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Accurate Recovery of Three-Dimensional
‘Shape from Image Focus

Murali Subbarao, Member, IEEE, and Tae Choi, Member, IEEE

Abstract—A new shape-from-focus method is described which
is based on a new concept named Focused Image Surface (FIS).
FIS of an object is defined as the surface formed by the set of
points at which the object points are focused by a camera lens.
According to paraxial-geometric optics, there is a one-to-one cor-
respondence between the shape of an object and the shape of its
FIS. Therefore, the problem of shape recovery can be posed as the
problem of determining the shape of the FIS. From the shape of
FIS the shape of the object is easily obtained. In this paper the
shape of the FIS is determined by searching for a shape which
maximizes a focus measure. In contrast to previous literature
where the focus measure is computed over the planar image de-
tector of the camera, here the focus measure is computed over the
FIS. This results in more accurate shape recovery than the tradi-
tional methods. Also, using FIS, a more accurate focused image
can be reconstructed from a sequence of images than is possible
with traditional methods. The new method has been implemented
on an actual camera system, and the results of shape recovery and
focused image reconstruction are presented.

Index Items—Shape-from-focus, Focused Image Surface,
paraxial-geometric optics, focus measure, camera parameters,
shape recovery, focused image reconstruction.

I. INTRODUCTION

HE image of a scene formed by an optical system, such
as a lens, contains both photometric and geometric in-
formation about the scene. Brightness or radiance and color of
objects in the scene are part of photometric information,
whereas distance and shape of objects are part of geometric
information. Recovering this information from a set of images
sensed by a camera is an important problem in computer vi-
sion. Shape-From-Focus (SFF) methods provide one solution
to the problem.
For an aberration-free convex lens, 1) the radiance at a point
in the scene is proportional to the irradiance at its focused image

{4]. and 2) the position of the point in the scene and the position

of its focused image are related by the lens formula
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f u v

where f is the focal length, u is the distance of the object from
the lens plane, and v is the distance of the focused image from
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the lens plane (see Fig. 1). Given the irradiance and the posi-
tion of the focused image of a point, its radiance and position in
the scene are uniquely determined. In fact, the positions of a
point-object and its image are interchangeable, i.e., the image of
the image is the object itself. Now, if we think of an object sur-
face in front of the lens as comprised of a set of points, then the
focused images of these points define another surface behind the
lens (see Fig. 1). We define this surface to be the Focused Im-
age Surface (FIS) and the image irradiance on this surface to be
the focused image. There is a one-to-one correspondence be-
tween FIS and the object surface. The geometry (i.e., the shape)
and the radiance distribution of the object surface are uniquely
determined by the FIS and the focused image.
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Fig. 1. Image formation in a convex lens.

In this paper we are concerned with the principles and compu-
tational methods for recovering the geometry and the radiance of
an object from its sensed image. Note that a sensed image is in
general quite different from the focused image of an object. In
computer vision, the sensors are usually planar image detectors
such as CCD arrays. Therefore, for curved objects, only some
parts of the image will be focused whereas other parts will be
blurred. A sensed image will be the focused image only when
the shape of the sensor and the shape of FIS match.

In traditional SFF methods (e.g., [3], [5] {61, {81, [10], [12D)
a sequence of images is obtained by continuously varying the
distance between the lens and the image detector. For each
image in the sequence, a sharpness measure or focus measure
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is computed at each pixel.using a small (about 15 X 15) image
. neighborhood around the pixel. At each pixel, that image
frame among the image sequence which gives a maximum
sharpness measure is determined. The grey level (which is
proportional to image irradiance) of the pixel in the image
frame thus determined is taken to be the grey level of the fo-
cused image for that pixel. The camera parameter values for
this image frame are used to compute the distance of the object
point corresponding to the pixel. A simple measure of sharp-
ness of an image is its grey level variance. Measures based on
the energy of derivatives of images are discussed in [12].

The traditional SFF methods do not yield accurate shape or
depth-map of objects. The main reason for this is that a focus
measure is defined and computed over image frames sensed by
planar image detectors. The focus measure at each pixel in an
image frame is computed using a small window around the
pixel. This corresponds to a piecewise constant approximation
of the object shape in the window (see Fig. 3a). Because of
this approximation, the focused image reconstructed from the
image sequence will be an approximation of the actual focused
image.

