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ABSTRACT

Depth From Defocus (DFD) is a depth recovery method that needs only two defocused images recorded with
different camera settings. In practice, this technique is found to have good accuracy for cameras operating in
Normal Mode. In this paper, we present new algorithms to extend the DFD method to cameras working in
Macro Mode used for very close objects in a distance range of 5 cm to 20 cm. We adopted a new lens position
setting suitable for Macro Mode to avoid serious blurring. We also developed a new calibration algorithm to
normalize magnification of images captured with different lens positions. In some range intervals with high error
sensitivity, we used an additional image to reduce the error caused by drastic change of lens settings. After
finding the object depth, we used the corresponding blur parameter for computing the focused image through
image restoration, which is termed as ”soft-focusing”. Experimental results on high-end digital camera show
that the new algorithms significantly improve the accuracy of DFD in the Macro Mode. In terms of focusing
accuracy, the RMS error is about 15 lens steps out of 1500 steps, which is around 1%.

Keywords: Depth from Defocus (DFD), Autofocusing, Macro Mode, Magnification Normalization, Image
Restoration

1. INTRODUCTION

Depth-from-Defocus (DFD) technique is an elegant passive autofocusing method. It only needs two or three
images recorded with different camera settings to recover the depth of certain object by computing the degree
of blurring.

There are generally two categories of DFD algorithms: statistical and deterministic. Statistical approaches
like Maximum likelihood1 and Markov Random field methods2 require more image computing. Deterministic
algorithms can be classified as frequency domain approaches3, 4 and spatial domain approaches.5–7 The frequency
domain approaches are generally computation expensive and yield lower depth-map density. While spatial domain
approaches only use a small image region, thus require less computation and generate piecewise depth-map. Due
to the inherent advantage of being local in nature, spatial domain approach is more suitable for real-time
autofocusing applications.

Subbarao proposed a Spatial-domain Convolution/Deconvolution Transform (S Transform)8 for n-dimensional
signals for the case of arbitrary order polynomials. Surya and Subbarao5 utilized S Transform to estimate the
blur parameter in spatial domain, named as STM. There are two basic variations of STM: STM1 changes the
lens position and STM2 varies the aperture diameter.

In practice, STM1 has been found to have good accuracy for cameras operating in Normal Mode used for
objects at a distance of 20 cm or more.9 When cameras work under macro-mode used for objects in a close
distance between 5cm to 20cm, many difficulties arise, such as highly blurred images, significant magnification
change for small lens motion, and specific settings in lens parameters. To extend STM1 to macro-mode, we
adopt a new lens setting suitable for macro-mode to avoid serious blurring. We also develop new calibration
algorithm to normalize magnification of images captured with different lens positions. In some range intervals
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with high error sensitivity, we used an additional image to reduce the error caused by drastic change of lens
settings. Experimental results on different test object data show that new algorithm significantly improve the
accuracy of STM1 for macro mode. The RMS error is about 15 lens steps out of 1500 steps, which is around
1%. Apart from setting the lens at corresponding position to capture a focused image after finding the object
depth, we also present an algorithm to compute the focused image through blur parameter, which is termed as
”soft focusing”.

2. STM OVERVIEW

The basic theory of STM is reviewed here to introduce relevant formulas and define terms for future discussion.

2.1 S Transform

A new Spatial-Domain Convolution\Deconvolution Transform (S Transform) was proposed for images and n-
dimensional signals8 for the case of arbitrary order polynomials.

Let f(x, y) be an image. Within a small region, we approximate it as a two variable cubic polynomial:

f(x, y) =

3
∑

m=0

3−m
∑

n=0

am,nxmyn, (1)

where am,n are the polynomial coefficients. This assumption of f can be made valid by applying a polynomial
fitting least square smoothing filter to the image.

