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ABSTRACT

A 3D vision system named SVIS is developed for threedimensional shape measurement that integrates three methods: (i)
multi ple-baseline, multi ple-resolution Stereo Image Analysis (SIA) that uses color image data, (ii) Image Defocus Analysis
(IDA), and (i) Image Focus Anaysis (IFA). IDA and IFA are less acarate than stereo but they do not suffer from the
correspondence problem associated with stereo. A rough 3D shape isfirst obtained using IDA and then IFA is used to olktain
an improved estimate. The result is then used in SIA to solve the crrespondence problem and oltain an acarate
measurement of 3D shape. SIA is implemented using color (RGB) images recorded at multiple-baselines. Color images
provide more information than monochrome images for stereo matching. Therefore matching errors are reduced and acaracy
of 3D shape isimproved. Further improvements are obtained through multi ple-baseli ne stereo analysis. First short baseline
images are analyzed to oltain an initial estimate of 3D shape. In this gep, stereo matching errors are low and computation is
fast since ashorter baseline results in lower disparities. The initial estimate of 3D shape is used to match longer baseline
stereo images. Thisyields more acarate etimation of 3D shape. The stereo matching step is implemented using a multiple-
resolution matching approach to reduce mmputation. First lower resolution images are matched and the results are used in
matching higher resolution images. This paper presents the dgorithms and the experimental results of 3D shape measurement
on SVISfor several objeds. These results suggest apradicd vision system for 3D shape measurement.
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1. INTRODUCTION

Threedimensional (3D) shape measurement techniques in macine vision have varying requirements in terms of amount of
image data, computational resources, and camera hardware. The techniques yield varying levels of performance in terms of
acaracy and speed. The performance of many of these techniques can be improved if an initial rough estimate of shape is
available in addition to the required image data and camera parameters. The initial rough estimate of shape can be obtained
using another technique with lesser requirements (e.g. less computation or image data) . This suggests integrating two o
more mmpatible techniques to optimize the overall performance. In our previous paper™* we presented a method for three
such techniques [ Image Defocus Analysis (IDA),2**** Image Focus Analysis (IFA)**3!%° and Stereo Image Analysis
(SIA).21215871 | this paper we enhance the previous method in threerespeds — (i) using color (RGB) image data instead
of monochrome image datain Stereo Image Analysis, (ii) using stereo images recrded at multi ple-baselines, and (iii) using a
multi ple-resol ution stereo matching algorithm.

In IFA, alarge sequence of image frames of a 3D scene is recorded with different camera parameters (e.g. focd length
or/and lens to image detedor distance). In ead image frame, different objeds in the scene will be blurred by different
degrees depending on their distance from the canera lens. Each objed will be in best focus in only one image frame in the
image sequence. The aetire image sequenceis processed to find the best focused image of eat objed in the 3D scene. The
distance of eat objed in the scene is then found from the camnera parameters that correspond to the image frame that contains
the best focused image of the objed.

In IDA only afew (2 o 3) image frames of a scene ae recorded with different camera parameters. The degree of
defocus of ead objed in these few image frames along with the crresponding camera parameters are analyzed to find the
focused image and distance of every objed in the scene. 1n comparison with IFA, IDA requires (i) lessnumber of images, (ii)
less computation, but (iii) more information about the defocusing charaderistics of the canera. In addition, IDA is less
acarate than IFA. Integration of the two techniques will obtain acarracy equivalent to IFA but with lessnumber of images



and computation than IFA. Thisisacomplished by first using IDA to oltain a rough estimate of depth-map, and improving
the acaragy of the estimate using IFA in anarrow range aound the estimated depth-map.**

In SIA two or more images are recorded from two or more spatial locations by displadng the canera. Then distance of
objedsin the scene ae found through “trianguation”. Depending on camera parameter values, in some vision systems (e.g.
the human vision system), IDA and IFA methods are lessacairate than stereo vision in providing the depth-map of a scene.
However, unlike stereo vision, IDA and IFA do not suffer from the correspondence and occlusion problems. Our previous
work*! reported a technique for integrating IFA and IDA with stereo vision. The roughdepth-map provided by IDA and IFA
was used to simplify the stereo correspondence ad ocdusion detedion problems. The rough depth-map esentially reduces
the range of stereo disparity which is sached for stereo matching. In addition, false matches due to ocdusion are reduced.
Therefore, stereo analysis yields a more acarate 3D shape of objeds. If the objed whose 3D shape is to be measured does
not have sufficient contrast information, then contrast is introduced by projeding a light pattern onto the objed. This
fadlit ates the goplicaion of IFA, IDA, and SIA.

