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Abstract of the Dissertation |

Shape and Image Reconstruction from Focus . !
by
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Doctor of Philosophy
in
Electrical Engineering
State University of New York
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1993

This thesis presents solutions to the problem of shape recovery and image re-
construction from image focus and stereo. We propose six focus measures which
are proved to be theoretically sound under weak assumptions. They include energy
maximization of unfiltered, low-pass filtered, high-pass filtered, and band-pass filtered
images. One of them -the energy of low-pass filtered image gradient, which has better
overall characteristics— is recommended for practical applications.

The image of a scene formed by an optical system such as a lens contains both



photometric and geometric information about the scene. The degree of brightness or
radiance and the color of objects in the scene are part of photometric information
whereas distance and shape of objects are part of geometric information. Recovering
this information from a set of images sensed by a camera is an important problem in
computer vision.

Shape-From-Focus (SFF) methods provide one solution to the problem. A new
shape-from-focus method was developed based on a concept named Focused Image
Surface (FIS). The FIS of an object is defined as the surface formed by the set of
points at which the object points are focused by a camera lens. The shape of the FIS
is determined by searching for a shape which maximizes a focus measure. In contrast
with previous literature where the focus measure is computed over the planar image
detector of the camera, here the focus measure is computed over the FIS. This results
in more accurate shape recovery than the traditional methods. Also, using FIS, a
more accurate focused image can be reconstructed from a sequence of images than is
possible with traditional methods.

Finally, we extend the proposed SFF method to solve the correspondence prob-
lem 1n stereo-vision. We propose a combined method where a depth map and two
focused images obtained by the SFF method are used to solve the correspondence
and occlusion problems in stereo-vision efficiently. All the methods presented here
have been implemented on an actual camera system, and the experimental results of

shape recovery are presented.
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Chapter 1

Introduction

1.1 Active Vision

In the human vision system, the eyes focus on an object (accommodation) by adjust-
ing both the pupil's opening size based on its illumination and the lens focal length
based on its distance. Also, both eyes turn their direction of view (vergence) to bring
the object of interest into the field of view's center. We move our heads for a better
view of the object. Therefore visual perception is not passive, but active in the sense
of changing the sensor’s state (6, 28, 35]. Conceptually these processes can be consid-
ered independent modules in active vision, such as focus, stereo, vergence, shading,
etc.

In this research we propose the image focus module and its application for a coop-
‘erative process with stereo. Using blurred images of an object, the module extracts

1
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a variety scene information including object distance and radiance (brightness). An
object’s distance and shape are part of its geometric information. The level of bright-
ness or radiance is a component of photometric information. An important problem
in active vision is recovering this information from images sensed by a camera. Many
focusing techniques for depth perception have been developed over the past three
decades including search depth-from-focus (DFF') methods, Fourier domain approach,

spatial domain approach, matrix based method, etc.

The search focus module [36, 57, 59] involves a search of the camera parameter
space. The camera parameters include the lens position and the focal length of the
lens. This module is accurate but slow; it requires a sequence of image frames (about
10) recorded with different camera parameter settings. In contrast, the nonsearch
focus module [15, 61, 65] does not require focusing the object. This method uses two
or three blurred images taken with different camera settings. Therefore it is faster

than the search focus module but less accurate.

This thesis presents a detailed investigation into this method. The image focus
module has been studied both as an independent process and as a cooperative process
where it interacts with other modules of vision to overcome mutual weaknesses and
accomplish efficient perception. Particularly, a combined method with focus and
stereo is proposed to solve the correspondence and occlusion problems in stereo-vision

and to improve the accuracy in focus.
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1.2. MOTIVATION FOR RESEARCH 3

1.2 Motivation for Research

There are many uses for our research results. The most important of these are the
following:

e This work can be used for robust vision systems useful in machine/robotic vision,
autonomous vehicle navigation, microscopic imaging, and autofocusing of electronic
cameras;

¢ [t can show the potential for integration of the image focus module with other
modules for shape recovery, particularly for stereo; and

e It can also provide an understanding of the possible role of image focus in human

vision.

1.3 Overview

This thesis is organized into following chapters.

In chapter 2, first we introduce our active vision camera system called SPARCS. In
chapter 3, we describe two models of image defocusing derived from paraxial geometric
optics and diffraction optics (7, 17, 20]. Next, the basic theory of focus is described
and a few typical methods for the image focus module are explained.

In chapter 4, based on the geometric optics model, we derive a class of focus
measures which we prove to be theoretically sound under weak assumptions. We

then analyze the side-lobe effect and show how it can be reduced through low-pass
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filtering. Next we discuss other focusing techniques found in previous literature and
include some experimental results.

In chapter 5, we are concerned with the principles and computational methods for
recovering the geometry and radiance of an object from its sensed image. In computer
vision, the sensors are usually planar image detectors such as CCD arrays. Therefore,
for curved objects, only certain parts of the image will be focused whereas other parts
will be blurred. The traditional SFF methods do not yield accurate shapes or depth-
maps of objects. The reason for this is that a focus measure is defined and computed
over image frames sensed by a planar image detector. Hence, a new shape-from-focus
method is proposed to solve this problem. Next, a theorem and related background
will be discussed including some experimental results.

In chapter 6, the proposed SFF method is integrated with the shape-from-stereo
module. A depth-map and two focused images obtained by the SFF.FIS method are

used to solve the correspondence and occlusion problems in stereo vision.

Finally, the summary and conclusions are given in chapter 7.




Chapter 2

SPARCS Camera System

In this chapter, we describe our camera system called the Stonybrook Passive
Autofocusing and Ranging Camera System (SPARCS). SPARCS has been built in
our laboratory over the past four years for research and development in the areas of
‘Machine/Robot Vision and Autofocusing of Electronic Camera. In order to investi-
gate various algorithms in these areas, we needed to construct a computer controlled
‘camera system [16] that is able to store sensed images in memory and extract video
‘information from them. Using this information, a computer would then move the

motorized lens to the designated position.
2.1 Hardware

A block diagram of the system is shown in Figure 2.1. SPARCS consists of following

components.
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SUN
SPARC
Station 1+

&
% /

IBM PS/2 model 70
Computer

SONY XC-711 CCD
Camera Module

Stonybrook Passive Autofocusing and Ranging Camera System-
SPARCS - is a protolype camera system dewv at the
Computer Vision Labato7 for expenimental research in robotic
vision, State University of New York at Stony Brook

e SUN SPARC station.

Figure 2.1: SPARCS.

e SONY XC-711 CCD video camera module.

e OLYMPUS OM-System 35-70mm motorized lens.

e Data Translation DT 2953-60Hz QuickCapture frame grabber board.
¢ SONY PVM-1342Q Trinitron color video monitor.

e Contec mP1024/24-T 24 channel digital input/output board.

e Chori America Inc. PS-12SU power supply.

¢ IBM PS/2 model 70 computer.

The IBM PS/2 computer was interfaced with the video camera via two separate
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channels. The first channel includes the QuickCapture frame grabber hardware. This
is used to digitize the incoming video signal and store it. The second channel con-
trols the positioning of the video camera's lens through the use of a parallel digital
input /output board and the necessary interface hardware. The interface hardware
consists of the motor-computer interface and has been modeled as a black box in
Figure 2.1.

In addition to the computer display, a color monitor was added. It is connected
directly to the QuickCapture board. The incoming video signal can also be viewed

in real time on this monitor.

2.2 Application

The focusing techniques described in this thesis were impiemer;ted on the SPARCS
system. The focal length of the lens can be varied manually from about 35mm to
70mm. The F-number which is defined as the ratio of the focal length f to aperture
diameter D can also be set manually to 4, 8, 22, etc. The lens system consists of
multiple lenses and focusing is done by moving the front lens forward and backward.
The lens can be moved either manually or under computer control. To facilitate
computer control of lens movement there is a stepper motor with 97 steps, numbered
0 to 96. Step number 0 corresponds to focusing on an object at distance infinity. Step
number 96 corresponds to focusing on a nearby object, at a distance of about 50cm

from the lens. The motor is controlled by a microprocessor, which communicates
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with the IBM PS/2 through a digital [/O board (Contec mPI024/24). Pictures
taken by the camera can be displayed in real time on a color monitor (SONY PVM-
1342 Q). The images acquired and stored in the IBM PS/2 can be transferred to a
SUN workstation.

The camera settings used in the experiments were:

o Focal Length = 35mm;

e - Number = 4: and

e Camera Gain Control = +6dB.

Recently, a stereo vision system was added to the SPARCS system. In the
SPARCS system an additional SONY XC-77 CCD camera and OLYMPUS 35-70
motorized lens were installed. Images from the camera are captured by a video frame
capture card of VideoPix , which resides in a SUN SPARC station. These images are
processed in the SUN SPARC station. Details for the SPARCS system are described

in {70].




Chapter 3

Theory of Focus

3.1 Introduction

Focus is a very important cue for determining the distance of objects from the lens.
This chapter provides the necessary background for chapters 4, 5, and 6. [t describes
two theoretical models which have been considered for focusing techniques in the

literature. It then discusses depth-from-focus and depth-from-defocus.

3.2 Camera Model

‘The camera model used here follows the model proposed in [57).

Image formation in a simple camera is shown in Figure 3.1. We have shown a
thin lens model for the optical system, but the analysis here can be easily extended
10 a thick lens model [17, 18]. In the thin lens model, the first and second principal

9
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planes of the optical system coincide and lie at the lens. Let p be a point on a visible
surface in the scene and p’ be its focused image. The relation between the positions

of p and p’ is given by the lens formula,

1

(]

i

IS

(3.1)

|

where u is the distance between the first principal plane and the object plane and
v 1s the distance between the second principal plane and the image plane. In this
figure, ID is the image detector (CCD array), D is the aperture diameter, and s is the
distance between the second principal plane and the image detector. The distance
s, focal length f, and aperture diameter D, will be referred to together as camera

parameters and denoted by e, i.e.

e = (s, f, D). (3.2)

3.2.1 Geometric Optics Model

In Figure 3.1, if the object point p is not in focus, it gives rise to a blurred image p” on
the image detector ID. According to geometric optics, the blurred image of p has the
same shape as the lens aperture but is scaled by a factor ¢g. This holds irrespective of
the position of p on the object plane. Since we have taken the aperture to be circular,
the blurred image of p is also a circle with uniform brightness inside the circle and
zero outside. This is called a blur circle.

Let the light energy incident on the lens from the point p during one exposure

period of the camera be one unit. Then, the blurred image of p is the response of the
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Figure 3.1: Image Formation in a Convex Lens.

camera to a unit point source and hence it is the Point Spread Function (PSF) of the l !
camera system [63, 64]. We will denote this PSF by k,(z,y). I‘

Let R be the radius of the blur circle and ¢ be the scaling factor defined as |

g=2R/D. In Figure 3.1, from similar triangles, we have 'l
2R s—v [l 1 i

2R _s-v_ L_1 3.3

1 D v ’ [v s] (3:4)
Substituting for 1/v from Eq. (3.1) in the above equation, we obtain II!]I
¥

1 1 1

=g|le—=== : 3.4

e=s[3--3 o :

‘Therefore '
D D1 | 1 .
R = ql—z- — 3—2- [— —— -—] 5 (30) !‘l’

mf

1
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Note that ¢ and therefore R can be either positive or negative depending on whether
s 2 vors <v. In the former case the image detector plane is behind the focused
image of p and in the latter case it is in front of the focused image of p.

If we assume the camera is a lossless system (i.e., no light energy is absorbed by

the camera system) then

_/;Z[_Zhs(x,y)dx dy = 1 (3.6)

because the light energy incident on the lens was taken to be one unit. Using this
and the fact that the blur circle has uniform brightness inside a circle of radius R and

zero outside, we get

3 2+ <R )
ha(z,y) = (3.7)

0 otherwise.
In a practical camera system, if a sequence of images ¢;(z, y) are taken at camera pa-
rameter settings of e; forz = 1,2,3, -, then the image magnification and mean image
brightness may change even though nothing has changed in the scene. For example,
moving the lens away from the image detector will increase image magnification and
changing the aperture diameter changes mean image brightness. In order to define
and compare focus measures for this sequence of images in a correct and consistent
manner, the sequence of images must be normalized with respect to these factors
first. Normalization with respect to image brightness is carried out by dividing the

image brightness at every point by the mean brightness of the image.

