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Abstract

We use the parazial geometric optics model of image
formation to derive a set of camera focusing techniques.
These technigues do not require calibration of cameras but
involve a search of the camera parameter space. The tech-
niques are proved to be theoretically sound. They include
energy mazimization of unfiltered, low-pass filtered, high-
pass filtered, and band-pass filtered images. It is shown
that in the presence of high spatial frequencies, noise, and
aliasing, focusing techniques based on band-pass filters per-
form well. The focusing techniques are implemented on a
a prototype camera system named SPARCS. The architec-
ture of SPARCS is described briefly. The performance of
the different techniques are compared experimentally. All
techniques are found to perform well. One of them which
has better overall characteristics is recommended for prac-
tical applications.

1 Introduction

Focusing cameras is an important problem in computer
vision and microscopy. In this paper we consider only those
passive focusing techniques which do not require calibra-
tion of the cameras. These techniques necessarily involve
a search of the camera parameter space. Therefore we will
call these search focusing technigues. The camera param-
eters include the distance between the lens and the image
detector, and the focal length of the lens. There are some
focusing methods which do not search the camera param-
eter space [8, 16, 15], but they require accurate calibration
of the camera parameters and the corresponding optical
transfer function or the point spread function. We first
consider the case of focusing a camera to a target object
by moving the lens along the optical axis of the lens. The
results of this case can be easily extended to focusing a
camera by adjusting its focal length, or by moving the tar-
get object along the optical axis.

Many focusing techniques have been investigated and
compared in the literature (e.g. Krotkov 1987, Ligthart
and Groen 1982, Schlag et al). In these techniques, a fo-
cus measure is defined which is a maximum for the best
focused image and it generally decreases as the defocus in-
creases. Therefore, when the lens of a camera is moved
from one end to the other, typically, the focus measure of
the image of the target object gradually increases, reaches
a maximum at the focused lens position, and then de-
creases gradually thereafter. The problem then is to find
the lens position at which the focus measure is a maximum.
This is essentially a search of the lens position space to find

the maximum of focus measure.

In the previous literature, most definitions of focus mea-
sure have been based on heuristics. No proof has been
provided about the theoretical soundness of these focus
measures, i.e. it has not been proved theoretically that
the focus measures have a global maximum for the best
focused images. Some definitions of focus measures in-
volve non-linear operators and it is hard to prove or dis-
prove their correctness. Some other definitions are useful
only for a very limited class of images. We have not found
any systematic and explicit analysis of the image defocus-
ing phenomenon and derivation of a focus measure based
on such an analysis. Further, previous literature has ig-
nored an important aspect we call the “side-lobe effect”
(explained later) which may give rise to local maxima and
cause the global maximum position to be shifted. This
makes searching for the position of global maximum diffi-
cult and introcuces error.

In this paper, first we describe a model of image de-
focusing derived from paraxial geometric optics (Gaskill
1978, Hecht and Zajac 1979, Born and Wolf 1975). Based
on this model we derive a class of focus measures which
we prove to be theoretically sound, i.e. the focus measures
have global maximum for the best focused images. We
then analyze the side-lobe effect and show how it can be
reduced through low pass filtering. Next we discuss a few
other focusing techniques from previous literature.

The focus measures derived in this paper have been
implemented on a prototype camera system named Stony-
brook Passive Autofocusing and Ranging Camera System
(SPARCS). A brief description of SPARCS architecture is
included. A number of experiments were carried out using
SPARCS to evaluate the focus measures derived here. The
experiments and their results are described. The experi-
mental results show that the focus measures derived here
perform well. Based on these results, we find that, one of
the focus measures named energy of low pass filtered image
gradient has the best performance overall. We conclude
this paper by recommending it for practical applications.

2 Camera Model

Image formation in a simple camera is shown in Fig-
ure 1. We have shown a thin lens model for the optical
system, but the analysis here can be easily extended to a
thick lens model (Gaskill 1978). Let P be a point on a
visible surface in the scene and p’ be its focused image.
The relation between the positions of P and p’ is given by



the lens formula,

1_1,1 ”

f uw v

where u is the distance between the lens plane and the ob-
ject plane and v is the distance between the lens plane and
the image plane. In this figure, ID is the image detector
(CCD array), D is the aperture diameter, and s is the dis-
tance between the lens plane and the image detector. The
distance s, focal length f, and aperture diameter D, will
be referred together as camera parameters and denoted by
e, ie.

e = (s, f, D). 2

In order to illustrate the theoretical basis of focus mea-
sures, we take the optical system to be circularly symmet-
ric around the optical axis and we use a paraxial geometric
optics model [1] for image formation. This is a good ap-
proximation in practice to actual image formation process
modeled by physical optics (Subbarao and Lu 1992, Sub-
barao 90.02.07). However, our analysis itself is applicable
to physical optics model also.

