 g2. (15)

Equating the left hand sides, we obtain

K′

1 g1 = K′

2 g2. (16)

Given the camera parameters Di, si, and fi, associ-

ated with the blurred images gi for i = 1, 2, the matrix

K′

i can be expressed in terms of the shape parameters

Z0, ZX and ZY . The theory here can be extended to

include higher order shape parameters such as surface

curvatures (e.g. ZXX , ZY Y and ZXY ) but in practice

such extension does not seem to be useful because of

the limited gray level and spatial resolution of image

data and noise. Curved surfaces can be adequately ap-

proximated by planar polygons (e.g. triangles) on local

tangent planes at each pixel. Therefore solving Eq. (16)

at each pixel (x, y) will provide a solution for 3D shape

of the whole object in the scene.

5. Experiments

In practice image derivatives are very noise sensitive.

Therefore it is necessary to truncate the Taylor Series

expansion of the image function f . Experimental re-

sults indicated that N = 2 and M = 1 would provide

good results. Also we assume the SV-PSF h(x, y, u, v)
to be rotationally symmetric. In this case, inverse RT in

Eq. (14) provides the following simplified expression

for the focused image f(x, y) = f (0,0):

f (0,0) = g(0,0) + 2h
(1,0)
2,0 h

(0,1)
0,2 g(1,1)

− h
(1,0)
2,0 g(1,0) − h

(0,1)
0,2 g(0,1)

+

(

3

2
(h

(1,0)
2,0 )2 +

1

2
h

(0,1)
0,2 h

(0,1)
2,0 −

1

2
h2,0

)

g(2,0)

+

(

1

2
h

(1,0)
2,0 h

(1,0)
0,2 +

3

2
(h

(0,1)
0,2 )2 −

1

2
h0,2

)

g(0,2)

Similar (but shorter) algebraic expressions will be ob-

tained for the various derivatives of f(x, y).
Savitzky-Golay filters are used to compute image

derivatives g
(m,n)
i (x, y) after smoothing the images. As

second order derivatives are highly noise sensitive, es-

pecially when the image contrast is low, we use data

at only those pixels where the image derivative mag-

nitudes were above a preset threshold. For each pixel

with reliable data in a small image block, we equate

the right sides of the above equations and form a set of

non-linear equations with unknowns Z0, ZX and ZY .

Using data at more than 3 nearby pixels will result in

an over-constrained set of non-linear equations. These

were solved iteratively in a least square sense to solve

for the unknowns.

Both simulation and real experiments on simple ob-

jects were carried-out. In simulation experiments, a



Figure 2. Simulated blur images
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Figure 3. Depth map of Recovered scene
and Ground truth

slanted planar object with a chessboard pattern was as-

sumed, and two shift-variant blurred images were gen-

erated using corresponding SV-PSFs (shown in Figure

2). Then an exhaustive search of the shape parameter

space was carried-out to find a solution that minimized

an error measure. Solutions in small overlapping image

blocks were averaged to obtain the final results. The

depth map is presented in Figure 2 along with its ground

truth for comparison. The average and maximum error

in depth were around 1% and 3% respectively.

In real experiments a slanted textured poster on a

plane was recorded with a calibrated digital camera at

different focus settings (See Figure 4). Then, using the

same approach as in the simulation experiments, the

depth map of the object was computed. The result is

shown in Figure 5. Images of size 640 × 480 were

processed in blocks of size 30 × 30 on a 1.6GHz lap-

top computer with unoptimized code. The processing

time was about 5 minutes, most of which was spent on

searching for the final solution. This step could be im-

proved substantially.

Results of our experiments show that the new ap-

proach presented here is effective and efficient for com-

puting the 3D shape of a planar object using shift-

variant blurred images. Unlike approaches based on

piecewise constant distance approximation (local con-

Figure 4. Images taken with different cam-

era settings

volution or shift-invariant blurring) the results of the

new method does not exhibit blocking artifacts in the

shape.

This method can be extended from planar to more

complex 3D shapes. For example, curvature parameters

(second-order partial derivatives ZXX , ZXY , and ZY Y )

can be included in Eq. (4) by approximating the surface

patch as

Z(X, Y ) = Z0 + ZXX + ZY Y

+ ZXXX2 + ZXY XY + ZY Y Y 2. (17)

In this case, with two images captured at two different

camera parameter settings, image derivatives at six or

more (non-degenerate) pixels will need to be used to

determine the six shape parameters. Six simultaneous

equations corresponding to Eq. (16), one at each pixel,

is solved. As an alternative, image derivatives at a single

pixel can be used by using seven defocused images as

follows. A set of simultaneous equations correponding

to Eq. (16) of the form

K′

i gi = K′

i+1 gi+1 (18)

could be solved for i = 1, 2, · · · , 6 by processing 7
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Figure 5. Depth Map of Inclined Plane

images gi recorded with 7 different (non-degenerate)

camera parameter settings. Note that, in addition to the

six shape parameters, the focused image at a pixel is

the seventh parameter to be determined. In the case

of a planar surface patch, there is an alternative to the

method presented earlier based on two defocused im-

ages at three or more pixels. Four images captured

at four different camera parameter settings and image

derivatives at a single pixel can be used to obtain three

equations from Eq. (18). They can be solved to deter-

mine the three shape parameters. These approaches are

under investigation.

6. Conclusion

Theory and experimental results are presented for a

novel approach to recover 3D shapes of objects from

two shift-variant blurred images. Experimental results

indicate that the method is effective and efficient. In ad-

dition to shape, the new method can be used to compute

the focused image of the object from its blurred images

[5]. The method here will be improved further using

regularization and better iterative techniques for solving

non-linear system of equations. The method here repre-

sents a basic theoretical and computational advance in

3D scene recovery from shift-variant blurred images.
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