Normalization with respect to image magnification is more complicated. It can
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‘be done by image interpolation and resampling such that all images correspond to
the same field of view [51]. The relation between an original image g(z, y) taken with
s = sp and the corresponding magnification normalized image g¢,(z,y) is given by
",_(:c/so,y/sg) = g(z,y). However, in most practical applications, the magnification
change is less than 3% and can be ignored. This is probably the reason why most of
the previous literature fails to mention the magnification correction. But this cannot
be overlooked from a theoretical point of view.

In the following discussion we assume that the images have been normalized.
Without loss of generality, we assume that both the mean brightness and magnifica-
tion have been normalized to be 1. After magnification normalization, the radius of

‘the blur circle can be expressed as a function of the camera parameter setting e and

‘object distance u as

R(e;u) = o (l——l-—-}-) (3.8)

Ji(R(e; u) p(w,v))

Hy(w,v;e,u) = 2 R(e;u) p(w, v)

(3.9)

e w, v, and p are spatial frequencies specified in radians/unit distance, J; is the

order Bessel function, and p is the radial spatial frequency

plw,v) = vw?+ 2 (3.10)
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Eq. (3.9) explicitly represents the dependence of the OTF on the camera parameter
setting e and the object distance u.

In practice, the image of a point object is not a crisp circular patch of con-
stant brightness as suggested by geometric optics. Instead, due to diffraction, poly-
chromatic illumination, lens aberrations, etc., it will be a roughly circular blob with
the brightness falling off gradually at the border rather than sharply. Therefore, as
an alternative to the above PSF model (24, 39, 44, 49], a two-dimensional Gaussian

is often suggested. [t is defined by

ho(z,y) = e T (3.11)

2mr?

where r is a spread parameter corresponding to the standard deviation of the dis-
tribution of the PSF. In practice, it is found that r is proportional to R [50, 52],

l.e.

r =cR for ¢>0 (3.12)

where ¢ is a constant. It is approximately equal to 1/v/2 in practice [52]. Since the
blur circle radius R is a function of e and u, r can be written as r(e; u). (However, the
image of an actual point light source for our camera was quite close to that predicted

by geometric optics and was far from a Gaussian.)

The OTF corresponding to the above PSF is (w, v in radians/unit dist.)

Hg,(w,v;e,u) = 6_%92(;.;,” r2(e;u) (3_}_-;}
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b h.(x,y)

ﬁ H.(w,v;e,u)

1.0

3.2: Geometric Optics Model, a: Point Spread Function h,(z,y) b: Optical

“ er Function Ha.(w! vie, U).
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where

rieju) = ¢ E_ (? aive ;) : (3.14)

Once again, Eq. (3.13) explicitly represents the dependence of the OTF on the camera
parameter setting e and the object distance u.

In this thesis, two PSF models-Circular Disc and Gaussian— are used to illustrate
the problems associated with defining good focus measures. Similar problems arise
in the case of a PSF model based on diffraction optics. The focus measures proposed
in chapter 4 are applicable to all the three PSF models. In most machine vision

applications, Circular Disc is an adequate approximation to the actual PSF.

3.2.2 Diffraction Optics Model

[n this section, the Optical Transfer Function of the diffraction optics model is in-
troduced. Most of the results here follow from Hopkins [22], Born and Wolf [7],
Subbarao [53, 54], and Ens [14]. Readers are referred to these references for the
detailed derivation.

For a defocused aberration free optical system, Hopkins [22] presented the nor-

malized response function as

D(s) = %”-'/-/;e:r,p(jaz)dx dy (3.15)

- ind
wherea:%w!s(andwzu—”&—

2 v

s denotes the region of integration. It is defined by
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Lens ID

Figure 3.3: Image Formation for the diffraction optics model.

i = 2P (3.16)
n, Sin @
. ‘where p is the radial spatial frequency and A is the wavelength.

Because of the symmetry of this region, Eq. (3.15) becomes
or- -

D(s) = -:—a /O\ﬂ-—(z__lsina (\/l———yz— I—;—l) dy. (3.17)

Hopkins also gives a convenient form for numerical evaluation in terms of Bessel

15) '_ctions as follow,

als|
2

Dis) = %cos [ﬁJl(a)-i-%sin?ﬁ(Jl(a)—Ja(a))—- %sinfiﬁ( (3.18)
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4 als|

Jy(a) — Js(a)) + -+ ] = —sin

Ta 2

Jo(a) — Jy(a)) + %Sin-5;3(J4(a) — Js(a)) = -+~ ]

[sin 3(Jo(a) — Jp(a)) — _-Iisin 33(

where 8 = cos™! L.
The corresponding Point Spread Function is obtained by the inverse Fourier trans-
form of Eq. (3.18). See Born and Wolf [7], Subbarao and Lu [63], and Lu [34] for

PSF expressions.

3.3 Depth from Focus

The depth-from-focus (DFF) method involves a search of the camera parameter space.
The camera parameters include the distance between the lens and the image detector,
and the focal length of the lens.

Many DFF methods have been proposed in the literature (19, 23, 25, 27, 31, 36,
57, 59, 69]. In these techniques, a focus measure is defined which is a maximum for
the best focused image and it generally decreases as the defocus increases. Therefore.
when the camera lens is moved from near to the far end relative to the image detector,
typically the focus measure of the target object’s image gradually increases, reaches a
maximum at the focused lens position, and then decreases gradually thereafter. The
problem then is to find the lens position at which the focus measure is a maximum.

This is essentially a search of the lens position space.

We proposed a set of DFF techniques based on the paraxial geometric optics model
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57]. Details for our methods are described in chapter 4.

3.4 Depth from Defocus

The depth-from-defocus (DFD) methods do not require a sequence of images, but only
a few (about 3) acquired with different camera parameter values. These methods are
fast, but less accurate. Their best performance gives an RMS error which is twice
that of the DFF methods. Many methods are proposed in the literature including
Fourier domain approach [38, 39, 63], spatial domain approach [61], matrix based
method [15], pyramid based method [8, 10}, etc.

We introduce two typical methods [61, 65] developed by other people in our labora-

tory. The following parts appeared in a research proposal by Professor M. Subbarao.

3.4.1 Fourier Domain Approach

A brief summary of the Fourier domain approach is given in this section.
The image formation in a camera with variable camera parameters (s, f, D) is
?_i::.a in Figure 3.1. The normalized radius of the blur circle is given by Eq. (3.5).
For the sake of conceptual simplicity, let the Point Spread Function (PSF) of the

camera be a two-dimensional Gaussian:
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where the spread parameter o is proportional to the blur circle radius R. Therefore

we can write

o =R (3.20)

where c is a camera constant.

In this camera model, a blurred image ¢ of a planar object at distance u having
focused image f is given by the convolution of the PSF h and the focused image f,
i.e. ¢ = h* f. Therefore, if G and F' are Fourier transforms of g and f respectively ,

we have

Glw,v) = H(w,v)F(w,v) (3.21)

= e %(u2+yz)azlp(w’ U). (332)

For two blurred images g1, g2, taken with two different camera settings eg, ez, we

obtain
Gl(wa V) _l( 2, 2]( 2 2)
—_— L = T W Ny 3.23
G‘z((d, V) [ )
or,
~2 Ghi(w,
o2 -0l = inl Grl@,¥) | (3.24)

S0 | Gaw, ) |

Further, from Egs. (3.5),(3.20) oy and o, can be expressed as
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Dyf1 1 1 _
et — —— i i s ‘)"
021 c 5 (fl = 51) , (3.25)
Dy (1 l 1
= —_— | —_——_—_ = 3.2
P c 5 (J‘.2 : 52) (3.26)

Eliminating 1/u from the above realtions [62] we obtain

O = aos + ‘B (327)
where
Dy ( 1 1 1 l)
a=—, f=cDi|———+—~——]|. 3.28
D, "\A AR s & i)

Substitute Eq. (3.27) into Eq. (3.24).

~2 i [Gl(wru) l

w? 4+ p? n' Ga(w,v) | (3.29)

(a? - 1)0‘3 + 2080, + 5% =

AW

In the above equation o, is the only unknown. The equation is quadratic and
‘therefore o, is easily obtained by solving it. The two solutions result in a two-fold

ambiguity. Methods for resolving this ambiguity are discussed in [65]. From the

)
solution for o2, the distance u of the object is obtained from Eqs. (3.25),(3.26).
- The above discussion illustrates the conceptual feasibility of determining distance
from two defocused images. By repeating the above procedure in all image neigh-
)

thoods, the depth-map of an entire scene can be obtained from only a few blurred

es in parallel. The Gaussian PSF model results in closed-form solution. How-
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ever, in general, a closed-form solution cannot be obtained for the actual PSF of |
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camera. A numerical method has to be used. Details for the case of arbitrary PSF,

are presented in [61, 63].

3.4.2 Spatial Domain Approach

In this section we summarize the spatial domain approach to the DFD module. A
spatial domain convolution/deconvolution transform (S Transform) was proposed in
[55].

For two-dimensional images, under a local cubic polynomial model, it is defined
as follows. If a focused image f is blurred by convolution with a circularly symmetric
PSF A to result in the blurred image g, then g is the forward S transform of f with

respect to the kernel function &, and it is given by

9(2,9) = f(z,9) + 29 (z.y) (3.30)

where h, is the second moment of A with respect to z or y, i.e.

by = / / 2*h(z, y)dz dy (3.31)
& //yzh(r,y)dz dy (3.32)

and V? is the Laplacian operator.

The inverse S transform of ¢ with respect to the moment vector (1,h;) is equal to

f and it is defined as
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ha
f(z,y) = g(z,y) - gvzg(x,y)- (3.33)

For a Gaussian PSF model used in the previous section, it can be shown that
hy = 0?/2. Therefore, if two blurred images g; and g, are acquired with different

camera settings e, and e, corresponding to blur parameters o, and o, we obtain

‘73 2
f = o~ TV 9 (3.34)
2
a
= g2~ f‘v29‘2- (3.35)

From Egs. (3.27), (3.34), (3.35), and the fact that V3¢, = V3¢, we obtain

(o1 ~ 92)

4
(@ = 1)o2 + 2af0, + B = g (3.36)

where a and (3 are as defin=d in the previous section. Except for the right hand side.
the above relation is similar to Eq. (3.29).
Therefore we have a quadratic equation in o which can be easily solved. The

distance u can be obtained from o, from Egs. (3.25), (3.26).
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Chapter 4

Focusing

4.1 Introduction

Focusing cameras is an important problem in computer vision and microscopy. In this
chapter we consider only pa.séive focusing techniques which do not require calibration
of the cameras. The techniques considered here necessarily involve a search of the
‘camera parameter space. Therefore we will call these search focusing techniques. The
ra parameters include the distance between the lens and the image detector,
and the focal length of the lens. There are some focusing methods which do not

arch the camera parameter space [39, 61, 65], but they require accurate calibration
camera parameters and the corresponding optical transfer function or the point
function. We first consider the case of focusing a camera to a target object
ing the lens along the optical axis of the lens. The results of this case can be

25
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easily extended to focusing a camera by adjusting its focal length, or by moving the

target object along the optical axis.

In the previous literature, most definitions of focus measure have been based on
heuristics. No proof has been provided about the theoretical soundness of these focus
measures, i.e. it has not been proved theoretically that the focus measures have a
global maximum for the best focused images. Some definitions of focus measures
involve non-linear operators and it is hard to prove or disprove their correctness.
Some other definitions are useful only for a very limited class of images. We have not
found any systematic and explicit analysis of the image defocusing phenomenon and
derivation of a focus measure based on such an analysis. Further, previous literature
has ignored an important aspect we call the “side-lobe effect” (explained later) which
may give rise to local maxima and cause the global maximum position to be shifted.
This makes searching for the position of global maximum difficult and introduces

error in the determination of focus position.