Color images provide more information than gray-level images. Therefore, using color images in stereo matching yield
more acarate estimates of disparity than gray-level images (this can be shown by constructing counter examples of color
objeds). But color image matching requires about 3 times more computation.

In the multi ple-baseline SIA, three or more images are recorded at positions along the same baseline. Longer baseline
yields better predsion due to wide trianguation. It also increases the passhility of false matches due to larger range of search
for the best match along the gipolar line. Shorter baseline suffers lesspredsion but has the alvantage of smaller range of
seach for the best match. It also reduces computational time in stereo matching. The matching results obtained using shorter
baseli ne images can be used to estimate goproximate disparity for longer baseline images. This estimate can be used to match
longer baseline images with lesscomputation and also lesserror.

The computations in stereo matching could be reduced by first matching images at low spatial resolution and using the
results of this gep to match high resolution images. In this paper, we implement multi ple-resolution matching approac in the
singe-baseline SIA to show its effediveness The overal 3D shape measurement technique integrates IDA, IFA, and SIA. It
is implemented on a camera system named Stonybrook VIsion System (SVIS) (see Fig. 1). Algorithms and results of
experiments on SVIS are presented.

2. COLOR STEREO MATCHING (COLOR DEFOST)
The 3D shape measurement algorithm presented in our previous paper** is named DEFOST and it integrates Defocus analysis
(IDA), Focus Analysis (IFA), and Stereo Analysis (SIA). Color image data culd be used easily in IDA and IFA. For
example, at ead pixel, the ®lor band with the highest contrast (or highest Lapladan) is determined from among the RGB
band images. Then the IDA/IFA is applied to that band to get an estimate of depth at the corresponding pixel. However color
data is not used by usin IDA and IFA in this paper since the resulting improvement in performance was though to be
marginal.

In DEFOST, single-baseline stereo was implemented using gay-level images. For ead small image region in the right
image, the best match in the left image was found by minimizing the Sum-of- Squared-Difference (SSD **® ) measure defined

by:
SsD = ) Z|f,(x,y)— f,(x,y)|2' D
Xy

In the dove euation, f,, f| are image gray-levels of the right and left images, respedively; and (x, y) is the index in the
matching window of a pre-determined size

In color stereo matching, we use Color SSD defined as the sum of the SSDs computed for ead of the three @lor bands:
Color SSD = SSDyeq + SSDgreen + SSDie - 2

The matching computation for color images is 3 times that of gray-level images.
21 Experiments

The Stonybrook VIsion System (SVIS) (see Fig. 1) described in our previous paper'* was used in the experiments. All
parameters of the canera system were the same & those used in that paper. The DEFOST algorithm for integrating IDA,



IFA, and SIA, presented in that paper was modified to use wlor image data for stereo matching. IDA and IFA were gplied
to gray-level images computed from color images as

Grey-level value = (Red + Green + Blue)/3 . 3

The 3D shape of a prism placed about 0.65 meter was measured using the DEFOST algorithm with bath gray-level and color
image data. Objeds used in the experiments are shown in Fig. 13, Fig. 14, and Fig. 15. The results are shown in Fig. 2 and
Fig. 3 for comparison. A color random dot pattern was pasted on the prism to creae ahigh contrast image. Instead of pasting
a pattern, high contrast images can also be aeaed by projeding a light pattern with color random dats. For the prism objed
used in our experiments, the improvement in the acarracy of 3D shape obtained using color image data instead of gray-level
image datais small.