3 Point Spread Function

In Figure 1, if the object point P is not in focus, then
it gives rise to a blurred image p on the image detector ID.
According to geometric optics, the blurred image of P has
the same shape as the lens aperture but scaled by a factor.
This holds irrespective of the position of P on the object
plane. Since we have taken the aperture to be circular, the
blurred image of P is also a circle with uniform brightness
inside the circle and zero outside. This is called a blur
circle.

Let the light energy incident on the lens from the point
P during one exposure period of the camera be one unit.
Then, the blurred image of P is the response of the camera
to a unit point source and hence it is the Point Spread
Function (PSF) of the camera system. We will denote this
PSF by he(z,y).

Let R be the radius of the blur circle and ¢ be the
scaling factor defined as ¢ = 2R/D. In Figure 1, from
similar triangles, we have
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Substituting for 1/v from Eq. (1) in the above equation,

we obtain
1 1 1
=s|z———= 4
g=s [f u s] 4)
Therefore
D D |1 1 1
B=a3 =23 ?_E_E] )

Note that g and therefore R can be either positive or neg-
ative depending on whether s > v or s < v. In the former
case the image detector plane is behind the focused image
of P and in the latter case it is in front of the focused
image of P.

If we assume the camera to be a lossless system (i.e.,
no light energy is absorbed by the camera system) then

/ / ha(e,y) do dy = 1 (6)

because the light energy incident on the lens was taken to
be one unit. Using this and the fact that the blur circle
has uniform brightness inside a circle of radius R and zero
outside, we get
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In a practical camera system, if a sequence of images
gi(z,y) are taken at camera parameter settings of e; for
i=1,2,3, -+, then image magnification and mean image
brightness may change even though nothing has changed in
the scene. For example, moving the lens away from the im-
age detector will increase image magnification and chang-
ing the aperture diameter changes mean image brightness.
In order to define and compare focus measures for this
sequence of images in a correct and consistent manner,
the sequence of images must be first normalized with re-
spect to these factors. Normalization with respect to image
brightness is carried out by dividing the image brightness
at every point by the mean brightness of the image.

Normalization with respect to image magnification is
more complicated. It can be done by image interpola-
tion and resampling such that all images correspond to
the same field of view [12]. The relation between an orig-
inal image g(x,y) taken with s = so and the correspond-
ing magnification normalized image g.(z,y) is given by
gn(z/s0,y/s0) = g(z,y). However, in most practical ap-
plications, the magnification change is less than 3% and
can be ignored. It is probably for this reason that most
previous literature fails to mention the magnification cor-
rection. But this cannot be overlooked from a theoretical
point of view.

In the following discussion we assume that the images
have been normalized. Without loss of generality, we as-
sume that both the mean brightness and magnification
have been normalized to be 1. After magnification nor-
malization, the radius of the blur circle can be expressed
as a function of the camera parameter setting e and object
distance u as

R(eju) = (%—1—1). (8)

The Optical Transfer Function (OTF) corresponding to
the above PSF (Eq. 7) is

1 (B(es0) p(w,v)
R{e;u) plw, )

where w, v, and p are spatial frequencies specified in ra-
dians/unit distance, J is the first order Bessel function,
and p is the radial spatial frequency

plw,v) = Vw? + 2 (10)

Ho(w,v;e,u) =

(9)



Eq. (9) explicitly represents the dependence of the OTF
on the camera parameter setting e and the object distance
u.

In practice, the image of a point object is not a crisp
circular patch of constant brightness as suggested by geo-
metric optics. Instead, due to diffraction, poly-chromatic
illumination, lens aberrations, etc., it will be a roughly cir-
cular blob with the brightness falling off gradually at the
border rather than sharply. Therefore, as an alternative to
the above PSF model, often [3, ?, 8, 10] a two-dimensional
Gaussian is suggested which is defined by

1 _m2+y2

ho(z,y) = 9m2® (11)

where r is a spread parameter corresponding to the stan-
dard deviation of the distribution of the PSF. In practice,
it is found that [11, 13] r is proportional to R, i.e.

r = cR for ¢>0 (12)

where ¢ is a constant. Tt is approximately equal to 1/+/2 in
practice [13]. Since blur circle radius R is a function of e
and u, r can be written as r(e, u). (However, the image of
an actual point light source for our camera was quite close
to that predicted by geometric optics and was far from a
Gaussian.)