[n this section, we derive a class of focus measures which we prove to be theoret-
ically sound under weak assumptions, i.e. the focus measures have global maximum
for the best focused images. The assumptions correspond to neglecting the side lobes
(if they exist) in the optical transfer function of the camera system. We then analyze
the side-lobe effect and show how it can be reduced through low pass filtering. Next

we discuss a few other focusing techniques from previous literature.

The focus measures derived in this section have been implemented on the SPARCS
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a't__amera system. A number of experiments were carried out using SPARCS to evaluate

‘the focus measures derived here. The experiments and their results are described. The

experimental results show that the focus measures derived here perform well. Based

L

on these results, we find that, one of the focus measures- the energy of low-pass
fi__t:ered image gradient — has the best performence overall. We conclude this section
by recommending it for practical applications.

In order to illustrate the theoretical basis of focus measures, we take the optical
.:_-tem to be circularly symmetric around the optical axis and we use a paraxial geo-
metric optics model [17] for image formation. This is a good approximation in practice

10 actual image formation process modeled by physical optics [52, 63]. However, our

‘analysis itself is applicable to physical optics model also.

4.2 Focus Measures

his section, we develop a theoretical basis for focus measures. Let f(z,y) be the
sed image of a planar object at distance u. The focused image f(z,y) at a point
) of a scene is defined as the total light energy incident on the camera aperture
rance pupil) during one exposure period from the object point along the direction
ponding to (z,y) [64]. We do not know of any previous literature on focusing
ques which gives a precise and correct (we believe) definition of the focused

as we have done here. This definition is essential for a sound analysis of the

ng techniques.
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Let gi(z,y) be a sequence of images of an object recorded for a sequence of camera

parameter settings e; where

e; = (si,f,D) and s; <s;y1 OR e = (s,f;, D) and f; < fiqy (4.1)

fort =1,2,3,---. Here we are considering the variation of only one camera parameter
at a time— either the lens position or the focal length because this is the usual mode of
operation of almost all cameras. Simultaneous variation of more than one parameter
in a random manner can lead to multiple maxima for the focus measure. For the image
sequence g;, the distance u of the object is fixed. A focus measure M computed for
an image g; will be denoted by M(3).

For a planar object perpendicular to the optical axis, the blur circle radius R is a
constant over the image of the object (this may not be obvious at first sight, but it
can be proved easily). In this case the camera acts as a linear shift invariant system.
Therefore, g; will be equal to the convolution of the focused image f(z,y) with the
corresponding point spread function. Convolution in the spatial domain corresponds
to multiplication in the Fourier domain. Therfore, if ' and G; are Fourier transforms

of f and g; respectively, we can write

Gi(w,v) = Hy(w,v;eiu) Fw,v). (4.2)

Substituting for the right hand side of Eq. (4.2) from Eq. (3.9), we obtain

_ oNi(R(eisu) p(w,v)) ‘
Gi(w,v) = 2 Blee ) plaisz) F(w,v). (4.3)

e

—e
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| The left hand side of the above equation can be computed from the recorded images
|
‘ i For a Gaussian PSF model, the expression corresponding to Eq. (4.3) is
is a
it it Gi(w,v) = e~ 177 (ww) r(eiu) F(w,v). (4.4)
- | Given the above defocusing model, the problem now is to define a focus measure
o ch is a maximum for the best focused image among the sequence of images ¢;(z, y)
onds gradually decreases as the image blur increases. Except for the image sequence
s % which forms the input, no other information is assumed to be known such as the
values of the camera parameters e;, or the optical transfer function.
(4.2) e 4.1 shows cross sections of the circularly symmetric optical transfer func-

for various values of the blur circle radius R. These OTFSs are sinc-like with
ant main lobe followed by side lobes on either side. The OTF magnitude at

(4.3) n is 1 and decreases monotonically to zero at p =~ 1.22x /R at the end of the
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main lobe. The first side lobe peak is approximately at 1.637/R and has a value of
about 0.132. The amplitude of the side lobes fall off rapidly (as p~'* [24]) with p. If
we consider the effect of only the dominant main lobe, we see that the OTFs have
the general characteristics of a low pass filter. As the blur circle radius increases (i.e.
blur increases), the higher frequencies are attenuated more. In the main lobe, the
higher a frequency, the more the attenuation. The area under the main lobe increases
with decreasing defocus. If the OTF is assumed to be zero in the side lobes, then
an obvious focus measure suggested by the behavior of the main lobe is the volume
integral

Mo(i) = /_ Z f_ : IGi(w, v)|dwdv. (4.5)

This focus measure is proved to be sound, monotonic, and unimodal with ¢ in Theorem
2 in the appendix assuming the OTF magnitude outside the main lobe to be zero.
Theorem 3 proves the same result for the case of a Gaussian OTF. In this case, no
assumptions are made as the OTF has no side lobes. Further, the maximum value of

this focus measure is shown to be

Momas = [~ [ |F(w,v)|dwds (4.6)

when the blur circle radius is zero (i.e. when the observed image is in perfect focus).

This focus measure involves the computation of the Fourier transform of the im-
age which is computationally expensive (O(/N*log/N) for an image of size N x N).
Fortunately, we can define other focus measures which can be computed more effi-

ciently. For this purpose, we note that we can use the volume integral of any function
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of |G;(w, )| which increases monotonically with increasing |G;(w, v)|. This is proved
in Theorems 4 and 5 in the appendix. Therefore, literally an infinite number of focus
‘measures can be defined. However, based on computational requirements and noise
sensitivity, we select only three measures. Before we proceed to the three measures,
we raise the question as to whether a sound focus measure can be defined which is not
a monotonic function of |Gi(w,v)|. We believe that any such function would erhibit

local mazima for some |F(w,v)|.

4.3 Three Focus Measures
|
In this section, we define three focus measures which can be efficiently computed in

the spatial domain.

4.3.1 Image Energy

= [L.e

 does not require the computation of Fourier transform of the image because it

be computed efficiently using the Parseval’s theorem:

= [ [ lo(e,v)Pdzdy. (438)

ding to Theorems 2 and 3 in the appendix, M(z) is monotonic, unimodal, and
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4.3.2 Energy of image gradient

My(i) f ] 1Tgi(z,y)|? dedy. (4.9)

Note that

F{&)g.-.(.r.y)} e (4.10)
dz

where F denotes the Fourier transform operator. Therefore, from Parseval’s theorem,

/ / (ag‘ = y}) oy = [Z[1w2!0f(w,V)lz dwdy. (4.11)

Similarly,

f—o; /_: (@%_‘:’ﬁl)z drdy = /‘i /_': V\Gi(w, v)|? dwdy. (4.12)

Adding the above two relations, we get
M) / f 2402 |Gilw, v)|* dwdv. (4.13)

Therefore, we see that M;(z) measures the image energy after G;(w, #) has been high

pass filtered by a filter L, such that
| La(w, v) |= Vw? +v? = p. (4.14)

Therefore, according to Theorems 6 and 7 in the appendix, M;(z) is a monotonic,

unimodal and sound focus measure.

4.3.3 Energy of image Laplacian

Ms(i f f V2gi(z, y)) dzdy. (4.15)
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Note that

a2
f(iﬁgﬂ)zﬂﬁa@y) (4.16)

B
F (3_9_6;2_3’_}) = e, 5. (4.17)
Therefore

F (vgg;(z,y)) = - (w2 + uz) Gi(w, v). (4.18)

From Parseval’s theorem
i

0 00 2 o0 o0 2 .
f / (vzg;(z,y)) dzdy = / [ (w2 - vz) |Gi(w, v)|*dwdv. (4.19)
Therefore, M3(i) measures the image energy after G;(w, v) has been high-pass filtered
by a filter L3 such that
| La(w,v) |= (W +02) = p*. (4.20)

 Figure 4.2 for a plot of | Ly(w, v)| and |Ls(w, v)|. Therefore, according to Theorems

nd 7 in the appendix, M3(2) is a sound, unimodal and monotonic focus measure.

Analysis of Side Lobe Effect

In the previous section and the appendix, we ignored the presence of side lobes in
pving the monotonicity and the correctness of the focus measures. If the focused
an object has high energy frequency content in the side lobes, then the focus

es discussed earlier may exhibit local maxima. This complicates the task of
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searching for the global maximum. In order to illustrate this, consider the following

pathological case: an object whose Fourier spectrum is (see Figure 4.3)

1 63%)

[F(p)‘:é(p— -R (4.21)

‘where 6 is the Dirac delta function, i.e., the Fourier spectrum is zero everywhere
‘except at the peak of the first side lobe. In this case, there is a local maximum for
a.ll the focus measures defined earlier. Both increasing and decreasing the blur circle
radius causes the focus measures to decrease.

The above effect of the side lobe can be eliminated by an ideal Low Pass Filter
:(LPF) which removes the side lobes (see Figure 4.3). The cut off frequency p. of
‘the ideal LPF should be 1.227 /R, where R, is the maximum blur circle radius
expected for the given operating range of the distance of the object. However, this
‘

solution for the side lobe effect is too drastic. The disadvantages of this solution
are the computational cost of ideal lowpass filtering and the complete elimination of
uency content beyond the cutoff frequency p. of the LPF. Such complete elimina-
tion of frequencies will make it impossible to focus on objects with non zero spectrum
;;5;"" for p > p.. A better solution to the side lobe effect is to attenuate the side lobes
ive to the main lobe rather than complete elimination of the side lobes. For this
se, we suggest a Gaussian lowpass filter. It can be implemented economically by
convolving the images in the spatial domain with a Gaussian having a small spread

t o = 1.5 to 2.5 pixels). Convolution can be implemented efficiently as two

mensional operations, first along rows, then along columns, because Gaussian
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is seperable. If & is the factor by which we wish to attenuate the peak of the first side

lobe, the parameter r for the Gaussian low-pass filter can be computed as follows:

e~ 2?7 = % (4.22)

V2 =log k
i

V2 s
—_— —_ r
1637 quz lOg k {-l-ui)
roa 0.2762,/~log k Bmas. (4.25)

If £ =0.25 and Rmaz = 5 pixels, then r = 1.63 pixels. The size of the one-dimensional

a2

Gaussian filter in this case is about 7.

Another advantage to low-pass filtering the image is the reduction of noise and
the attenuation of aliased frequencies near the high end of the spectrum. Aliasing will
be a problem if the focused iinage is not band-limited within the Nyquist frequency
band.

The noise magnitude spectrum usually remains the same in all images of the
image sequence ¢; . [n this case , if the effect of the side lobes is neglected, then the
noise has no effect on the performance of the focus measures. The focus measures
remain monotonic and unimodal. Further, if the effect of side lobes is negligible, then
even aliasing has no effect on the performance of the focus measures. However if the
frequency content in the side lobes is high due to noise, aliasing, or the focused image,

then the focus measures may exhibit local maxima and the global maximum may be

shifted. This makes the search for global maximum more difficult and introduces error
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in the final result. Therefore, the attenuation of side lobes improves the behaviour of
L, focus measures.