Lef h(x, y) be a rotationally symmetric point spread function (PSF). The moments of the point spread
function are defined by

hm,n =

∫ ∞

−∞

∫ ∞

−∞

xmynh(x, y) dx dy. (2)

The observed image g(x, y) is the convolution of focused image f(x, y) and PSF h(x, y):

g(x, y) = f(x, y) ∗ h(x, y)

=

∫ ∞

−∞

∫ ∞

−∞

f(x − ζ, y − η)h(ζ, η) dζ dη. (3)

Since f(x, y) is a cubic polynomial, it can be expressed in a Taylor series as

f(x − ζ, y − η) =
∑

0≤m+n≤3

(−ζ)m

m!

(−η)n

n!
fm,n(x, y), (4)

then g(x, y) can be expressed as

g(x, y) =
∑

0≤m+n≤3

(−1)m+n

m!n!
fm,n(x, y)hm,n, (5)

Equation (5) expresses the convolution as a summation involving the derivatives of f(x, y) and moments of
h(x, y). This corresponds to the forward S-Transform.

Applying the circular symmetric property of h(x, y), we can rearrange Equation (5) as

f(x, y) = g(x, y) − h2,0

2
(f2,0(x, y) + f0,2(x, y)), (6)

applying partial derivatives to the above equation on both sides, we obtain

f2,0(x, y) = g2,0(x, y), (7)



and
f0,2(x, y) = g0,2(x, y). (8)

By the definition of moments of h, we have h2,0 = h0,2 = σ2
h/2, so the above deconvolution equation can be

written as:

f(x, y) = g(x, y) − σ2
h

4
∇2g(x, y). (9)

Equation (9) is termed as Inverse S-Transform. In the following section, we will describe the application of this
formula to distance estimation of blurred images.

2.2 STM Autofocusing

A schematic diagram of a camera system is shown in Fig. 1. If an object point p is not focused, then a blur
circle p′′ is detected on the image detector plane. The radius of the blur circle can be calculated as:

R =
Ds

2
(
1

f
− 1

u
− 1

s
), (10)

where f is the effective focal length, D is diameter of lens aperture, R is radius of blur circle. u, v and s are
object distance, image distance and detector distance respectively.

We assume all the images have been normalized both in magnification and brightness, then normalized radius
of blur circle can be expressed as

R′ =
Rs0

s
=

Ds0

2
(
1

f
− 1

u
− 1

s
). (11)

Since second moment of PSF is related to R′ as σh = kR′ for some constant k(k ≈
√

2), we obtain

σh = mu−1 + c, (12)

where

m = −kDs0

2
and c = −kDs0

2
(
1

f
− 1

s
) (13)

Figure 1. Schematic diagram of a camera system



Let f(x, y) be the focused image of an object at distance u, g1(x, y) and g2(x, y) be two images of the object
recorded for two different camera parameter settings e1 = (s1, f1, D1) and e2 = (s2, f2, D2), we obtain:

σ1 = m1u
−1 + c1,

σ2 = m2u
−1 + c2. (14)

Rewriting Eqs. (14), σ1 can then be expressed in terms of σ2 as

σ1 = ασ2 + β, (15)

where
α =

m1

m2
and β = c1 − c2

m1

m2
. (16)

Applying Inverse S Transform 9 on both observed images g1 and g2, we obtain:

f = gi −
1

4
σ2

i ∇2gi. i = 1, 2 (17)

Equating the right sides of both equations, we have

g1 − g2 =
1

4
G∇2g, (18)

where

G = σ2
1 − σ2

2 =
4(g1 − g2)

∇2g
. (19)

Substituting for σ1 in terms of σ2 from Equation (15) and using the definition of G in Equation (19), we obtain

σ2
2(α2 − 1) + 2αβσ2 + β2 = G, (20)

where α and β are defined in Equation (16).