The OTF corresponding to the above PSF is (w,v in
radians/unit dist.)

Hb(w,y;e7 ’LL) = e—%pQ(w,V) r2(eju) (13)
where
D /1 1 1

Once again, Eq. (13) explicitly represents the dependence
of the OTF on the camera parameter setting e and the
object distance wu.

4 Focus Measures

In this section we develop a theoretical basis for focus
measures. Let f(z,y) be the focused image of a planar
object at distance u. The focused image f(z,y) at a point
(z,y) of a scene is defined as the total light energy incident
on the camera aperture (entrance pupil) during one expo-
sure period from the object point along the direction cor-
responding to (z,y) (Subbarao and Nikzad, 1990). We do
not know of any previous literature on focusing techniques
which gives a precise and correct (we believe) definition of
the focused image as we have done here. This definition is
essential for a sound analysis of the focusing techniques.

Let g:;(z,y) be a sequence of images of the object
recorded for a sequence of camera parameter settings e;
where

& = (s, f,D) or e = (sfi,D) (15)

for i = 1,2,3,. .. Here we are considering the variation
of only one camera parameter at a time— either the lens
position or the focal length because this is the usual mode

of operation of almost all cameras. Simultaneous variation
of more than one parameter in a random manner can lead
to multiple maxima, for the focus measure.

For a planar object perpendicular to the optical axis,
the blur circle radius R is a constant over the image of
the object (this may not be obvious at first sight, but it
can be proved easily). In this case the camera acts as a
linear shift invariant system. Therefore g; will be equal
to the convolution of the focused image f(z,y) with the
corresponding point spread function. Convolution in the
saptial domain corresponds to multiplication in the Fourier
domain. Therfore, if G; is Fourier transform of g;, we can
write

Gi(w,v) = Hy(w,v;eq,u) Flw,v) . (16)

Substituting for the right hand side of Eq. (16) from

Eq. (9), we obtain

J1(B(es; u) p(w,v))
R(ei;u) p(w,v)

Gi(w,v) = 2 F(w,v) . (17)
The left hand side of the above equation can be computed
from the recorded images ¢;. For a Gaussian PSF model,
the expression corresponding to Eq. (17) is

Gi(w,v) = o= 3P @) P (eiiu) F(w,v) . (18)

Given the above defocusing model, the problem now is
to define a focus measure which is a maximum for the best
focused image among the sequence of images g;(x,y) and
gradually decreases as the image blur increases. Except
for the image sequence g; which forms the input, no other
information is assumed to be known such as the actual
values of the camera parameters e;, or the optical transfer
function.

Figure 6 shows cross sections of the circularly symmet-
ric optical transfer functions H, for various values of the
blur circle radius R. These OTF's are sinc-like with a dom-
inant main lobe followed by side lobes on either side. The
OTF magnitude at the origin is 1 and decreases mono-
tonically to zero at p = 1.227/R at the end of the main
lobe. The first side lobe peak is approximately at 1.637/R
and has a value of about 0.132. The amplitude of the side
lobes fall off rapidly (as p~'® [3]) with p. If we consider
the effect of only the dominant main lobe, we see that the
OTF's have the general characteristics of a low pass filter.
As the blur circle radius increases (i.e. blur increases), the
higher frequencies are attenuated more. In the main lobe,
the higher a frequency, the more the attenuation. Roughly
speaking, the area under the main lobe increases with de-
creasing defocus. An obvious focus measure suggested by
this observation is the volume integral

My = //|G,-(w,y)|dwdu (19)

This focus measure is proved to be sound, monotonic, and
unimodal, in Theorem 1 in the appendix assuming the
OTF magnitude outside the main lobe to be zero. The-
orem 2 proves the same result for the case of a Gaussian



OTF. Further, the maximum value of this focus measure

is shown to be
// |F(w, v)|dwdr (20)

when the blur circle radius is zero (i.e. when the observed
image is in perfect focus).