According to Theorems 6 and 7 in the appendix, low pass filtering the image

sequence does not affect the soundness, monotonicity, or the unimodality of the focus

Band-pass filtering

ppose that the image sequence G;(w,v) is filtered by the Gaussian low-pass filter

Hy(w,v) = e=7@+)*  The Fourier magnitude spectrum (41, 42] of the resulting

image sequence is |Hy(w,v)| |Gi(w,v)| . The focus measures M, (z), M,(i) and M,(i)

‘are defined as

M) = [ [ Ihs(z) s gz [ de dy (4.26)
= f; f_: | Hy(w, 2)|? |Gi(w, v)|? dw dv (4.27)
M) = [ [T 1@ ) < iz ) [ do dy (4.25)
5 /_‘: f_i(w2+u2)(a,,(w,u)|"- |Gi(w, v)[? duw du (4.29)
M) = [ [T (T (a(zy) o) de dy (4:30)
= [ [ @ ) (G, ) dw dv (431)

From the Fourier domain expressions for Mj(z) above, M;(z) can be thought of as

he result of first filtering Gi(w, v) by a filter, By(w, v), having the Fourier Magnitude

Spectrum (B, (w, v)| = /(uz + v?) |Hy(w,v)| and then measuring the spectral
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energy of the resulting image. Similarly, Mj(z) can be thought of as the result of
first filtering Gi(w,v) by a filter Bs(w,») having the Fourier magnitude spectrum
|Bs(w,v)] = (w?+ v?)|Hy(w,v)| and then measuring the spectral energy of the
resulting image. A plot of |B(w,v)| and |Bs(w, v)| are shown in Figure 4.4. We see
that both these filters have band-pass characteristics. Experimental results presented
later show that these band-pass filters make the focus measures to have sharp peaks
while generally retaining monotonicity and unimodality. These band-pass filters have
the desirable characteristic of attenuating low frequencies which contribute less to
change in the focus measure and attenuating high frequencies affected by side lobes

and noise, but emphasizing medium frequencies.

4.6 Discussion of other focus measures

A number of focus measures have been proposed in the literature [25, 26, 27, 31].
Among these, Tenengrad [27, 43, 69] has been found to be the best. More recently,
a focus measure based on a modified Laplacian operator (SML operator) is said to
perform better than Tenengrad [36].

Tenengrad is a measure of thresholded gradient magnitude. It is similar to M;(z)
except that only those points where the gradient magnitude is greater than a pre-
specified threshold are used in the calculation. The other points are not used in the

calculation of the focus measure. Because of the thresholding operation, a Fourier

domain filter analysis of this focus measure is not possible. More importantly, if
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the threshold is non-zero, this focus measure cannot be proved to be theoretically
sound, i.e., it cannot be proved that the global maximum of the focus measure occurs
for the best focused image. Moreover, this focus measure involves the selection of a
threshold. For these reasons, and the fact that the focus measures discussed in this
chapter (M,;(z) to M3(2) and M/{(z) to M}(:)) performed very well in a large number
of experiments, we do not recommend Tenengrad in actual applications.

Nayar [36] has proposed a new focus measure based on a new operator named

Sum-Modified-Laplacian (SML). [t is defined as :

8%g; g
2 _ i i .
Viuglay) = 551+ |57 (4.32)
The SML based focus measure SMLF is defined as
8291 629: o
SMLF = / / ( 5 | Tine ) dz dy. (4.33)

SML differs from the usual Laplacian in that the magnitude of the second deriva-
tives are summed instead of their actual values. Therefore it is a non-linear operator
and it is more sensitive to zero-mean noise than the Laplacian. The focus measure
SMLF is a simple summation of the result of applying the SML operator; it does
not involve squaring the integrand. For these reasons, it is not possible to provide a
Fourier domain filter analysis of this focus measure. Further, as in the case of Tenen-
grad, we do not believe that this focus measure can be proved to be theoretically
sound.

One of the main reason that Tenengrad and SMLF were said to be better fo-

cus measures in the past was that they gave sharper peaks. The sharper the peak

_
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‘produced by a focus measure the better it was thought because the location of the

position of the maximum was thought to be more accurate. However it should be

noted that a blunt peak of any focus measure can be sharpened by simply squaring
the values of the focus measure. In fact, the peak can be sharpened to any desired
degree by raising the values to some large positive power. (See Figure 4.5). Therefore,
not only the sharpness of the peak, but also the smoothness (or monotonicity) and
noise sensitivity are important. Sharpening the peak of a focus measure will magnify
‘and reveal hidden local maxima caused by the side-lobe effect and noise. For bad
focus measures, the amplitude of the local maxima will be large where as it will be
for good focus measures, thus reducing the uncertainty in locating the actual

.
bal maximum. Focus measures based on second order derivatives such as Lapla-
ian and SML are more noise sensitive than those based on first order derivatives. In

of these observations, we believe that Tenengrad and SMLF have no particular

‘advantage over some of the focus measures considered in this chapter.

Discrete focus measures

ste versions of the focus measures were implemented on SPARCS. The expres-

' “ the N x N image g;(z,y) are given here. Each image was first normalized

espect to its mean. Magnification normalization was not done as the change in
ation was less than 2%.

1. Variance
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Image energy can be computed as T2y 92(z,y). A closely related focus measur

is the grey level variance. It is a linear and monotonic function of image energy

Variance is computed as

“W][l) = :%‘EZ:Z(.Q;(IQ)_
1 .
= HL 2 9izy) ~ul
\1, 2.2 gi(z,y).
NI & &

where p; =

2. Energy of image gradient

This focus measure is computed as

My(i) = ZZ (92 +92)

where g;(z,y) = gi(z+1,y) — gi(z vY)

and gy(z,y) = gi(z,y+1) - gi(z,y). |

3. Energy of Laplacian of the image

Ms(z) = Z Z 9zz + gyy
z oy

where

ez + Qyy =
—gi(z = Ly—1)—dgi(z - Ly) —g(z — 1,y + 1)
—4gi(z,y — 1) + 20g:(z,y) — dgi(z,y + 1)

_gi(I+ Iay—' 1) —49‘(I+ Iay) —'9,(3:'{- 1-3} + 1)

(4.34)
(_-1,35}

(4.36)

(4.40)

(4.41)
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4. Variance of low-pass filtered image

The image was first low-pass filtered by convolution with a two-dimensional Gaus-

sian. Since the Gaussian-is a separable filter, it was implemented as two one-

dimensional convolutions, first along rows and then along columns.

gi(zy) = Y3 hipq) gi(z—py—q) (4.42)
= 23 hi(p)hi(a) si(z ~ Py —q) (4.43)
= Y hi(p) D hi(@)gi(z = p,y — ). (4.44)

The variance of this smoothed image is computed similar to M, (i):

Mi(3) = wZZg (z,y) (4.45)

.1 ,
=35 > dil=z,y).
z oy

5. Energy of low-pass filtered image gradient

e original image g; was first low-pass filtered as in the previous case to obtain
en Mj(i) was computed similar to M;(i) except that ¢/ was used in place of g,.
\ ergy of Laplacian of the low-pass filtered image

was computed similar to M;(z) except that the low-pass filtered image g,

s used in place of the original image g;.
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4.8 Experimental Results

Experiments were conducted on a large number of test objects. The results on three
of these objects will be presented. The three objects are (i) a cartoon (Figure 4.11),
(ii) picture of a face (Figure 4.12), and (iii) a “pin-hole” light source (Figure 4.13).
The last object has high spatial frequency content. It was chosen to observe the effect
of side lobes on the focus measures. The illumination for the first two objects was
about 500 lux.

Each object was placed at different distances (cartoon: 820 mm, face: 950 mm,
pin-hole: 1320 mm) in front of the camera and the program was run. SPARCS
acquired one image of the object at each lens position. There are 97 lens positions
corresponding to 97 steps of the lens stepper motor. From each image thus acquired,
a 64 x 64 sutimage of the object was extracted. Due to blurring and spreading of
light from point objects, the grey levels at the border of this subimage are affected
by image points immediately outside the subimage. This is called the image overlap
problem [49]. In order to reduce this border effect, the images were multiplied by a
two-dimensional Gaussian with a spread parameter of about 1/3 of the image size
(about 21).

Then all the 6 focus measures were computed and printed. This procedure was
repeated for each of the three objects. The 6 focus measures were normalized to have
the same peak values by dividing their values by their maximum values. The results

are plotted in Figures 4.6, 4.7, and 4.8. In the plots we see that all focus measures
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reach a peak at almost the same location. The only difference lies in the sharpness
of peaks and the smoothness of the plotted curves.

The percentage change in a focus measure at any given lens position is useful in
determining the direction in which the lens should be moved for focusing. Plots of

this measure for Object 2 are shown in Figure 4.9 and Figure 4.10. It was computed

M2 + step) — M(2)
ITM(i + step) + M(3)]

% change =

where step was set to 5 and M(¢) is a focus measure.
In comparing the different focus measures, we use the following criteria (i) mono-
tonicity, (ii) magnitude of slope, and (iii) smoothness. It should be emphasized that

ood behaviour with respect to these criteria are important both when the images are

y blurred and when the images are almost focused. It is in the highly blurred

ages that the side lobe effect becomes significant. In the previous literature, the
jour with respect to highly blurred images has been ignored in the evaluation of
measures. This aspect is important because, when an object is highly blurred,

it is necessary to first determine the direction in which the lens should be moved
r to focus the object. This is done by first computing the focus measure

e current lens position, then moving the lens by a small amount, computing
measure again, and comparing the two focus measures. The direction in

he focus measure increases is the direction in which the lens should be moved

ng. Therefore, if a focus measure is almost flat (i.e. slope is small) or is
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non-monotonic and noisy, then the direction of lens motion for focusing cannot be

determined reliably.

From Figures 4.6, 4.7, 4.8, and from many more experiments not reported here,
we make the following observations. The focus measures M; and M| are smooth but
generally exhibit small slopes for both highly blurred and almost focused images. Both
are very good focus measures but perhaps not the best, mainly because of small slope.
The focus measures M; and M; measure energy of high-pass filtered images. High-
pass filtering amplifies the side lobe effect. Our experiments support this observation
based on theory. Both M; and M3 exhibit almost flat and noisy curves for highly
blurred images. They exhibit sharp peaks near the focused position, but the peaks are
sometimes noisy and rough. The focus measures M; and M} measure energy of band-
pass filtered images. They are found to be generally smooth and monotonic. They
exhibit moderately high slopes for both highly blurred and almost focused images.
Their peaks are reasonably sharp. The behaviour of M; and M; are somewhere near
the middle of the two extremes represented by M; and M] on the one end and M,

and M3 on the other.

Both M; and Mj are very good focus measures. M; is somewhat smoother than
Mj. For this reason, we believe M; to be a better focus measure and therefore we

recommend it for practical applications.
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We have derived 6 focus measures and proved that they are sound under weak assump-
tions. Experiments show that all of them perform well. By computing more than one
focus measure and making judgements based on them, better performance may be
obtained at a higher computational cost. In chapter 5, we will discuss the use of the

focus measures derived here in depth-from-focus and shape-from-focus algorithms.
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Figure 4.11: Object 1. Figure 4.12: Object 2.

Figure 4.13: Object 3.
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Chapter 5

Shape Recovery from Image Focus

5.1 Introduction

This chapter presents a solution to the shape-from-focus problem using a focus mea-

sure derived in chapter 4.

For an aberration-free convex lens, (i) the radiance at a point in the scene is
proportional to the irradiance at its focused image [24], and (ii) the position of the
point in the scene and the position of its focused image are related by the lens formula
Eq. (3.1). Given the irradiance and the position of the focused image of a point, its
radiance and position in the scene are uniquely determined. In fact the positions of a
point-object and its image are interchangeable, i.e. the image of the image is the object

53
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. Now, if we think of an object surface in front of the lens to be comprised of a set
of points, then the focused images of these points define another surface behind the
lens (see Figure 3.1). We define this surface to be the Focused Image Surface (FIS)
and the image irradiance on this surface to be the focused image. There is a one
to one correspondence between FIS and the object surface. The geometry (i.e. the
and the radiance distribution of the object surface are uniquely determined

by the FIS and the focused image.

In this chapter we are concerned with the principles and computational methods

covering the geometry and the radiance of an object from its sensed image.
that a sensed image is in general quite different from the focused image of an
. In computer vision, the sensors are usually planar image detectors such as

D arrays. Therefore, for curved objects, only certain parts of the ‘mage will be
whereas other parts will be blurred. A sensed image will be the focused image

ien the shape of the sensor and the shape of FIS match.