3. MULTIPLE-RESOLUTION SIA
Computation time in stereo image matching can be reduced by a aarse-to-fine seach strategy. First a warse search is made
for the best match urder low spatial resolution. Lower resolution images are obtained by down sampling the original images.
Spatial resolution is typicdly reduced by a fador of 2 to 4 The disparity-map oktained under low-resolution matching is
scded to ariginal high resolution and used as initial estimates for high resolution matching. In high resolution matching, the
seach for the best match is limited to a small space dongthe gipadar line aound the initial estimate. The size of the search
spaceis determined by the resolution scding factor and the expeaed error in the low resolution matching.

Multi ple-resolution matching technique could be gplied to color image data by multi ple-resolution processng of ead
band image. However, in this paper, we gply multi ple-resolution matching to only gray-level images. Multiple-resolution
image analysis may also be gplied to IFA, but it is not considered in this paper.

3.1 Experiments

M ulti ple-resol ution matching algorithm was implemented as follows. First, the IDA and IFA part of the DEFOST algorithm
was implemented using the canera parameters and the dgorithm as described in our previous paper.* Only the image size
was chosen to be 448x448instead of 432x432to make the lower resolution image size be amultiple of 16. After applying
IDA and IFA, we obtain a 28x28 depth-map where eab depth estimate mrresponds to one 16x16 image block. The depth
values are expresed in terms of the focusing step number of the stepper motor that moves the camera lens forward and
badkward. In addition to depth-map, IDA and | FA also yield left and right focused images of size 448x448 These images are
shrunkto 224x224 ky down sampling the original images by afador of 2. The depth-map was averaged (in unts of focusing
step number) in 2x2 blocks to oltain a 14x14 low resolution depth-map. The maximum error in the depth-map was taken to
be £6 steps asin DEFOST. This maximum error was used to look up a cdibration table to determine the range of disparities
over which a search for best match should be made. This cdibration table was obtained by scding the crresponding table
used in our previous work. Scding of the table by afador of 2 acounts for image shrinking by the same facor.

Stereo matching of the 224x2241ow resolution left and right focused images was caried out using 16x16 image blocks
and SSD as a measure of similarity. The range of search for the best match was determined from disparity range & mentioned
above. Theresult of this dep was a 14x14 depth-map array (expressed in pixels of disparity) with improved acarracy. This
depth-map was magnified to a 28x28 array by expanding ead depth estimate to a 2x2 array and the disparities were scded by
2. The resulting 28x28 depth-map array was taken to be the initial disparity estimate for the 448x448 high resolution
(original) images. The maximum error in this disparity estimate was taken to be £10 (pixels). These estimates were refined
through stereo matching on 16x16 image blocks on the high resolution images using SSD as before. The resulting disparities
were used to oktain acual depth estimates (expressed in mm) using a cdibration table & in our previous work.

The results thus obtained  (multi ple-resolution matching) compare well with the ones obtained using the origina
DEFOST (only high-resolution matching). Further, as expeded, the multi ple-resolution approach was found to be faster by a
fador of nealy 2. The results for two oljeds 00 a prism and a face— are presented (seeFig. 4, Fig. 5, Fig. 6, and Fig. 7,
Fig. 5isthe low-resolution result and Fig. 7 isthe result of the DEFOST.) The computation times are tabulated below.

Stereo matching Multi ple-resolution High resolution only
Resolution Low resolution High resolution
Computation time (sec) 6 16 40




| Total time (seq [ 6+16=22 | 40 |

Table1l Comparison of computation time for multiple-resolution and single resolution stereo matching

The speedup is amost 2 (40/(6+16)) in our case. In the multi ple-resolution matching approad, lower the resolution, higher
the matching urcertainty and therefore larger the seach space & the higher resolution. Also, if the resolution is too low, gross
matching errors are possble. Accurate etimation of the matching urcertainty isalso difficult.

4. MULTIPLE-BASELINE SIA

The two problems assciated with multiple-baseline stereo are aceracy and predsion.®’ Longer baseline yields better
predsion due to wider trianguation. But longer baseline makes the range of search for the best match larger and leads to a
higher posshility of false matches. In [6,7] M. Okutomi, et al, propcse that using multi ple-baseline stereo can determine a
unique and clea minimum of sum of sum of squared dff erences (SSSD)-in-inverse-depth at the mrred matching position and
can also eliminate false matches and increase predsion. But they have to seach the whole posshble depth range to compute
the SSSD. In our case we have agood initial estimate of the depth map from IDA/IFA. This estimate is used to limit the
seach range and reduce false matches. In the best case the unique minimum of SSD will be found in a range aound the
estimated depth map™ obtained by IDA/IFA.