The fundamental contribution of this paper is the idea that
focus measures should be computed over the FIS using pixels
lying on the FIS in the image sequence rather than over image
frames where the pixels lie on a plane. Maximization of focus
measures computed over FIS avoids the piecewise constant ap-
proximation of object shape found in the traditional SFF meth-
ods. The computational implementation of this idea involves two
steps. The first step is essentially to estimate an approximate FIS
using one of the traditional SFF methods. The second step is to
refine this approximate estimate by searching for an FIS shape
which maximizes a focus measure computed over pixels lying on
the FIS. The search is local and, therefore, computationaily
efficient. At present, our implementation corresponds to a
piecewise planar (or linear) approximation of object shape as
opposed to piecewise constant approximation. However, our
implementation algorithm can be easily extended to higher order
approximation at the cost of additional computation.

The concept of FIS is based on the paraxial geometric optics
model of image formation. However, this model is only a good
approximation, not exact, for image formation in real lenses. The
- consequence of this approximation is discussed in Section V.

Our SFF algorithm, named SFE.FIS, has been implemented
on a prototype camera system named Stonybrook Passive
Autofocusing and Ranging Camera System (SPARCS). A
number of experiments were carried out using SPARCS to
evaluate our SFF algorithm. The experiments and their results
are described. The experimental results show that our algo-
rithm performs well.

In this paper we are mainly concerned with SFF methods
which give dense and accurate depth-maps, and which do not
require a detailed knowledge of the camera characteristics.
These methods require a sequence of image frames (about 10
to 30) recorded with different camera parameter settings.
However, there are methods, [1], [9], [11], [13], [14], which
do not require a sequence of images, but only a few (about two
or three) acquired with different camera parameter values.

These methods are very fast (about 10 times faster), but less
accurate (their best performance gives a Root Mean Square
(RMS) error which is twice that of the SFF methods). These
fast methods are known as Depth-from-Defocus (DFD) meth-
ods whereas the SFF methods considered here are known as
Depth-from-Focus (DFF) methods. Clearly, DFD methods can
be used first to obtain a rough estimate of shape and then DFF
or SFF methods can be used to refine the rough estimate to
obtain a more accurate estimate of shape.

When the image detector of a camera is moved from one
end to the other, typically the focus measure in an image win-
dow gradually increases, reaching a maximum at the FIS, and
then decreases gradually thereafter. The problem, then, is to
find the image detector position at which the focus measure is
a maximum. This is essentially a search of the image detector
position space.

1I. RELATION BETWEEN OBJECT SURFACE AND FIS

Fig. 2 shows a right-handed Object Space Coordinate Sys-
tem (OSCS) (X, Y, Z) with its origin O at the optical center of a
convex lens L. The visible surface of any object in the object
space (scene) can be expressed as Z = Z(X, Y). We assume that

Z(x.Y)2f ()

because any object point closer than focal length f will produce
only a virtual image, not a real image.

Image Detector Plane

ject Surtace
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Fig. 2. Object and image coordinate systems.

The image formed by a convex lens is inverted with respect
to the object. Therefore, for convenience, we define a left-

‘handed Image Space Coordinate System (ISCS) (x, y, z) (see

Fig. 2) with its origin at O. The axes of the ISCS point in the
direction exactly opposite to that of the corresponding axes of

‘the OSCS. For any point (X, Y, Z) in OSCS, let its focused

image in the ISCS be (x, y, 2). The points (X, Y, Z) and (x .y, 2)
form a conjugate pair of points. Using the properties of similar
triangles, it is easy to show that

x X

z Z

For an object surface Z(X, Y), the corresponding Focused Im-
age Surface, or FIS, can be denoted by z(x, y). It follows from
the lens formuia (1) that

and
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The above relation can be used to obtain the shape of an object
from its FIS and vice versa. It is helpful to recall here a few
well-known results. A point at Z = e= comes to focus at z=f, a
point at Z = 2f comes to focus at z = 2f, and a point at Z = f
comes to focus at z = oo, '

Although the above relation between the shape of an object
Z(X, Y) and its FIS z(x, y) is quite simple, the following theo-
rem is particularly interesting.