In traditional SFF methods (e.g. [23, 27, 31, 36, 43, 56]) a sequence of images are

by continuously varying one or both of the following camera parameters:
ce between the lens and image detector, and (ii) the focal length. For each
the sequence, a sharpness measure or focus measure is computed at each

a small (about 15 x 15) image neighborhood around the pixel. At each
. image frame among the image sequence which gives a maximum sharpness

s determined. The grey level (which is proportional to image irradiance)
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of the pixel in the image frame thus determined is taken to be the grey level of th
focused image for that pixel. The camera parameter values for this image frame ar
used to compute the distance of the object point corresponding to the pixel. A simpl
measure of sharpness of an image is its grey level variance. Measures based on the

energy of derivatives of images are however better suited [56].

The traditional SFF methods do not yield accurate shapes or depth-maps of ob-
jects. The main reason for this is that a focus measure is defined and computed over
image frames sensed by planar image detectors. The focus measure at each pixel in
an image frame is computed using a small window around the pixel. This corresponds
to a piecewise constant approximation of the object shape in the window (see Figure
5.2(a)). Because of this approximation, the focused image reconstructed from the

image sequence will be an approximation to the actual focused image.

The fundamental contribution of our method is the idea that focus measures
should be computed over the FIS using pixels lying on the FIS in the image sequence
rather than over image frames where the pixels lie on a plane. Maximization of focus
measures computed over FIS avoids the piecewise constant approximation of object
shape found in the traditional SFF methods. The computational implementation of
this idea involves two steps. The first step is essentially to estimate an approximate
FIS using one of the traditional SFF methods. The second step is to refine this ap-
proximate estimate by searching for an FIS shape which maximizes a focus measure

computed over pixels lying on the FIS. The search is local and therefore computa-
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tionally efficient. At present, our implementation corresponds to a piecewise planar
(or linear) approximation of object shape as opposed to piecewise constant approx-
imation. However, our implementation algorithm can be easily extended to higher

order approximation at the cost of additional computation.

Our SFF algorithm named SFF.FIS has been implemented on the SPARCS camera
system . A number of experiments were carried out using SPARCS to evaluate our
SEF algorithm. The experiments and their results are described. The experimental

tesults show that our algorithm performs well.

In this chapter we are mainly concerned with SFF methods which give dense and
accurate depth-maps, and which do not require a detailed knowledge of the camera
characteristics. These methods require a sequence of image frames (about 10 to

recorded with different camera parameter settings. However, there are methods

30, 33, 39, 46, 47, 48, 61, 65] which do not require a sequence of images, but

only a few (about 2 or 3) acquired with different camera parameter values. These

thods are very fast (about 10 times), but less accurate (their best performance gives

t Mean Square (RMS) error which is twice that of the SFF methods). These

ast methods are known as Depth-from-Defocus (DFD) methods whereas the SFF
ds considered here are known as Depth-from-Focus (DFF) methods. Clearly,
methods can be used first to obtain a rough estimate of shape and then DFF

" methods can be used to refine the rough estimate to obtain a more accurate

timate of shape.
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Figure 5.1: Object and Image Coordinate Systems.

We first consider the case of recording the image sequence by moving the image
detector (or lens) along the optical axis of the lens. The results of this case can be
easily extended to that of obtaining the image sequence by adjusting the focal length
of the lens. When the image detector of a camera is moved from one end to the
other, typically the focus measure in an image window gradually increases, reaches a
maximum at the FIS, and then decreases gradually thereafter. The problem then is
to find the image detector position at which the focus measure is a maximum. This

is essentially a search of the image detector position space.

5.2 Relation between object surface and FIS

Figure 5.1 shows a right handed Object Space Coordinate System (OSCS) (X,Y, Z)

with its origin O at the optical center of a convex lens. The visible surface of any
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i

iject in the object space (scene) can be expressed as Z = Z(X,Y’). We assume that

Z(X\Y)=2f (5.1)

because any object point closer than focal length f will produce only a virtual image
but no real image.

'I'he image formed by a convex lens is inverted with respect to the object. There-

,; , for convenience, we define a left handed Image Space Coordinate System (ISCS)
2,9, z) (see Figure 5.1) with its origin at O. The axes of the [SCS point in the
ion exactly opposite to that of the corresponding axes of the OSCS. For any

(XY, Z) in OSCS, let its focused image in the ISCS be (z,y,z). The points

age
Z) and (z,y, z) form a conjugate pair of points. Using the properties of similar

be

' jangles. it is easy to show that
'gt-h' MES, Y

tt'ﬁe and

(5.2)

STES
]
SE

|5
i

o=

S a
: r an object surface Z(X,Y), the corresponding Focused Image Surface or FIS can
nis '
- d by z(z,y). It follows from the lens formula (3.1) that

3!
1 1 1

FTzxy) T iy

(5.3)

e relation can be used to obtain the shape of an object from its FIS. It is

here a few well-known results. A point at Z = co comes to focus at

: -"-':?:‘_-:l:- at Z = 2f comes to focus at z = 2f, and a point at Z = f comes to
D)
any
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Although the above relation between the shape of an object Z(X,Y) and its FI
z(z,y) is quite simple, the following theorem is particularly interesting.

Theorem 1 The Focused Image Surface of a planar object is also planar.

Proof Let

Z=PX+QY+R (5.4)

be a planar object where P and @ are respectively the slopes of the surface along X

and Y axes respectively and R is the intercept along the Z axis. We have

Z-PX-QY=R (5.5)
X Y R -
(9.7)

Using relations (5.2),(3.8), the above equation can be written as

I—PE—QE:R(l—g. (5.8)
z z f

Rearranging terms in the above relation, we obtain
z=pr+qy+r (5.9)

where

c= ——)—r—- p=—cP qg=—c@) and r = cR. (5.10)

R-f
Therefore we have shown that the FIS of a planar object Z(X,Y) = PX +QY + R

is also planar and is given by z(z,y) = pz 4 qy + r. The relation between the object

surface parameters P, @, R and FIS parameters is given by Eq. (5.10).
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The fact that the FIS of a planar object is also planar can be used to conclude the
following: (1) the FIS of a polyhedral object is also polyhedral (with the same number

of planar faces), (ii) the FIS of a straight line is also a straight line, and (iii) the FIS

of a surface which can be generated by sweeping a straight line in 3-D object space
B8 also a surface which can be generated by sweeping a straight line in 3-D image
space. The first result follows directly from the theorem. The second result can be
proved by noting that the intersection of two planes in object space is a straight line
and the FIS of the straight line is the intersection of the FISs of the two intersecting
planes which are themselves planar. The third result follows from the second result.
A consequence of the third result is that the FIS of a cone is a “distorted cone”, and
the FIS of a cylinder is a “distorted cylinder”.

‘An important significance of the above theorem in SFF methods is that if the
fiape of an object can be approximated well by a piecewise planar surface then the

hiape of the corresponding FIS can also be approximated well by a piecewise planar

: .'P e,

FM operator

here are many focus measures which perform well when used in SFF methods (27,
) 3]. Any one of these could be used in our algorithm described next. Two
iple examples of reasonably good focus measures are energy of low-pass filtered

ge gradient and energy of Laplacian of the image. In our implementation we have
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chosen the energy of Laplacian of the image. To reduce the computational time, it is
computed by first applying the Laplacian operator, squaring the resulting values at
every pixel, and then summing the values in the window of interest.

Before the focus measure of an image is calculated, the image is first normalized
with respect to brightness. This is done by dividing the grey level of each pixel by

the mean grey level of the whole image.

5.4 SFF Algorithm

Conceptually, our Shape-from-Focus (SFF) algorithm can be described as follows.
The image detector is first moved to z = z5. A sequence of images ¢(z,;,k) are
recorded by moving the image detector to positions z; = zp + ¢ * § where 4 is a small
displacement, for: =0,1,2,--- , /-1, =0,1,2,---,J—1,and £ =0,1,2,--- , K- 1.
Usually, zo = f. J and K are the number of rows and columns respectively in each
image frame and [ is the number of image frames (see Figure 5.2). We can think of
this image sequence as an image volume. In this image volume, our problem is to
find the set of pixels which lie on the focused image surface (FIS) of the object. For
surfaces with a slope of up to about 1.0, for any given row j and column k, there is
only one pixel which lies on the FIS. The image frame number  to which this pixel
belongs depends on (j, k) and therefore it can be expressed as a function i(j, k). The
grey level of this pixel is g(i(j, k), J, k). The relation between the row number j and

the y coordinate is y = (J — j.)d where j. = J/2 is the row index of the center row and
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‘columns of pixels on the image detector array.

The shape of the FIS can be determined from the function i(j, k) which gives the
frame number of the pixel lying on the FIS for any given (j, k¥). The focused image

F(3, k) of the object is obtained from the image sequence and the function i(j, k) as

In order to find the function (7, k) which specifies the FIS, we use the fact that the
focus measure of F(j, k) (or g(i(j, k), 7, k)) is a maximum over all possible functions.
.':'ce a search for a function is computationally expensive, a two phase procedure is

used in our implementation.

In the first phase of the algorithm, a rough estimate of FIS is estimated using
‘a traditional SFF method as follows. A small set (about 10) of N image frames g,
at regular intervals of I/N are selected from the original image sequence g;. For
each selected image frame, focus measures are computed in small field-of-views or
image windows of size M x M (value of M varies from 3 to 15). For a given field
ew, the corresponding image windows in different image frames shift and change

nification from one image frame to the other. Ideally, this should be taken into

d is the distance between two rows of pixels on the image detector array. Similarly,
the relation between the z coordinate and the column index k is £ = (k — k.)d where

kc = K/2 is the column index of the center column and d is the distance between two

=
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Figure 5.2: Direct Fitting on the FIS (Focused Image Surface).
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it, but in practice this effect may be neglected as the shift and magnification

s are usually small.

Tn overlapping windows are used at intervals of about M/4. Non-overlapping
may also be used. For each window (or field-of-view), the image frame num-
er for which the focus measure is a maximum over all the image frames is deter-
. The image frame numbers thus found gives a very rough estimate of the FIS.
imate can be improved through a local interpolation scheme. For example,
uadratic or higher) order polynomial can be fitted to a few data points (fo-
sure as a function of image frame number) around the image frame with the

imum focus measure, and the location of the local maximum of the polynomial
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can be taken as the improved estimate of the focus location. Usually a quadratic or
a cubic polynomial fit gives satisfactory results. A Gaussian function fit is used by
some researchers [36]. Having obtained a rough estimate of the FIS, an approximate
estimate of the slope of the FIS can be obtained by computing partial derivatives (or

finite differences) along z and y directions.

In the second phase of our algorithm, the initial estimate of FIS is refined as
follows. In this phase, the entire original image sequence g; containing / image frames
is used. For every window in which the FIS was estimated in the first step, a small
cubic volume (about the size of M x M x M) image space is considered in the image
sequence. The volume is centered at the initial estimate of FIS in that window. Now
in this volume, a search is made for a planar surface which is closest to the actual
FIS by maximizing the focus measure computed over the planar surface. The initial
estimates of position and orientation of the FIS are used as starting values during
the search. A brute-force or a simple gradient ascent search can be used. In our
implementation, in order to increase robustness against noise, the focus measure was
summed over the estimated FIS and two more surfaces parallel to it where one was
about one image frame closer to camera and the other was about one image frame

away from the camera.

An outline of the algorithm implemented by us can be summarized as follows.
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o In every field of view, do the steps below.

e Read as input the initial estimates of the position and orientation parameters of
the FIS. Let 7o be the initial estimate of position, and po, ¢o be the initial estimates

of the slopes of the FIS along the z and y axes respectively. Then the initial estimate

of the FIS is described by

i(J, k) = io + poj + qok (5.12)

e Read as input the size of the search space for position and orientation. Let
the search space for position be the range imin = 10 — &i, 10 tpmazr = o + &;, for z-
slope be the range pmin = po — Op, t0 Pmar = po + dp, and for y-slope be the range
Gmin = G0 — 04, 10 Gmaz = Qo+ 86q. If tmin < 1 set imin = 1 and if t;az 2> [ set typ0r = 1.
Take the value of maximum allowable slope MAXSLOPE for the surface along each
axis to be about 1.0. If pn;n £ —MAXSLOPE set pnin = —I_MAXSLOPE and if
Praz > MAXSLOPE set ppn,. = MAXSLOPE. Similarly, if ¢gnin < —MAXSLOPE
set min = —MAXSLOPE and if gmsr > MAXSLOPE set gmq; = MAXSLOPE. Read

as input the searching step sizes é;, 6,, 8, for , p, q, respectively.