This focus measure involves the computation of the
Fourier transform of the image which is computationally
expensive (O(N2logN) for an image of size N x N). For-
tunately, we can define other focus measures which can
be computed more efficiently. For this purpose, we note
that we can use the volume integral of any function of
|Gi(w,v)| which increases monotonically with increasing
|Gi(w,v)|. This is proved in Theorems 3 and 4 in the ap-
pendix. Therefore, literally an infinite number of focus
measures can be defined. However, based on computa-
tional requirements and noise sensitivity, we select only
three measures. Before we proceed to the three measures,
we raise the question as to whether a sound focus mea-
sure can be defined which is not a monotonic function of
|Gi(w,v)|. We believe that any such function would ex-
hibit local maxima for some |F(w,v)|.

5 Three Focus Measures
5.1 Image Energy

M, = //|G,-(w,u)|2dwdu (21)

This does not require the computation of Fourier transform
of the image because it can be computed efficiently using
the Parseval’s theorem:

M, = / / l9s(z, ) Pdzdy (22)

An equivalent measure is the image grey level variance:

1 2
o= 5 [ [een-wrea e

where p; is the mean of ¢g; and A is the area of image g;.
Note that
M = M.JA—-u° (24)

According to Theorems 1 and 2 in the appendix, M, and
therefore M; are monotonic, unimodal, and sound focus
measures.

5.2 Energy of image gradient

M, = / (5 gi(a,v)|? dedy (25)
Note that
F { ‘L"(,(; 1) } = jwG(w,v) (26)

Therefore from Parseval’s theorem,

// (WY ”’-"“’y=//wQIGi(w,vN2 dwdy (27)

Similarly,

// (%ﬂ;y)y dmy://'/2|Gi(w,1/)|2 dwdyv (28)

Adding the above two relations we get

M, = // (w2 +1/2) |Gi(w,v)|? dwdy (29)

Therefore we see that M> measures the image energy after
G;i(w,v) has been high pass filtered by

Loy(w,v) =vw?+v2=p (30)

Therefore, according to Theorems 5 and 6 in the appendix,
M, is a monotonic, unimodal and sound focus measure.

5.3 Energy of image Laplacian

M; = / (V20:(2,9))” dudy (31)
Note that
(6 g(;:(,; Y ) —w?@i(w,v) (32)
and
(a %@,y ) —12Gi(w, v) (33)

=F (V gi(a:,y)) =- (w2 + 1/2) Gi(w,v) (34)

From Parseval’s Theorem

/ (V*gi(z,9))” dwdy:// (w? + %) Gi(w, V)| dwdy

(35)
Therefore, M3 measures the image energy after G;(w,v)
has been high pass filtered by
L3(w,v) = (w2 +1/2) = p° (36)
See Figure 3 for a plot of La(w,v) and L3(w,v). Therefore
according to Theorems 5 and 6 in the appendix, M3 is a
sound, unimodal and monotonic focus measure.

6 Analysis of Side Lobe Effect

In the previous section and the appendix, we ignored
the presence of side lobes in proving the monotonicity and
the correctness of the focus measures. If the focused im-
age of an object has high energy frequency content in the
side lobes, then the focus measures discussed earlier may
exhibit local maxima. This complicates the task of search-
ing for the global maximum. In order to illustrate this,
consider the following pathological case: an object whose
Fourier spectrum is (see Figure 4)

1 637r) 7 (37)

F@l =3 (p- =5

where § is the Dirac delta function, i.e., the Fourier spec-
trum is zero everywhere except at the peak of the first



side lobe. In this case, there is a local maximum for all
the focus measures defined earlier. Both increasing and
decreasing the blur circle radius causes the focus measures
to decrease.

The above effect of the side lobe can be eliminated by
an ideal low pass filter which removes the side lobes (see
Figure 4). The cut off frequency p. of the ideal LPF should
be 1.227/ Rynar where Rypaq is the maximum blur circle ra-
dius expected for the given operating range of the distance
of the object. However, this solution for the side lobe ef-
fect is too drastic. The disadvantages of this solution are
the computational cost of ideal lowpass filtering and the
complete elimination of frequency content beyond the cut-
off frequency p. of the LPF. Such complete elimination of
frequencies will make it impossible to focus on objects with
non zero spectrum ounly for p > p.. A better solution to
the side lobe effect is to attenuate the side lobes relative
to the main lobe rather than complete elimination of the
side lobes. For this purpose we suggest a Gaussian lowpass
filter. It can be implemented economically by convolving
the images in the spatial domain with a Gaussian having
a small spread (about o = 1.5 to 2.5 pixels). Convolu-
tion can be implemented efficiently as two one-dimensional
operations, first along rows, then along columns, because
Gaussian is seperable. If k is the factor by which we wish
to attenuate the peak of the first side lobe, the parame-
ter r for the Gaussian low pass filter can be computed as
follows.