41. Experiments

In DEFOST we take two images, say, right and left, and in our multiple-baseline wnfiguration we take athird image (the
midde one) and form two pairs of stereo images. The right and the middle ones form the first pair and the right and the left
form the other. We first apply SIA on the first pair of stereo images. It refines the result of the IDA/IFA output. Because of
the shorter baseline of the first pair the predsion is lessthan the second pair but the search range in matching will also be
smaller. Thisyields a lesspredse result but faster matching. This result will be used to oltain an initial estimate of the
disparity map for matching the second longer-baseline pair of stereo images. The second pair of images are matched by
seaching in a narrow disparity range aound the initial estimates. Thus the computation is reduced and the acerracy of the
final matching results are improved.

The results of 3D shape recvery by multi ple-baseline stereo using gay-level image data is presented for a wne objed
here (seeFig. 8). Thisresult compares well with the result of the original DEFOST. All camera parameters for both methods
are the same. The computation time of multi ple-baseli ne stereo matching for several objeds are averaged and tabulated below
(see Table 2) for severa baseline fadors (the fador by which the full baseline is divided). For full baseline (50 mm) the
baseline fador is 1 and for half baseline (25mm) the factor is 2. The disparity vs depth cdibration data for different baselines
were obtained by scding the cdibration data for full baseline with the baseline fador. The last row of the table lists the
computation speed-ups obtained.

Basdline fador 8 4 2 4/3 1
Time for matching the first pair 6 14 24 34 40
Time for matching the second pair 7 7 7 7 N/A
Total matchingtime 13 21 31 41 40
Speedup in time 3.08 1.90 1.29 0.98 1

Table2 Speedup in timefor multiple-baseline SIA

In the cae of 1/8 baseline the speedup is high but the final result is lessacarate than the rest because the predsion error
may overshadow the acaracy in the second pair matching. If we increase the seach range for the second pair then the
computational time will also increase. Thereis atradeoff between spead and acarracy. On the other hand oltaining the third
focused image takes time. Our camera system takes about 2 secnds to acquire eat image. If the depth values of adjacent
image blocks have large diff erence then there will be alarge anount of distortion in a stereo image pair due to foreshortening
effed. The longer the baseline is, the larger the dfed is. For an objed of large depth variations and a long baseline, the
matching will not be good die to foreshortening effed. We found that adding a third image in the middle and using the
shorter-baseli ne stereo image pair to get an initial result will help the matching on the longer-baseline stereo image pair. This
could reducefalse matches and incresse acarracy of matching.



4.2. Multiple-baseline SIA with color image data

We implemented the multi ple-baseline SIA with color image matching. Results for two oljeds, a mne objed and a face
objed, are presented for a baseline fadtor of 2. We dso show the intermediate results of the first stereo image pairs (for half
baseling) (Fig. 9 — Fig. 12). These results compare well to DEFOST and color DEFOST. We dso tabulate below the
computation times for various baseline fadors. The times are obtained by averaging the results of several experiments.

Baseline fador 8 4 2 4/3 1
Time for matching the first pair 27 41 78 106 127
Time for matching the second pair 25 25 25 25 N/A
Total matchingtime 52 66 103 131 127
Speedup in time 2.44 1.92 1.23 0.97 1

Table3 Speedup in timein color multiple-baseline SIA

5. CONCLUSION
The experimental results on SVIS indicate the feasibility and advantages of integrating multiple-baseline wlor stereo with
IDA, IFA, and multiple-resolution matching technique. The alvantages include improved acaracy of 3D shape and
reduction in computation time. This work can be extended to use more than two beselines and also to apply multiple-
resolution matching technique to multi ple-baseline stereo with color image data. It can also be extended to use other stereo
matching techniquesinsteal of the SSD based method.
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