¢ Read image window size 25+1.
mazsum = 0;

tp = 10} Pp = Po; Gp = 40;

for i1, = tmin tO Imaz in steps of &; do /* search position space
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for pm = Pmin tO Pmas in steps of §, do /* search x-slope

for gm = Gmin 1O Gmaz in steps of §, do /*search y-slope

/* compute focus measure on a candidate FIS */

sum=0;

for)=-Sto S do
for k=-Sto S do
I= lim +J *pm + & * qm];
m=i+1
sum =sum + Y (Laplacian[m][;j][k])%
m=i-1
end /* k loop
end /* j loop
if(sum > mazsum)
then iy = tm; Pp = Pm;j Gp = Gm; Mazsum = sum;
end /* g loop
end /* pn. loop
end /* [,, loop

1p, Pp, and g, are the position and slopes of the estimated FIS. In the above algo-

rithm, Laplacian|[m][;][k] is the image Laplacian computed at [m,j k].

The estimated FIS is described by i(j, k) = ¢, + p, * j + ¢ * k in the image
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window being processed. At the cost of additional computation, it is also possible

tosearch and obtain piece-wise quadratic and higher order approximations to the FIS.

Experimental Results

The SFF algorithm described above and the corresponding traditional method

implemented on the SPARCS camera system. The methods were similar in all
spects except that the focus measure was computed over estimated FIS in the case of

SFF method whereas in the traditional method the focus measure was computed

ver image frames in image windows. These implementations were used to compare
the improvement obtained by our SFF algorithm with the traditional method.
Here we present the results for two objects: (i) a slanted planar object (Figure
| (i1) a cone object of length about 79 inches and base diameter of about 15
( igure 5.5). It is found that the the improvement in accuracy for the slanted
nar object is marginal whereas it is significant for the cone object. This indicates
proves the accuracy substantially in the case of curved objects.
'he illumination for the two objects was about 600 lux. Image size was 256 x 256.
to reduce electronic noise, for a fixed lens position five image frames were
ged. The image sequence contained 97 image frames, one for each lens step
the stepper motor. The absolute displacement between two consecutive

nes was about 0.03 mm and the distance between pixels was about 0.013
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Figure 5.5: A cone object.
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mm. The window size for computing focus measures was 15 x 15.

An initial estimate of FIS was obtained by computing the sum of the square of
image Laplacian for 9 image frames equally spaced apart (about 10 frames apart)
in the original image sequence. The position of the maximum focus measure was
first improved by a quadratic interpolation scheme using three points centered at the
maximum point. A typical plot of the 9 values along with the position of maximum

position obtained using interpolation is shown in Figure 5.3.

Figure 5.4 shows the results for the slanted planar object. Figs. 5.4(a) to 5.4(d)
show the image frames recorded when the lens position was at motor steps 20, 40,
60, and 80. In each of these frames, only one part of the image is focused whereas
the other parts are blurred by varying degrees. This is particularly noticeable in
Fig. 5.4(d) where the closer part of the object on the left is flocused whereas the
blur increases gradually towards right as the object distance increases. The shape
or depth-map recovered by our SFF algorithm is shown in Fig. 5.4(e). Here both a
3-D surface plot and a smaller side view of the plot are shown for clarity. The results
in this case are close to the actual shape except in regions where there is insufficient
contrast. The reconstructed focused image of the object is shown in Fig. 5.4(f). We

see that all parts of the image are in sharp focus.

Figure 5.5 is similar to Figure 5.4 except that the results in this case are for the
cone object. In Fig. 5.5(e) we see that the recovered shape of the cone has a blunt

tip rather than a sharp tip. This is due to the piece-wise planar approximation.
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Traditional Method | SFF.FIS
RMS Error(Slanted Planar Object) 0.40 step | 0.37 step
RMS Error(Simulated Cone Object) 2.22 step | 1.41 step
Number of test points 3136 3136

Table 1. RMS Error.

Except in areas where there is insufficient grey level variance, the shape recovered
is good. Figure 5.5(f) shows the reconstructed focused image of the cone object. In
comparison with the image frames shown in Fig. 5.5(a) to 5.5(d), the reconstructed

image appears focused everywhere.

5.6 Comparison with Traditional Method

In order tc compare our SFF method with the traditional method we carried out
experiments on both real data and simulated data. Simulated data was necessary in
comparing the results of the two methods with accurate ground truth. For real data,
we did not have adequate facilities to accurately measure the ground truth.

Figures 5.8 and 5.9 show the results on real data for the slanted planar object
obtained using the traditional method and our SFF method respectively. In these
figures, it is difficult to visually compare the two results. Since the accurate ground
truth was not available, we fitted planar surfaces to the data (we knew that the object
was planar but did not accurately know its position and orientation) using a least-

square error minimization approach. Then the root-mean-square (RMS) error was
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computed between the fitted planes and the data. The results are shown in Table
1. We see that the RMS error for the traditional method is 0.40 lens steps (out
of 97 steps) whereas it is 0.37 lens steps for the traditional method. Therefore the

improvement in accuracy in this case is marginal.

Figures 5.10 and 5.11 show the results on real data for the cone object. As
expected, the tip of the cone is sharper in the case of our SFF method whereas it is
blunt in the case of the traditional method. The surface of the cone in Figure 5.11 is
a little smoother than in Figure 5.10. The actual cone object was made of cardboard
and it was distorted. Therefore we could not fit a cone to the data in order to compare

the accuracy of the two methods as we did above in the case of the planar object.

In order to do a rigorous quantitative comparison of our SFF method with the
traditional method we did the following experiment on simulation data. A camera
simulation software called Active Vision Simulator (AVS) [34, 63] was used to generate
97 images of a cone object corresponding to 97 lens positions. A paraxial geometric
optics model was used for image formation in the computation of the blurred images.
For the simulation software, the input camera parameters (focal length, aperture,
pixel size, etc.) were set to be the values of our actual camera. Figure 5.14 shows the
input depth-map of the cone. Figures 5.12 and 5.13 show the results of the traditional
method and our SFF method respectively. The RMS errors between these two results
and the ground truth in Figure 5.14 were computed. For the traditional method the

RMS error was 2.22 lens steps out of 97 steps whereas the RMS error was 1.41 lens
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5

steps (out of 97 steps) for our SFF method. Therefore, in this case, the traditional
method has about 1.5 times the error for our SFF method.
The relationship between the reciprocal of the object distance 1/u versus the lens

step number is almost linear and can be expressed as

l/u=az+b (5.13)

where z specifies lens position. For our camera, the lens position is specified in
terms of a motor step number where each step corresponds to a displacement of about
0.03mm. The RMS errors mentioned above are for the lens position and it gives a
good indication of the performance of the method for application in camera systems.
In order to compute the error in terms of object distance, we have to consider the

error differentials in Eq. (5.13).

| 6(1/u)| = a|éz| (5.14)
= | ?—u-l = al|dz|u (5.15)
2| 6u| = albz|ud (5.16)

From the above relations we see that the relative (percentage) error | iu‘i | in
actual distance u increases linearly with distance, and the absolute error | éu | in
actual distance increases quadratically with distance. For our camera, using a Depth

from Focus method the constants were found to be ¢= 0.0172 and b = —0.1143

(57, 66].
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Setting | éz | to be the RMS error of 2.22 steps for the traditional method and
1.41 steps for the new method respectively, a plot of relative error | ‘%“ | is shown in
Figure 5.6 and a plot of the absolute error is shown in Figure 5.7.

[n Figure 5.6 we see that for the new method the percentage error in distance at 0.6
‘meter is about 1.45% and increases linearly to about 12.13% at 5 meter distance. This
compares well with the resulting error of about 2.29% at 0.6 meter and increasing
linearly to about 19.1% at 5 meter distance that is obtained with the traditional
‘method.

Figure 5.7 shows that for the new method, absolute error increases quadratically
from 8.7 mm at 0.6 meter to about 606 mm at 5 meter distance. The corresponding
numbers for the traditional method are 13.7 mm at 0.6 meter and about 955 mm at

5 meter distance.

Discussion

We have described a new Shape-from-Focus method based on the Focused Image
e (FIS) of objects. Unlike piece-wise constant approximation described in the

s literature, our method corresponds to piece-wise planar approximation of

ct shape for SFF methods. It can also be used for piece-wise quadratic and

igher order approximations to FIS, at the cost of additional computation.
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Figure 5.12: 3-D Depth Map for a simulated cone object by the traditional method.
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Figure 5.14: A simulated cone object.
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Figure 5.15: 3-D Depth Map in lens step for a simulated cone object by the new

method (SFF.FIS).
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Chapter 6

Combining Shape from Focus and

Stereo

6.1 Introduction

In chapter 5, we discussed a new shape-from-focus method based on the FIS. This

chapter will show how the shape-from-focus method is integrated with stereo.

Many integration methods (2, 3, 11, 12, 28] for focus, stereo, shading, and motion

have been proposed to solve the problem of shape recovery.

Krotkov [28] developed a cooperative sensing process, in which focus and stereo
ranging verify the results of each other. His method identifies false matches with
focusing. He used a maximum likelihood estimation (MLE) method to integrate
focus and stereo ranges. Das and Ahuja [2, 11, 21] proposed a coarse-to-fine surface

83
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teconstruction method from stereo and focus for large scenes having large depth
ranges. Their method is designed to achieve integration through iteration of the

following three steps: visual target selection, fixation, and stereo reconstruction.

In this chapter, the objective of the research is to work on the integration of two
individual modules for shape recovery. In particular, we are interested in combining
the depth information from focus and stereo. Shape-from-focus methods give 3-
D depth information from a sequence of blurred images. Stereo methods give 3-
D depth information from two images taken by cameras which are slightly shifted
along the horizontal axis, in the case of parallel optical axes of two cameras. The
image of an object in the left image is shifted with respect to the image in the right
age. This disparity is inversely proportional to distance. The problems with stereo
are correspondence and occlusion. In contrast, the SFF methods don’t have these
problems. Therefore a combined method is proposed. The basic idea of this method
is that a depth-map and two focused images obtained by a SFF method are used to

solve the correspondence problem in stereo-vision.

' The SFF method used here is SFF.FIS presented in chapter 5. In this method,
i focus measure was computed over estimated FIS searched by a piecewise planar
surface. Once one pair of ranges (zy, z,) are obtained from focus and stereo, two

inges are integrated using maximum likelihood estimation method.

Our combined algorithm called SFFS has been implemented on the SPARCS cam-

asystem. The experiments and their results are described. The experimental results
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show that SFFS reduces the number of false matches.

The organization of the rest of this chapter is as follows. Section 6.2 describes
the theoretical background and accuracy of range estimation for stereo. Section 6.3
discusses the SFFS algorithm combined with focus and stereo. In section 6.4, the
experimental results obtained by our camera system will be given. Finally, we discuss

the running speed of our algorithm in section 6.5.

6.2 Theoretical Background of Stereo

In this section we are concerned with the principles and accuracy of range estimation

for shape-from-stereo.

6.2.1 Shape from Stereo

Stereo method is an important solution for 3-D shape recovery using binocular cue.
The distance from the lens to a point on the object surface is determined by finding
the disparity of a conjugate pair in the left and right images.

Given an object point p = (z,y,2(z,¥)), let (z,,4,) and (z.,y.) be the image
coordinates in the left and right images in Figure 6.1 respectively. In the case where
the optical axes of two cameras are parallel and perpendicular to the baseline, the

object distance z(z,y) is described as follows.
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(x,y, 2(x,y))

P
x5 .95 ) (X, ¥:)

Figure 6.1: Simple lens geometry for stereo vision.

Z(Ta,y) = I, 1:!
I =r

bs
D,

2, (6.1)

i

b is the baseline distance between two cameras, s is the distance from the lens
) the image detector, and D, is the disparity of two conjugate points.