(C))

Theorem 1: The Focused Image Surface of a planar object
is also planar.
Proof: Let
Z=PX+QY+R &)

be a planar object where P and Q are, respectively, the slopes
of the surface along the X and Y axes, and R is the intercept
along the Z axis. We have

Z-PX-QY =R (6)
X Y R
ﬂl-—PE—‘QE——Z- (7)

Using relations (3),(4), the above equation can be written as

1 1
1—P£-Q—y-=k(———). 9)
z F4 f z
Rearranging terms in the above relation, we obtain
Z=pxtqgy+r (10)
where
c= ! ,p=—cP,g=—-cQ,and r=cR. (11)
R-f

Therefore we have shown that the FIS of a planar object
Z(X, Y) = PX + QY + R is also planar and is given by z(x, y) =
p + qy + r. The relation between the object surface parameters
P, O, R ,and FIS parameters is given by (11).

The fact that the FIS of a planar object is also planar can be
used to conclude the following: 1) the FIS of a polyhedral ob-
ject is also polyhedral (with the same number of planar faces),
2) the FIS of a straight line is also a straight line, and 3) the
FIS of a surface which can be generated by sweeping a straight
line in 3D object space is also a surface which can be gener-
ated by sweeping a straight line in 3D image space. The first
result follows directly from the theorem. The second result can
be proved by noting that the intersection of two planes in ob-
ject space is a straight line, and the FIS of the straight line is
the intersection of the FISs of the two intersecting planes,
which are themselves planar. The third result follows from the
second result. A consequence of the third result is that the FIS
of a cone is a “distorted cone,” and the FIS of a cylinder is a
“distorted cylinder.”

An important significance of the above theorem in SFF
methods is that if the shape of an object can be approximated
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well by a piecewise planar surface, then the shape of the corre-
sponding FIS can also be approximated well by a piecewise
planar surface.

\
1. Focus MEASURE

There are many focus measures which perform well when
used in SFF methods [5], [8], [12]. Any one of these could be
used in our algorithm described next. Two simple examples of
reasonably good focus measures are grey level variance and
energy of Laplacian of the image. In our implementation we
have arbitrarily chosen the energy of Laplacian of the image. It
is computed by first applying the Laplacian operator, squaring
the resulting values at every pixel, and then summing the val-
ues in the window of interest.

Before the focus measure of an image is calculated, the im-
age is first normalized with respect to brightness. This is done
by dividing the grey level of each pixel by the mean grey level
of the whole image. This step is necessary because, in a practi-
cal camera system, moving the lens usually changes the effec-
tive aperture stop by a small amount, which in turn changes
mean image brightness [12].

IV. SFF ALGORITHM

Conceptually, our Shape-from-Focus (SFF) algorithm can
be described as follows. The image detector is first moved to
Z = zo. A sequence of images, g(i, j, k), is recorded by moving
the image detector to positions z; = zg + i* 8 where § is a small
displacement, fori=0, 1,2, ---,1-1,j=0,1,2, ---, J - 1,
andk=0,1,2, ---, K- 1. Usually, zp = f. J and X are the num-
ber of rows and columns respectively in each image frame, and
I is the number of image frames (see Fig. 3). We can think of
this image sequence as an image volume. In this image vol-
ume, our problem is to find the set of pixels which lie on the
focused image surface (FIS) of the object. For surfaces with a
slope of up to & /d where & is the lens step size and d is the
pixel size, for any given row j and column &, there is only one
pixel which lies on the FIS. If the slope exceeds this limit, then
there will be more than one pixel through which the FIS passes
for a given row j and column k. This problem can be avoided
by either increasing & or decreasing d. We shall assume that
the slope of FIS is less than or equal to 8 /d.

Fig. 3. Direct fitting on the FIS (Focused Image Surface).

For any given row j and column k, there is only one pixel
which lies on the FIS. The image frame number i to which this
pixel belongs depends on (j, k) and therefore it can be expressed
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- as a function i(j, k). The grey level of this pixel is g(i(j, k), J, k).
. The relation between the row number j and the y coordinate is y
= (j — jod where j. = J/2 is the row index of the center row and d
is the distance between two rows of pixels on the image detector
array. Similarly, the relation between the x coordinate and the
column index k is x = (k — k.)d where k. = K/2 is the column
index of the center column and d is the distance between two
columns of pixels on the image detector array.

The shape of the FIS can be determined from the function i(j,
k) which gives the frame number of the pixel lying on the FIS for
any given (j, k). The focused image F(j, k) of the object is ob-
tained from the image sequence and the function i(j, k) as:

F(j, k) = g(i(j. k), j.k)-

In order to find the function i(j, k) which specifies the FIS, we
use the fact that the focus measure of F(j, k) (or g(i(j, k), J, k))
is a maximum over all possible functions. Since a search for a
function is computationally expensive, a two phase procedure
is used in our implementation.