In STM1, the aperture diameter is not changed but lens position is moved during acquisition of two images
g1 and g2, ( i.e., f1 6= f2 and s1 6= s2, but D1 = D2), then

α =
m1

m2
=

D1

D2
= 1, (21)

So the quadratic equation becomes a linear equation, and we get the solution directly:

σ2 =
G

2β
− β

2
. (22)

3. MAGNIFICATION NORMALIZATION

As we have stated in Section2.2, the observed images g1 and g2 should be normalized in terms of both brightness
and magnification. In practical implementation, as magnification change is less than 3% for most of the cases,
it is usually ignored in favor of computational speed. However, when a camera is working in macro-mode (for
objects closer than 20cm) instead of the standard mode (for objects farther than 20 cm), such change (shown
in Fig. 2) has to be taken into account as the shift between corresponding points could be up to 20 pixels. To
ensure a correct comparison between two images, image normalization becomes a necessity.

The relation between two images’ magnifications can be expressed as
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Figure 2. Images taken with different camera settings in macro mode

Figure 3. Images with Normalized Magnification

where [x(1), y(1), z(1)]t and [x(2), y(2), z(2)]t are homogeneous coordinates of pixels in observed images g1 and g2.

To get the transformation matrix between magnification of two images, we need to calculate three coefficients
s, sx, sy from calibration. One method is to take pictures of a simple pattern object (like black dots on white
paper), and get two sets of corresponding pixel coordinates from pattern images g1 and g2. Then we can form a
group of over constrained equations shown below, which can be solved through a least square criterion.
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If we write it as Ax = b, then x could be solved as:

x = (AtA)−1Atb (24)

After getting the transformation matrix, the next step is to warp the target image (e.g., g1, usually the one
with broader view field). As forward warping usually maps integer pixel coordinates to sub pixel coordinates,
here a backward warping scheme is applied. Integer pixel coordinates in transformed image are projected back



to the original image, usually resulting in sub pixel position. Then its gray scale value will be computed by linear
interpolation. The result of normalized images after warping are shown in Fig. 3.

4. NEW LENS SETTINGS

Besides obvious magnification change, another problem in macro-mode DFD is that images are extremely blurred.
In this case, the estimated Laplacian of observed image ∇g is noisy and unreliable (SNR will be low as Laplacian
magnitude is reduced by high levels of blur). We have to change the camera settings to make the images more
focused.

Another problem is relation between σ and distance u does not quite follow Equation (14) due to change
of lens system. We have to calibrate the camera to obtain a new lookup table specifically for macro-mode
autofocusing. The lookup table has two entries: step number and blur parameter σ. Step number is a measure
of lens position, which is linear with respect to reciprocal of focused object distance 1/u. We use Depth-from-
Focus(DFF)10 method to get the step number corresponding to a certain object distance. It is a procedure that
acquires many images and search the best camera parameter according to some focus measure. It needs much
more computation than DFD but usually considered to have higher accuracy.

We put objects at several certain distances and compute the corresponding blur parameter σ and step number.
After establishing the lookup table, we will use linear interpolation to get the appropriate step number for any
blur parameter σ calculated from Equation (22), thus recover the depth of object.

Due to some special change of lens position when camera works under macro-mode, mapping from σ to step
number is not linear or monotonic at some certain sensitive region (shown in Fig. 4), which makes the looking
up task difficult. Under such circumstances, we take another picture with new camera setting and use a new
lookup table to get the step number as the new lookup table’s sensitive region differs from the old one. This
combining strategy will effectively improve the accuracy as each of their sensitive regions are avoided. Result of
this 3 image DFD approach is shown in Section 6.
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Figure 4. Step-σ Table for Different Camera Settings

5. SOFT FOCUSING

After getting the blur parameter σ from Equation (22), instead of getting the corresponding step number through
lookup table and set lens to focus position to get high quality image, we can also apply Equation (9) to get focused
image through image restoration, which we term as Soft Focusing. In DFD algorithm, the blurring process is
modeled as convolution of focused image and point spread function, which implicitly assumes that the object
is flat and perpendicular to camera’s optical axis. when object does not have a regular shape, we can split
it into small pieces and perform DFD on each one. Though it will introduce some artifacts, yet it provides



another method for image restoration. When object is flat and parallel to lens, soft focusing will provide very
good results (shown in Fig. 11 and Fig. 13). Another important advantage of soft focusing is that it only
needs very few computations. Compared with some complex restoration algorithms, like iterative optimization
or SVD, soft focusing only needs some basic arithmetical calculations, which will make it suitable for hardware
implementation.