‘The disparity between two conjugate points p; and p, is given by z; — z.. Since
'_i;lispa:ity is inversely proportional to distance, the absolute error in measuring

¢ disparity increases quadratically with respect to distance [24].
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The conjugate point p, of the right image corresponding to a point p; of the left
image is found on the corresponding epipolar line by using a matching method. The
epipolar lines can be found by the lens geometry or by a set of known markers on
the object surface through camera calibration [68]. Wang and Pavlidis [71] used a
registration method for finding epipolar lines in the left and right images. For each
scan line of the left image, the method searched for the corresponding scan line of the
right image such that the penalty of a criterion function is minimized in the given

range.

Once the epipolar lines are registered, conjugate points are found by searching
with a matching algorithm such as the edge-based method, the correlation method,

and grey-level matching [24].

The edge-based method uses the difference in grey-level values across the edge for
finding conjugate points. This method doesn’t work well with blurred or smoothed
images. The correlation method searches for similar brightness patterns on the epipo-
lar line to find matched points. There are difficulties with small spatial variation
and scaling of corresponding patches with this method. Similarly, grey-level match-
ing matches two corresponding patches in the left and right images. Okutomi and
Kanade [37] proposed the Sum of Squared Difference (SSD) method which belongs

to grey-level matching. In the SSD method the sum of square-difference values are

simply added over the given small window (see Figure 6.2).
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6.2.2 Accuracy of Range Estimation

Stereo vision is a more accurate method than mono vision. The relative error in

stereo is determined by the following formula.

(6.2)
(6.3)

(6.4)

In the DFF method, the lens step z is inversely proportional to the distance

2(= z¢). The relative error in focus is derived by

= ar+b (6.5)

abzxz. (6.6)

From the above relations, we see that the relative (percentage) error | 2 | in
ctual distance z increases linearly with distance. For our camera, using the Depth
rom Focus method, the constants were found to be a=0.0172 and b= - 0.1143 per
neter [66]. 6z can be set at the RMS error of 1.41 step which was obtained from the

F.FIS method for a curved object using our camera system (see Table 1).

If we assume that stereo vision has sub-pixel accuracy in disparity, the value of
D, can be chosen to be about 0.5 pixel. Therefore the accuracy ratio of focus and

ereo is as follows.
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5

> lfocus sb
7 = adzz 5.7
adz 3D.2 (6.7)

I

:F
3 'stereo

13.1

&

where s ~ 35mm, a = 0.0172 x 1073, b = 100mm, 8D, = 0.5 x 0.013mm, and
bz = 1.41 step.

From above ratio we see that stereo vision gives a more accurate result than mono
vision methods by about 13 times. However, stereo methods suffer from false matches
with smoothed or blurred images. Its accuracy can be improved with focused images

rather than blurred images.

6.3 Integration of Shape from Focus and Stereo

In this section, we discuss our combined method with focus and stereo.

A depth-map and two reconstructed images for the left and right sides were ob-
tained from the SFF.FIS algorithm. A sequence of images g(¢, 7, k) are recorded by
moving the image detector to positions z; = zy + ¢ * § where z; is an initial position
and § is a small displacement, for : = 0,1,2,---, I -1, =0,1,2,---,J — 1, and
k=0,1,2,---, K —1. Usually, zo = f. J and K are the number of rows and columns
respectively in each image frame and [ is the number of image frames (see Figure
5.2).

The two reconstructed images were used as two images for the left and right sides
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in stereo. The images are almost completely in focus, which improves the accuracy of
matching. The focused images were normalized by dividing by the average values of
2256 x 256 image respectively to eliminate the different illumination effects in grey
level.

The epipolar lines are obtained as follows. Four small circle markers are attached
on the object surface at four corners of a square. Then the left and right images of
the object are recorded. There are two horizontal lines and two vertical lines which
connect two adjacent markers in the left and right images respectively. For each
Rorizontal line of the left image, the corresponding horizontal line of the right image
i determined. Using this relation, for each scan line left; of the left image, the
gorresponding scan line right; of the right image is computed. These scan lines are

tered in two given 256 by 256 images for the left and right images.

5.3.1 Matching

fith normalized images, the corresponding epipolar lines are registered for matching
e conjugate points. A search is made for the image points in the precomputed range
',_---_l DISPARITY< i, < tg+MAXDISPARITY) on the corresponding epipolar
ge. This, in our experiments, saves computation by about 60% as compared to
‘uncombined stereo method. 7o is an initial value obtained from the SFF method
d ¢, is a search variable in pixel. MINDISPARITY and MAXDISPARITY are the

i m and maximum allowable disparities from the initial value i5. The values
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Figure 6.2: The Sum of Squared Difference (SSD) matching where D, is a disparity

of a pair of conjugate points, a: left image b: right image.

were taken to be 25 pixels (about 10 % of the whole search space on the epipolar
line). The SSD method was used for matching conjugate points in the left and right

images on the epipolar lines (see Figure 6.2).

In our combined method, a matching measure is computed over a small window
(about 21 x 21) by the SSD method in two reconstructed images after normalizing.
The problem here is how to determine a scale factor [32] for the corresponding win-
dow, particularly in the horizontal direction. In fact, the size of the corresponding
window for a conjugate point is not exactly the same and is dependent on its surface
orientation (7)) and the viewing direction (I or 7) from the principal plane of lens.
The ratio of the two window sizes in the left and right images is cosf; to cosd, where

costy is 7 - [ and cosb, is 7 - 7 (see Figure 6.3).
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“igure 6.3: Scaling effect: if; == ‘%f‘gf where cos8; =n -, cos#, = i1 - T, and all the

- -

ectors are unit vectors ({; ~ [3 =~ [and 7} ~ 13 ~ 7 where 81, 6r < do).
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Therefore the scale factor in a given small window is determined by the lens
geometry. This adjustment of the scale factor reduces error caused by the improperly
scaled window size. Finally, searching for a minimum of SSD values is done by limiting

the search range of matching on the epipolar lines.

6.3.2 Maximum Likelihood Estimation

This section describes how to integrate one pair of ranges (zy, z;) where z; is a
focusing range and z, is a stereo range for one physical distance. This is a typical
problem of parameter estimation [28] in the case of two i.i.d. random variables 2y, z,,

as follows.

g = zfut+ng (6.8)
Zy, = Zytn, (6.9)

where the observation errors ny,n, are assumed as Gaussian random variables with
zero mean and variance 03,07 (N(0,0¢), N(0,0,)). Since zs, and z,, are unknown
constants as a real range at each pixel for the same object, the two constants are
identical, i.e. zy, = z,, = 2,. Each observation z; or z, consists of z, plus a Gaussian
random variable ny or n, respectively.

The joint pdf of z; and z, is described by

fope(2gy25524) = fa (253 20) fr (245 24) (6.10)
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= Lz, zs52,) (6.11)

where L(zy, z,; z,) is called the likelihood function.
The value of z, that maximizes L(zy,z,;z,) is called the maximum likelihood

estimator Z,, that is,

L(z;.z,;z‘u) 2> L(zf,z,; z,u) [612}

for V z, € positive real number.

Since the log function is monotonic, the maximum value of L(zy,z,;z,) is also

that of logL(z2y, 2,; z,,).

. 1 (z—=2) (z2-2z) ;
L{zg, 2y 24) = e exp(— ?,af, = 207 ). (6.13)
(25 — zu)2 (25— 3#)2 1
[ Zp,2832) = — - ! . A

Next, differentiate both sides of Eq. (6.14) with respect to 2, and set the result

equal to zero:

OlogL(zy, z4; 2,)

= (. (6.15
dz, L)
This yields
- 2,
Al st (6.16)

Z, 2 3
o5+ 0%
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Therefore the MLE of z, is the weighted sum of z; and z, and the weights are
determined using the criterion that the likelihood function is a maximum. In sec-
tion 6.2.2, the accuracy ratio of focus and stereo was found to be 13.1. The ratio

T

can be used to find the RMS error in the case of stereo by dividing by 13.1 (o, = %

where N=13.1).

The numerical value of Z, used in this chapter was found from Eq. (6.16) by

(%)ZZf -l—ofrz,

Zy, = [%—)2-}—6% (6.11‘)
_ o+ N2z,
= TT N8 (6.18)
~ 0.006z; + 0.994z, (6.19)

where N= 13.1. Since Z; and z, are random variables, 2, is also a random variable

with mean 2, and variance o, (N(z,,04,)).

o2 is derived by

z

Il
—
oy
™
=
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(obviously ;;;L or 5;— > 0).

In the case of ratio 13.1, o'f.n is 0.0060§ or 0.99403, which shows that our combined
method is more accurate in the sense of minimum variance. In fact the value o, is just
a minimum variance of the observed range by stereo, without considering mismatches
due to textures and edges, etc. on the object surface. Therefore the RMS error

obtained by uncombined stereo methods is expected to be much greater than o,

while the RMS error by the combined stereo method is close to o,.

6.3.3 SFFS Algorithm

An outline of the SFFS algorithm is summarized as follows.

e Find a depth-map and two reconstructed images for the left and right images
using the SFF.FIS algorithm;

e Normalize the two reconstructed images by dividing by their average values
respectively;

¢ Register the epipolar lines for matching conjugate points. For each scan line
of the left image, search for the corresponding scan line epipolar(j] of the right image
using small circle markers on the object surface;

¢ Find conjugate points on the epipolar lines in the two reconstructed images.
The detailed search algorithm by the SSD method is described as follows;

1. In every field of view, do the steps below.

2. Read as input the initial estimates of the disparity and scale factor of the given
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small window(21 x 21) for finding conjugate points. Let iy be the initial estimate of
the disparity, and po be the initial estimate of the scale factor. Then the criterion

function of the SSD algorithm is described by

$SD=Y X (Alilltl- flepipolar(illiinm + Lpm < k[ (6:25)

1 kEWINDOW
where fi[7][k] and f.[j][k] are grey levels of a pixel (7, k) in the left and right images
respectively, i,, Is a position parameter, and p,, is a scale factor parameter.

3. Read as input the size of the search space for disparity and scale factor. Let
the search space for disparity be the range ¢, =io-MINDISPARITY, to i,,.= 2o +
MAXDISPARITY, and the scale factor range be pnin=po —0p, t0 Pnac=po+0p. Take
the values of minimum and maximum allowable disparities MINDISPARITY and
MAXDISPARITY. Read as input the searching step sizes §;, §, for 7, p, respectively.

4. Read image window size 25+1.
minsum = 10°;

Ip = 10} Pp = Po;
for 2,n = tmin tO imaz in steps of §; do /* search position space

for pm = Pmin t0 Pmaz in steps of 6, do /* search scale factor

/* compute matching measure of a candidate conjugate point */

sum=0;
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for j=—=Sto S do

for k=—-Sto S do
sum = sum+(fi(j][&] - f; epipolar(jllim + Lom * £]])? ;

end /* k loop

end /* j loop

if(sum < minsum)

then i, = tm; pp = pm; Minsum = sum;

end /* p, loop
end /* 7, loop

tp and p, are the disparity and scale factor for the conjugate points; and

e Finally integrate one pair of ranges (zy, z,) obtained from focus and stereo.

2 2
T 2p+ 02,
MLE of z, = ==L L%

ol + o}

6.4 Experimental Results

The proposed method was implemented on the SPARCS camera system. Here we

present the result for a slanted planar object (Figures 6.7 and 6.8). The illumination
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Integrate each pair of
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Figure 6.4: Flow Chart for SFFS algorithm.
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for the object was about 450 lux. Image size was 256 x 236. In order to reduce

electronic noise, five image frames were time averaged for a fixed lens position.

The image sequence contained 97 image frames, one for each lens step position of

the stepper motor. The window size for computing focus measures was 21 x 21.

An initial estimate of FIS was obtained by computing the sum of the square
of image Laplacian for 9 image frames equally spaced (about 10 frames apart) in
the original image sequence. The position of the maximum focus measure was first
improved by a quadratic interpolation scheme using three points centered at the
maximum point. The initial estimate of FIS is refined by searching for a maximum

focus measure in the small cubic image volume space [39].