_1,2,2
e 2* = k (38)
L, = V2V-lgk (39)
p

V2
~ T s max - 4
T63m R v/ —log k (40)
r = 0.2762y/—log k Rpmac (41)

(42)

If k = 0.25 and Ry = 5 pixels, then r = 1.63 pixels. The
size of the one-dimensional Gaussian filter in this case is
about 7.

Another advantage to low pass filtering the image is
the reduction of noise and the attenuation of aliased fre-
quencies near the high end of the spectrum. Aliasing will
be a problemn if the focused image has spatial frequencies
larger than the Nyquist frequency.

The noise magnitude spectrum usually remains the
same in all images of the image sequence g; . In this case ,
if the effect of the side lobes is neglected, then the noise has
no effect on the performance of the focus measures . The
focus measures remain monotonic and unimodal. Further,
if the effect of side lobes are negligible, then even aliasing
has no effect on the performance of the focus measures.
However. if the frequency content in the side lobes is high
due to noise, aliasing, or the focused image, then the focus
measures may exhibit local maxima and the global max-
imum may be shifted. This makes the search for global

maximum more difficult and introduces error in the final
result. Therefore the attenuation of side lobes improves
the behaviour of the focus measures.

According to Theorems 5 and 6 in the appendix, low
pass filtering the image sequence does not affect the sound-
ness, monotocity, or the unimodality of the focus mea-
sures.

7 Band Pass Filtering
Suppose that the image sequence G;(w,v) is filtered

2 24,2
by the Gaussian low pass filter Hy(w,v) = e~z (W
The Fourier spectrum of the resulting image sequence is
|Hp(w, v)| |Gs(w,v)| . The focus measures M» and M3 for

this image sequence are :

My = [ [IV(hs(e,y) *gi(=,y) |° do dy
= [ J@+2) |Hyw,»)]" [Gi(w, )| dw dv
My = [ [V (he(z,y)* 9i(z,9))" de dy

= [ [ @+ |Hy(w,0) |Gi(w, )| dw dv
From the Fourier domain expressions for M} above, M,
can be thought of as the result of first filtering G;(w,v) by
a filter, Ba(w,v), having the Fourier Magnitude Spectrum
|Ba(w,v)| = /(w?+v?) [Ho(w,v)|
and then measuring the spectral energy of the re-
sulting image. Similarly, M3 can be thought of
as the result of first filtering Gi(w,v) by a filter
, Bs(w,v), having the Fourier Magnitude Spectrum
|Baw,v)| = (W +v*)|Hy(w,v)| A plot of |Bs(w,v)|
and |Bs(w,v)| are shown in Figure 7. We see that both
these filters have band-pass characteristics. Experimental
results presented later show that these band-pass filters
make the focus measures to have sharp peaks while gener-
ally retaining monotonicity and unimodality. These band-
pass filters have the desirable characteristic of attenuating
low frequencies which contribute less to the focus measure
and attenuating high frequencies affected by side lobes and
noise, but emphasizing medium frequencies.

8 Discussion of other focus measures

A number of focus measures have been proposed in
the literature (Ligthart and Groen, 1982, Jarvis, Krotkov
1987). Among these, Tenengrad (Tenenbaum 1970, Schlag
et al, Krotkov 1987) has been found to be the best. More
recently, a focus measure based on a modified Laplacian
operator ( SML operator) has been suggested to perform
better than Tenengrad ( Nayar 92 ).

Tenengrad ( Schlag et al, Tenenbaum ) is a measure of
thresholded gradient magnitude. It is similar to M> ex-
cept that only those points where the gradient magnitude
is greater than a pre-specified threshold, are used in the
calculation. The other points are not used in the calcu-
lation of the focus measure. Because of the thresholding
operation, a Fourier domain filter analysis of this focus
measure is not possible. More importantly, if the thresh-
old is non-zero, this focus measure cannot be proved to
be theoretically sound, i.e., it cannot be proved that the
global maximum of the focus measure occurs for the best



focused image. Moreover, this focus measure involves the
selection of a threshold. For these reasons, and the fact
that the focus measures discussed in this paper ( M to
Ms; and Mj to M‘3) performed very well in a large num-
ber of experiments, we do not recommend this method in
actual applications.