In the first phase of the algorithm, a rough estimate of FIS is
estimated using a traditional SFF method as follows. A small set
(about 10) of N image frames, g,, at regular intervals of I/N is
selected from the original image sequence g;. For each selected
image frame, focus measures are computed in small fields-of-
view, or image windows, of size M x M (M is about 15). For a
given field-of-view, the corresponding image windows in differ-
ent image frames shift and change magnification from one image
frame to the other. Ideally, this should be taken into account but,

" in practice, this effect may be neglected as the shift and magnifi-
cation changes are usually small.

Usually, overlapping windows are used at intervals of about
M/4. Non-overlapping windows may also be used. For each
window (or field-of-view), the image frame number for which

. the focus measure is a maximum over all the image frames is
determined. The image frame numbers thus found give a very
rough estimate of the FIS. This estimate can be improved
through a local interpolation scheme. For example, a low
(quadratic or higher) order polynomial can be fitted to a few
data points (focus measure as a function of image frame num-
ber) around the image frame with the maximum focus meas-
ure. Then the location of the local maximum of the polynomial
can be taken as the improved estimate of the focus location.

(12)

Pocus Meesura(FM{1))

10 20 30 - 40
1: Object position(step)

50(p1) 60 {p2} To{p3) ac 90

Fig. 4. Focus measure for a target pixel (j, k) and polynomial interpolation
using a second order polynomial.

Fig. 4 illustrates this interpolation scheme. The figure shows
a plot of the focus measure as a function of lens position. The
values were computed at intervals of 10 lens steps and joined
by straight lines. The focus measure at lens step 60 is a maxi-
mum. Therefore, a quadratic polynomial was fitted to the three
data points at lens steps 50, 60, and 70. Then the location of
the local maximum of the polynomial was computed (about
65) and was taken to be the improved estimate of the focus
position. Usually a quadratic or a cubic polynomial fit gives
satisfactory results. A Gaussian function fit is used by some
researchers [8]. Having obtained a rough estimate of the FIS,
an approximate estimate of the slope of the FIS can be ob-
tained by computing partial derivatives (or finite differences)
along x and y directions.

In the second phase of our algorithm, the initial estimate of
FIS is refined as follows. In this phase, the entire original image
sequence g; containing / image frames is used. For every win-
dow in which the FIS was estimated in the first step, a small cu-
bic volume (about the size of M x M x M) image space is con-
sidered in the image sequence. The volume is centered at the
initial estimate of FIS in that window. Now, in this volume, a
search is made for a planar surface which is closest to the actual
FIS by maximizing the focus measure computed over the planar
surface. The initial estimates of position and orientation of the
FIS are used as starting values during the search. A brute-force

" or a simple gradient ascent search can be used. In our implemen-

tation, in order to increase robustness against noise, the focus
measure was surnmed over the estimated FIS and two more sur-
faces parallel to it where one was about one image frame closer
to the camera and the other was about one image frame farther
away from the camera.

An outline of the algorithm implemented by us can be sum-
marized as follows:

1) In every field of view, do the steps below.

2) Read as input the initial estimates of the position and ori-
entation parameters of the FIS. Let iy be the initial esti-
mate of position, and py, go be the initial estimates of the

slopes of the FIS along the x and y axes, respectively.
Then the initial estimate of the FIS is described by

i(j.k) = i + PoJi +gok (13)

3) Read as input the size of the search space for position
and orientation. Let the search space for position be the
Tange ipmi, = fg — O, 10 imay = ip + Oi, for x-slope be the
TaNEE Ppin = Po — OP 10 Prmax = Po + Op, and for y-slope be
the range Gmi, = go — 09 10 Gmax = go + 8. I i, < 1 set
Imin = 1 and if i, = I, set i, = I. Take the value of
maximum allowable slope MAXSLOPE for the surface
along each axis to be &/d. If p,;,, < ~MAXSLOPE, set
Pmin = ~MAXSLOPE, and if ppn,. 2 MAXSLOPE, set
Pmax= MAXSLOPE. Similarly, if g,;, < -MAXSLOPE,
set gmin = -MAXSLOPE, and if g, = MAXSLOPE, set
qmax = MAXSLOPE. Read as input the searching step
sizes ;, 8,, , for i, p, g, respectively.