In the second phase of our algorithm, the results obtained by SFF.FIS limit the
search range on the epipolar lines and compute the scale factor for the corresponding
window size of conjugate point at each pixel. The optical axis of two cameras is
almost in parallel. Four position markers using a circle are used to determine epipolar
lines through calibration. The matched epipolar lines are registered for matching.
Matching is done by the SSD method in the limited search range on the epipolar

lines. The distance was determined by the stereo formula (Eq. (6.1)).

Next, one pair of ranges (zy, z,) are integrated at each pixel. The results for the
slanted planar object are shown in Figures 6.7 and 6.8. The shape recovered by the
uncombined stereo method is shown in Figure 6.7. The depth-map has a lot of noise,

particularly in the regions where there is insufficient contrast. Figure 6.8 shows the
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a b
Figure 6.5: One pair of images taken by a stereo camera system at lens step 60 for a

slanted planar object, a: left image b: right image (shifted by 220 pixels to the left

side).

Figure 6.6: Reconstructed Images for a slanted planar object, a: left image b: right

image (shifted by 220 pixels to the left side).
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Figure 6.7: 3-D Depth Map for a slanted planar object by the uncombined stereo

method.

700

240
80

120

80

Y axis(pixel)

Figure 6.8: 3-D Depth Map for a slanted planar object by the combined method

(SFFS).
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recovered shape by the SFFS algorithm. Many false matches have been reduced in the
regions with insufficient contrast. As a result, the depth-map surface is reasonably

smooth.

6.5 Discussion

This section describes the execution of the SFFS algorithm. The time used for run-
ning our algorithm was 32 minutes CPU time on a SUN SPARC station. Focusing
range takes 20 minutes and stereo range takes 12 minutes. On the other hand, the
execution time for uncombined stereo range was 84 minutes CPU time. Therefore the
computation time was reduced by about 60 % using the SFFS method, as compared
to the uncombined stereo method. However, the running time can be reduced further
if we optimize the search algorithm in the image volume space. In fact, SFFS requires
a large number of repeated computations to determine focus measures at every pixel

by sequential processing. This problem can be solved by pipelined parallel processing

(29] using a parallel machine such as Transputer and Hypercube.
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Chapter 7

Summary and Conclusions

7.1 Summary of the dissertation

In this thesis, we have presented a study on the image focus module for shape recovery

and 1mage reconstruction.

1. Camera Model

Two models of image defocusing were described: a paraxial geometric optics model
and a diffraction optics model. Since the diffraction optics model uses the wave theory
of light through a lens, it requires much computational time.

On the other hand, the geometric optics model is simple and requires less compu-
tational time. Also, its result is similar to the diffraction optics model. Therefore it
is used as an adequate alternative to the diffraction model.
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2. Image Focus Module

The concept of depth from focus involves a search of the camera parameter space.
This technique is passive and does not require camera calibration. Next, the concept
of depth from defocus involves determining the distance from two or three defocused

images. This method is also passive and requires accurate calibration of the camera
parameters.

3. Focusing

A set of DFF techniques are derived from the paraxial geometric optics model as
follows.

o Image Energy;

e Energy of image gradient;

e Energy of image Laplacian;

e Variance of low-pass filtered image;

e Energy of low-pass filtered image gradient; and

e Energy of low-pass filtered image Laplacian.

If an image has a high spatial frequency content in the side lobes, then focus mea-
sures may exhibit local maxima. The side lobe effect can be eliminated by a Gaussian
low-pass filter which removes the side lobes. The cut off frequency pg of the Gaussian

filter should be 1.637/ Rz Where Rz is the maximum blur circle radius.
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The three objects tested for the proposed focusing techniques were:

e a cartoon

e picture of a face

e a “pin-hole” light source

The last object has a high spatial frequency content and was chosen to observe
its effect.

4. Shape Recovery from Image Focus

Shape-from-Focus methods provide a solution to the shape recovery problem. A
new SFF method called SFF.FIS was proposed for more accurate shape recovery. The
basic idea of this method is that focus measures are computed over the focused image
surface.

The computational implementation of this idea involves two steps: The first,
estimate an approximate FIS using one of the traditional SFF methods; Then refine
the FIS by searching for an FIS shape to maximize the focus measure computed over
the pixels lying on it. The search is local and therefore computationally efficient.

This method requires a sequence of image frames recorded with different camera
parameter settings. This method is more accurate than traditional methods. How-
ever, its running time is slow because there are many pixels which require the same
numerical operations to compute a focus measure.

The tested objects are a slanted plane and a cone of length about 79 inches and

base diameter of about 15 inches.
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5. Combining Shape from Focus and Stereo

In this method, a depth map and two focused images were obtained by the SFF.FIS
algorithm to solve the correspondence problem in stereo-vision.

Next, conjugate points on the epipolar lines were found in two reconstructed
images. Finally, one pair of ranges (z;, z,) obtained from focus and stereo were

integrated using maximum likelihood estimation method.

7.2 Conclusions

We have developed a set of DFF techniques based on the paraxial geometric optics
model. They include energy maximization of unfiltered, low-pass filtered, high-pass
filtered, and band-pass filtered images. It was shown that in the presence of high
spatial frequencies, noise, and aliasing, focusing techniques based on hand-pass ilters
perform well. Theoretical and experimental results suggest that one of the focus
measures M, has better overall characteristics. Therefore it is recommended for use
in practical applications. At some additional computational cost, better performance
may be obtained by computing two or more focus measures and making judgements
based on multiple measures rather than a single measure.

Next, a new Shape-from-Focus method has been proposed based on maximizing
focus measures computed directly over the Focused Image Surface (FIS). This method
corresponds to a piece-wise planar approximation of the object’s shape as opposed to

a piece-wise constant approximation adopted by SFF methods in the previous litera-
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ture. We have experimentally demonstrated the effectiveness of our SFF method on
real-world examples. The method here can be extended to obtain piece-wise quadratic
and higher order approximations to FIS at the cost of additional computation. The
RMS errors between the SFF.FIS method and the traditional method were computed.
For the traditional method the RMS error was 2.22 lens steps out of 97 steps whereas
the RMS error was 1.41 lens steps (out of 97 steps) for our SFF method. Therefore

the SFF.FIS method is more accurate than the traditional method by about 36%.

Finally, we have described a combined method with focus and stereo for shape re-
covery. A depth map and two focused images obtained by the SFF.FIS algorithm are
used to solve the correspondence problem efficiently in stereo vision. The experimen-
tal results indicate that our SFFS method gives much more accurate results than the
uncombined stereo method. The number of false matches have been reduced dramat-
ically in the regions with insufficient contrast and the recovered surface is reasonably

smooth.
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Appendix A

Focus Measures for Geometric

Optics Model

In this appendix, we use the following notation and relations.

f(z,y) is the focused image of an object and F(w,v) is its Fourier transform
where w,v and p = Vw? + v? are spatial frequencies expressed in radians/unit dis-
tance. ¢1(z,y) and ga(z,y) are two normalized images of the object recorded by a
camera with camera parameters e; and e;. R; and R; are the normalized blur cir-
cle radii corresponding to g; and g, respectively. Hi(p) and Hy(p) are the camera
OTFs corresponding to ¢; and g, respectively. Gy(w, v) and G(w, v) are the Fourier
transforms of g; and g, respectively. Defocusing is a convolution operation and the
following relations hold:
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Gi(w,v) = Hi(p)F(w,v) (A1)

Ga(w,v) = Hy(p)F(w,v). (A.2)
Definition of the focus measure My(7):
Mo(i) =/°° f°° | Gi(w,v) | dwdv fori=1,2. (A.3)

a(z) is a monotonically increasing function such that if 0 < z; < z; then a(z;) <

a(zs).

Definition of the focus measure M (i) :

Mé(a’):f_:f_: o] Gi(w, v) |)dwdy fori=1,2. (A.4)

L(w,v) is the transfer function of a filter.

Definition of the focus measure M, (i) :
My@)= [ [ 1 Lw,v) | a(l Gilw,v) dwd. (A5)

The first theorem shows that My(¢) is a sound focus measure assuming that the
OTF is zero outside the main lobe. It increases monotonically as the blur circle radius
decreases (i.e. the image blur decreases) and reaches a maximum when the image is

in best focus (i.e. the blur circle radius is zero). The Theorem also shows that Mj(z)
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has a unique maximum and therefore has no local maxima. In this theorem, the

paraxial geometric optics model is used for the OTF, except that the magnitude of

the OTF outside its main lobe is taken to be zero.

Theorem 2 [f

2J1(Ry2) for 0< Ryp < 1.227

HI(P) == &
0 elsewhere
240 for 0< Rayp < 1.221
Hz(p} =
0 elsewhere
and
| Ry | > |Ry| > 0
then

(1) Mo(1) > Mp(2) and

(1)
lim Moy(1) =/er fm | F(w,v) | dwdv.

|R1]—0

Proof (i) | Rz | > | By |

= 1> | Hi(p) | > | Hap) |2 0for 0 < p < lﬁf”
= | Hi(p) || Flw,v) | > | Ha(p) || Flw,v) |
= | Gi(w,v) | > | Ga(w,v) |

=

/_ZLZ | Gi(w,v) | dwdv > ]_Z[_il@g(u.u)'dudy

(A.B)

(A.T)
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= Mo(1) > My(2)

(ii)

Aim, Mo(1) = hmf j | Hy(p) || Flw,v) | dwd

Ry|—0 Ri|—0
zf_Z/_i | Flw,v) | dwdy

because

Aim Hi(p) = 1.

Theorem 3 is the same as Theorem 2, except that the OTF corresponds to a
Gaussian. In this case the OTF has no side lobes and therefore no assumptions are

made. The proof of this theorem is similar to that of Theorem 2.

Theorem 3 If

22 2
Hi(p)=e""7", Hyip)=e"T (A.9)
ri=cRy, ro=cRy; ¢ is a proportionality constant (A.10)

and

[Rz| > [Ry| > 0

then




i

-!_l"

.‘*t (i) Mo(1) > Mo(2) and

u 113

“| (ii)
wl llm Moy( 1)-] / F(w,v) | dwdy.

Ry|—0

M,(i) is a focus measure defined as the volume integral of a monotonically increas-

’ a(z) are a(z) = 2 or a(z) = z" for n > 0. Theorem 4 shows that M,(i) has proper-
1
l. ties similar to Mp(z). With minor exceptions, the proof of this theorem is similar to

! ing function of |G(w,v)|. Typical examples of the monotonically increasing function
I Theorem 2.

|

I Theorem 4 If the conditions (A.6) to (A.8) in Theorem 2 are satisfied, then

| ‘ ()Mo(1) > My(2) (A.12)

and

(i) Jim Mo(l)_-f f al] Flw, v) [)dwdv. (A.13)

! Proof Similar to Theorem 2; the main step to be noted is that
, [ Gi(w,v) | > | Ga(w,v) |

= o] Gi(w,7) |) > o] Gaw,v) |).

i Theorem 5 If conditions (A.9) to (A.11) are satisfied, then relations (A.12) and
il (A.13) will be true.
|

Theorem 6 shows that a focus measure which works correctly for an image se-

quence will also work correctly if the entire image sequence is filtered by the same
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filter L(w,v). Therefore, band pass filtering the image sequence will not affect the

monotonicity or the location of the maximum of a focus measure.

Theorem 6 [f conditions (A.6) to (A.8) are satisfied, then

)My (1) > M,y (2) (A.14)

and

(i) lim Mg(1) = f: f:: | Lw, v) || Flw,v) | dwdy. (A.15)

Proof Similar to the proof of Theorem 2; the main step to be noted is that

[ Gi(w,v) | > | Ga(w,v) |

= | L(w,v) || Gi(w,v) | > | L(w,v) || G2(w,v) | .

Theorem 7 [f conditions (A.9) to (A.11) are satisfied, then relations (A.1{) and

(A.15) will hold.

Proof Similar to Theorem 6.
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