Nayar ( Nayar ’92 ) has proposed a new focus measure
based on a new operator named sum-modified-Laplacian
( SML). It is defined as :

3292-
Oz?

Vi gi(z,y) =

3292-
oy?

The SML focus measure is defined as :

- [ (53] [5H]) e

SML differs from the usual Laplacian in that the magni-
tude of the second derivatives are summed instead of their
actual values. Therefore it is a non-linear operator. The
focus measure SMLF is a simple summation of the result of
applying the SMLF operator; it does not involve squaring
the integrand. For these reasons, it is not possible to pro-
vide a Fourier domain filter analysis of this focus measure.
Further, as in the case of Tenengrad, we do not believe
that this focus measure can be proved to be theoretically
sound.

0g;
Oz2

2
SMLF 6 9i

One of the main reason that Tenengrad and SMLF were
said to be better focus measures in the past was that they
gave sharper peaks. The sharper the peak produced by a
focus measure the better it was thought because the lo-
cation of the position of the maximum was thought to be
more accurate. However it should be noted that a blunt
peak of any focus measure can be sharpened by simply
squaring the values of the focus measure. In fact, the
peak can be sharpened to any desired degree by raising
the values to some large positive power. ( See Figure 5 ).
Therefore, not only the sharpness of the peak, but also the
smoothness (or monotonicity) is important. Sharpening
the peak of a focus measure will magnify and reveal hid-
den local maxima. For bad focus measures, the amplitude
of the local maxima will be large where as it will be small
for good focus measures, thus reducing the uncertainty in
locating the actual global maximum. In view of this ob-
servation, we believe that Tenengrad and SMLF have no
particular advantage over some of the focus measures con-
sidered in this paper.

9 Discrete focus measures

Discrete versions of the focus measures were imple-
mented on SPARCS. The expressions for the N x N image
gi(z,y) are given here. Each image was first normalized
with respect to mean. Magnification normalization was
not done as the change in magnification was less than 2%.

1. Variance

Variance is computed as
% > (glmy) —pw® (43)
z oy
= %Zzgf(w,y)—f (44)
z oy
% Z Z gi(z,y) (45)
z oy

2. Energy of image gradient
This focus measure is computed as

My = Y > (d2+g;) (46)

where g, (z,y) = gi(x+1,y)—gi(x,y) (47)
and gy(z,y) = gi(e,y+1)—gi(z,y) (48)

M, =

where p =

3. Energy of Laplacian of the Image

Ms = Z Z (gze + gyy)2 (49)

where

Jzat Gyy = (50)
—gi{fx —1,y—1) —4g:i(z — 1,9) — gi(z — 1,y 461)
—4gi(z,y — 1) + 20g:(x,y) — 4gi(z,y + 1)
—gi(c+1,y—1)—4gi(z+1,y) —gi(z+ L,y +1)

4. Variance of low-pass filtered image

The image was first low-pass filtered by convolution
with a two-dimensional Gaussian. Since the Gaussian is a
seperable filter, it was implemented as two one-dimensional
convolutions, first along rows and then along columns.

giwy) = D> h,q slz-py—q (52
= > ) h®hi(a) gi(z —p,y —q) (53)

D m(®) Y he(a)gie —p,y—q) (54)

The variance of this smoothed image is computed similar

tOMl.
M NQ:Z.%(M N2ZZgz<xy (55)

5. Energy of low-pass filtered image gradient

The original image g; was first low-pass filtered as in
the previous case to obtain g;. Then M; was computed
similar to M2 except that g, was used in place of g;.

6. Energy of Laplacian of the low-pass filtered image

M3 was computed similar to M3 except that the low-
pass filtered image g; was used in place of the original
image g;.



10 SPARCS

The focus measures described here were implemented
on a camera system named Stonybrook Passive Autofocus-
ing and Ranging Camera System (SPARCS). SPARCS was
built in the Computer Vision Laboratory at the Depart-
ment of Electrical Engineering, State University of New
York, Stony Brook. A block diagram of the system is
shown in Figure 2. SPARCS consists of a SONY XC-711
CCD camera and an Olympus 35-70mm motorized lens.
Images from the camera are captured by a frame grabber
board (Quickcapture DT2953 of Data Translation). The
frame grabber board resides in an IBM PS/2 (model 70)
personal computer. The images taken by the frame grab-
ber are processed in the PS/2 computer.