6. EXPERIMENTAL RESULTS

We implement our experiment on Olympus E-1 SLR camera. The camera is controlled by a host computer(Pentium
4 2.4GHz) from a USB port. The lens’ focus motor ranges from step 0 to step 1500. Step 0 corresponds to focusing
a distant object and step 1500 corresponds to focusing a nearby object.

The performance of modified DFD algorithms for macro-mode is evaluated with real experiments using
different objects shown in Fig. 5. Each object is placed at eight different distances in the range of 5cm to
25cm at roughly 2cm intervals. The distance and the corresponding steps are listed in Table 1. The steps were
obtained using the DFF algorithm. Two images were taken with camera set to step 800 and step 1100. If the
focus step calculated by DFD is between 1000 and 1150, then a third picture is taken with camera set to step
1250 and use the new lookup table to retrieve the depth. The focusing window was set to 96×96 located at the
center of the scene. Before performing DFD, all the images are normalized with respect to magnification and
brightness and smoothed by a Gaussian filter. The image Laplacians were threshold to weed out low contrast
pixels with low SNR.

Position 1 2 3 4 5 6 7 8 9

Distance(mm) 250 225 200 180 150 120 100 80 55

Step 786 806 893 902 993 1099 1158 1217 1401

Table 1. Distance-Step Table

First we will show the RMS error of 2 Image DFD and 3 Image DFD for objects at different distances. All
the objects here are flat and parallel to lens system, so computing depth from central focus window is sufficient.
For 2 Iamge DFD, RMS errors are quite small for most regions, except for the certain range (u = 10 cm to 12.5
cm or focus step position around 1100), which is the sensitive region shown in Fig.4. If we combine the result
from the third image, we find that the results are largely improved. Most RMS errors are smaller than 15 steps
out of 1500 steps, the biggest error is just 22 steps, the average error is about 1%.

Then we present the result on inclined flat object (shown in Fig. 8). We split the image into small pieces and
compute depth separately by setting focus window onto each block. The magnification normalization procedure
plays an important role here as magnification can change up to 20 pixels near image borders. Shape Reconstruc-
tion result with magnification normalization is largely improved (shown in Fig. 9), especially around the edges,
the surface becomes much smoother if magnification is normalized before performing DFD.

At last, we will present some image restoration result done by soft focusing. Still, objects are placed at
certain distance and two pictures are taken with camera set to step 800 and step 1100 (See Fig. 10 and Fig.
12). Then blur parameter σ is calculated by Equation (22). Then apply Equation (9) on each pixel to get the
corresponding focused images (shown in Fig. 11 and Fig. 13). The restoration results are satisfactory.

7. CONCLUSION

A modified DFD algorithm is presented here for cameras working under macro-mode. Before performing DFD,
we first normalize the magnification of both images to ensure the correct comparison between corresponding
pixels, and results have been largely improved especially for areas far away from the center. We also use new
lens settings and lookup table specifically for macro-mode, under some certain circumstances, a third image is
taken and depth is retrieved through a second lookup table. Such 3 image DFD scheme is proved to be very
accurate, the RMS error is around 15 steps out of 1500 steps, about 1% on average. We also present a soft
focusing approach for image restoration from two defocused images, which is a fast and effective scheme.



Figure 5. Test Objects
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Figure 6. RMS Error of 2 Images DFD
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Figure 8. Images of Inclined Flat Poster

Figure 9. Shape of Inclined Poster from Two Schemes



Figure 10. Letter Images taken at Step 800 and Step 1100

Figure 11. Restoration Result by Soft Focusing

Figure 12. Checkerboard Pattern taken at Step 800 and Step 1100

Figure 13. Restoration Result by Soft Focusing
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