4) Read image window size 25+1.
maxsum = 0;

ip= io; Pp=Po: 9p= qu;
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fOr i = ipin tO img, in steps of §; do /* search position space
for P = Pmin tO Pma in steps of §, do /* search x-slope
fOr G = Gmin tO Gmay in steps of 9, do /*search y-
slope
/* compute focus measure on a candidate FIS */
sum =0,
for j=-Sto Sdo
fork=-Sto Sdo
=l i,,,+j*p,,,+k*q,,._|;

m=I+1
sum = sum+ 2+ (Laplacian[m]] j][k])2 ;
m=I-1

end /* k loop
end /* j loop
if(sum > maxsum)
then i, = im; Pp = P @p =
end/* g,, logp
end /* p,, loop
end/* I, loop

qm; MAaxsum = sum,

ip, Pp, and g, are the position and slopes of the estimated
FIS. In the above algorithm, Laplacian[m][j][k] is the 2D im-
age Laplacian of the mth image frame computed at row num-
ber j and column number k.

The estimated FIS is described by i(j, k) = i, + p, j + g, k in
the image window being processed. It is also possible to search
and obtain piecewise quadratic and higher order approxima-
tions to the FIS directly, but the computational cost becomes
expensive. It is better to search in many smaller windows for
piecewise planar FIS and then reconstruct the higher order
surface by combining the planar patches.

V. REAL IMAGING MODEL

The concept of FIS is based on the paraxial geometric op-
tics model of image formation [2]. This model is inexact, but it
is a simple model for obtaining reasonably accurate and useful
results. The accuracy of the model increases with increasing F-
number and decreasing distance from the optical axis. In most
machine vision applications, F-number is about 4 to 16, and
the field of view is less than about 20 degrees. For these cases,
the model is generally satisfactory. However, the concept of
FIS can be extended to real imaging model.

For a real lens, consider a sequence of images of a point
light object. Suppose the sequence is recorded by moving the
image detector from near to far with respect to the lens. The
image of the point object will initially appear to be a blurred
circle-like blob, gradually decreasing in size to become a sharp
image, and then increasing in size gradually. Due to diffraction
(and lens aberrations, if present) the size of the blob never
reduces to a single geometric point but only to some minimum
size. For the image sequence, the “sharpest image” can be de-
fined as that image in the image sequence for which a suitable
focus measure is a maximum. (It can also be defined as that

image for which the standard deviation of the distribution of -

the image brightness is a minimum, but the former definition is
more convenient for arbitrary objects. In general both defini-

tions define the same image [12]). The position of the sharpest

image of the point object can be defined as the position of the
centroid of the image brightness distribution on the sharpest
image. Let the position vector of the point object in object
space be defined by A = (X, Y, Z), the position vector of the
sharpest image in the imagé space be defined by a = (x, ¥, 2),
and the vector representing the camera parameters be defined
by e = (s, f; D). Analogous to (3) and (4) for paraxial geomet-
Tic optics, the quantities a, A, and e will be related by a set of
equations for the real imaging model. Now the concept of the
FIS can be extended to real lenses in an obvious manner. The
Sharpest Image Surface (SIS) of an object is the surface de-
fined by the set of points corresponding to the positions of the
sharpest images of the visible points on the object surface. The
relation between the shape of the object surface and the SIS is
given by the equations that relate a, A, and e. Deriving ana-
Iytic expressions for these equations is difficult, but they can
be obtained in tabular form through computer simulation or
experimental calibration of the camera,

The algorithm presented in the previous section in fact
searches for and finds SIS, not FIS. The only assumption used
by the algorithm is that SIS can be approximated by a piece-
wise planar patch in a small image volume. In particular, the
assumption of a paraxial geometric optics model or a thin lens
model is not required. Further, the algorithm is not based on
the theorem in Section II which states that the FIS of a planar
object is also planar. Having computed the SIS using the al-
gorithm, the shape of the object is obtained using either the
equations that relate a, A, and e, or an approximation to them
given by (3) and (4).

VI. SPARCS

The SFF method described here was implemented on a cam-
era system named Stonybrook Passive Autofocusing and Rang-
ing Camera System (SPARCS). SPARCS was built by us in our
laboratory over the last few years. A block diagram of the sys-
tem is shown in Fig. 5. SPARCS consists of a SONY XC-711
CCD camera and an Olympus 35-70mm motorized lens.