The focal length of the lens can be varied manually from
about 35mm to 70mm. The F-number which is defined as
the ratio of the focal length f to aperture diameter D can
also be set manually to 4, 8, 22 etc.,. The lens system con-
sists of multiple lenses and focusing is done by moving the
front lens forward and backward. The lens can be moved
either manually or under computer control. To facilitate
computer control of the lens movement there is a stepper
motor with 97 steps, numbered 0 to 96. Step number 0
corresponds to focusing an object at distance infinity and
step number 96 corresponds to focusing a nearby object,
at a distance of about 50cm from the lens as shown in Ta-
ble 1. The motor is controlled by a microprocessor, which
can communicate with the IBM PS/2 through a digital
I/O board (Contec mPI024/24). Pictures taken by the
camera can be displayed in real time on a color monitor
(SONY PVM-1342 Q). The images acquired and stored in
the IBM PS/2 can be transferred to a SUN workstation.

The camera settings used in the experiment were

e Focal Length = 35mm.

e F- Number = 4.

e Camera Gain Control = +6dB.
e White Balance = Off.

e Gamma Compensation = Off.

11 Experiments

Experiments were conducted on a large number of test
objects. The results on three of these objects will be pre-
sented. The three objects are

1) a picture of a cartoon,

2) face of a person, and

3) a small circular light source having large high spatial
frequency content (the diameter of a pinhole: 2mm).

The third object was chosen to observe the effect of
aliasing in the Camera OTF. The illumination of the first
two experiments was about 500 lux and no illumination
was given for the third experiment except its light source.

Each object was placed at a different distance(Cartoon:
65 steps, Human Face: 57steps, Light Source: 40 steps) in
front of the camera and the program was run. The vertical
lines in Figures 8 9 10 indicate the known distance of the
object. SPARCS acquired one image of the object at each

lens position. There are 97 lens positions corresponding to
97 steps of the lens stepper motor. From each image thus
acquired, a 64 x 64 subimage of the object was extracted.
Then all the 6 focus measures were computed and printed.
This procedure was repeated for each of the three objects.
The 6 focus measures were normalized to have the same
peak values by dividing their values by their maximum
values. The results are plotted in Figures 8 9 10. In the
plots we see that all focus measures reach a peak at almost
the same location. The only difference lies in the sharpness
of peaks and the smoothness of the plotted curves.

In Figures 8 9 10 the vaiance curve shows a very slow
slope, particularly almost same to that of signal power
in the light source experiment. However, the curves of
gradient and laplacian operators show very sharp slopes
near the peak point while they are almost flat at the far
position. Some misleadings were found in the experiments
of the above two operators by one or two steps(2 or 4%
error) at the focused position.

Furthermore, there is a large value of local maximum
peak near the focused position in the light source experi-
ment for the laplacian operator, which shows that aliasing
is a serious problem in high pass filtering.

In the plots we see that the gaussian curve is flatter
than the signal energy curve by the smoothing effect. In
the experiment of the squared gradient-gaussian method,
we got very sound results in the sharpness and the smooth-
ness. The method improves the monotonic characteristic
increasing the shapness of the focus measure curve. In
the plots its curve shows the linearity quite well at all the
object positions.

12 Conclusion
13 Appendix

In this appendix we use the following notation and re-
lations.

f(z,y) is the focused image of an object and F(w,v)
is its Fourier transform where w,v and p = Vw? +v?
are spatial frequencies expressed in radians/unit distance.
g1(z,y) and g2(z,y) are two normalized images of the ob-
ject recorded by a camera with camera parameters e; and
e2. R; and R; are the normalized blur circle radii corre-
sponding to g1 and g» respectively. Hi(p) and Ha(p) are
the camera OTFs corresponding to g1 and g2 respectively.
G1{w,v) and G2(w,v) are the Fourier transforms of g1 and
g2 respectively. Defocusing is a convolution operation and
the following relations hold:

Gi(w,v) = Hi(p)F(w,v)

G (w,v) = Hy(p) F(w,v)

Definition of the focus measure Mo(i):

Mo(i) = [ [ | Gi(w,v) | dwdv for i=1,2.

a(z) is a monotonically increasing function such that if
0 < z1 < z2 then a(z1) < alz2).

Definition of the focus measure Mo(i) :

Mo(3) =//a(| Gi(w,v) |)dwdy fori=1,2.  (56)



L(w,v) is the transfer function of a filter.
Definition of the focus measure M, (i) :

M) (i) = / / | Lw,v) | a(] Giw,v) Ndwdv  (57)

The first theorem shows that Mo is a sound focus mea-
sure. It increases monotonically as the blur circle radius
decreases (i.e. the image blur decreases) and reaches a
maximum when the image is in best focus (i.e. the blur
circle radius is zero). It also shows that Mo has a unique
maximum and therefore has no local maxima. In this the-
orem, the paraxial geometric optics model is used for the
OTF, except that the magnitude of the OTF outside its
main lobe is taken to be zero.

Theorem 1 If

2J1(R1p) S .
Hi(p) = s for 0K Rip < 1.227r' (mszde'a main lobe)
0 elsewhere(outside main lobe)
(58)
2N(R2p)  for < Ryp < 1.227
Hy(p) = Rap = H2p = L 59
2(p) { 0 elsewhere (59)

and | R2| > | Rz | >
Olabeleq : 13(59)

then

(1) Mo(1) > Mo(2) and

(ii)

0O|R2| > |R1]| >

|Rllm Mo(1) = //|F(w v) | dwdv
1

(Proof)(i) | R1| > | Rz |
=1 > |Hi(p)| > |Hop) |>0for0 < p <
1227 (inside main lobe)
= | Hi(p) || F(w,v) | > | Ha(p) || F(w,v) |
— | Gi(w,¥) | > | Gaw, D) |
= [ [|Gi(w,v) |dwdv > [ [|G2(w,v)|dwdr
= Mo(].) > Mo(z)

(ii)
lim My(l) = llm //|H1(p ) || Fw,v) | dwdv
|R1|—0
=JJ1
F(w,v) | dwdv
because
li H =1
i, 1(p) =

Theorem 2 is the same as Theorem 1, except that the
OTF corresponds to a Gaussian. The proof of this theorem
is similar to that of Theorem 1.

Theorem 2 If

o2
Hi(p)=e "2 (60)
p2r2
L2
Hy(p) =™ (61)

r1 =cRi, ro=cRp ¢ 18 a proportionality constant

(62)
and
|Rz| > |Ri| > O (63)
then
(i) Mo(1) > Mo(2) and
(i)
lim Mo(1) //|F(w v) | dwdv
[R1]—0

M(I) is a focus measure defined as the volume integral of
a monotonically increasing function of | G(w,v) |. Typical
examples of the monotonically increasing function a(z) are
a(z) = 22 or a(x) = 2™ for n>1. Theorem 3 shows that
M(') has properties similar to My. With minor exceptions,
the proof of this theorem is similar to Theorem 1.

Theorem 3 If the conditions 58 to 27 in Theorem 1 are
satisfied,
then

(OMo(1) > Mo(2) (64)

and

“%gﬁﬁ%“Vi//a“”%”DWW- (65)

(Proof)

Similar to Theorem 1, the main step to be noted is that
| Gi(w,v) | > | G2(w,v) |

= o Gi(w,v) ) > of Gz(w,v) ).

Theorem 4 If conditions 60 to 63 are satisfied, then re-
lations 64 and 65 will be true.

Theorem 5 shows that a focus measure which works
correctly for an image sequence will also work correctly
if the entire image sequence is filtered by the same filter
L(w,v). Therefore, band pass filtering image sequence will
not affect the monotonicity or the location of the maximum
of a focus measure.

Theorem 5 If conditions 58 to 7?7 are satisfied, then

OMo (1) > M, (2) (66)

and



) Jim M5 @) = [ [ 12 || Fwr0) |

(67)

(Proof)

Similar to the proof of Theorem 1; the main step to be
noted is that

| Gi(w,v) | > | Ga(w,v) |

= | L{w,v) || Gi(w,v) | > | L{w,v) || G2(w,v) | .

Theorem 6 If conditions 60 to 63 are satisfied, then re-
lations 66 and 67 will hold.

(Proof)
Similar to Theorem 5.
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Figure 10: Object 1:
Cartoon. Figure
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