SUN
SPARC
Station 1+

Olympus
35-70mm
Motorized
Lens

SONY XC-711 CCD
Carmera Module

IBM PS/2 model 70
Computer

Ston&bmok Passive Autofocusing and Ranging Camora System-
CS - is a prototype camera system

Computer Vision Labatory for oyanmomal msnamh in robonc
vision, State University of New York at Stony 8rock

Fig. 5. SPARCS.

The lens system consists of multiple lenses. Focusing is done
by moving the front lens forward and backward. The lens
movement is performed by a computer controlled stepper motor
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with 97 steps, numbered 0 o 96. Step number 0 corresponds o
focusing an object at distance infinity and step number 96 corre-
sponds to focusing a nearby object at a distance of about 50cm
from the lens. The camera settings used in the experiments were;
focal length = 35mm, F-number = 4 (aperture diameter
35/4mm), and camera gain control = +6dB.

VI EXPERIVENTS

‘The SFF algorithm described above and the corresponding
traditional method were implemented on the SPARCS camera
system. The methods were similar in all respects except that
the focus measure was computed over estimated FIS in the
case of our SFF method, whereas, in the traditional method,
the focus measure was computed over image frames in image
windows. These implementations were used to compare the
improvement obtained by our SFF algorithm with the tradi-
tional method.

Here we present the results for two objects: 1) a slanted pla-
nar object (Fig. 6), and 2) a cone object of length about 79
inches and base diameter of about 15 inches (Fig. 7). It is
found that the improvement in accuracy for the slanted planar
object is marginal, whereas it is significant for the cone object
‘This indicates that FIS improves the accuracy substantially in
the case of curved objects.

“The illumination for the two objects was about 600 lux. Im-
age size was 256 X 256. In order to reduce clectronic noise, for
a fixed lens position five image frames were time averaged
The image sequence contained 97 image frames, one for cach
lens step position of the stepper motor. The absolutc

Fig, 6. Object 1

displacement between two consecutive image frames was
about 0.03 mm and the distance between pixels was about
0.013 mm. The window size for computing focus measures
was 15 X 15. :

An initial estimate of FIS was obtained by computing the
sum of the square of image Laplacian for nine image
frames spaced cqual distances apart (about 10 frames
apart) in the original image sequence. The position of the
maximom focus measure was first improved by a quadratic
interpolation scheme using three points centered at the
maximum point. A typical plot of the nine values, along
with the position of maximum position obtained using in-
terpolation, i shown in Fig. 4.

Fig, 6 shows the results for the slanted planar object.
Figs. 6(z) to 6(d) show the image frames recorded when the
lens position was at motor steps 20, 40, 60, and 80, rc-
spectively. In cach of these frames, only one part of the
image is focused, whereas the other parts are blurred to
varying degrees, This is particularly noticeable in Fig. 6(d)
where the closer part of the object on the left is focused
while the blur increases gradually toward the right as the
object distance increases. The shape or depth-map recov-
ered by our SEF algorithm is shown in Fig. 6(c). Here both
a 3D surface plot and a smaller side view of the plot arc
shown for clarity. The results in this case are close o the
actual shape except in regions where there is insufficient
contrast. The reconstructed focused image of the object is
shown in Fig. 6(0). We see that all parts of the image arc in
sharp focus.

Fig.7.Object2.
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Fig. 10. 3D depth map for a slanted planar object by the traditional method.

Fig. 7 is similar to Fig. 6 except that the results in this case
are for the cone object. In Fig. 7(e) we see that the recovered
shape of the cone has a blunt tip rather than a sharp tip. This is
due to the piecewise planar approximation. Except in areas
where there is insufficient grey level variance, the shape re-
covered is good. Fig. 7(f) shows the reconstructed focused
image of the cone object. In comparison with the image frames
shown in Fig. 7(a) to 7(d), the reconstructed image appears
focused everywhere.

VIII. COMPARISON WITH TRADITIONAL METHOD

In order to compare our SFF method with the traditional
method, we carried out experiments on both real data and
simulated data. Simulated data was necessary in comparing the
results of the two methods with accurate ground truth. For real
data we did not have adequate facilities to accurately measure
the ground truth.

Figs. 10 and 11 show the results on real data for the slanted
planar object, obtained using the traditional method and our
SFF method, respectively. In these figures, it is difficult to
visually compare the two results. Since the accurate ground
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u: Distance {meter}
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120
80
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Fig. 11. 3D depth map for a slanted planar object by the new method
(SFF.FIS).

truth was not available, we fitted planar surfaces to the data
(we knew that the object was planar but did not accurately
know its position and orientation) using a least-square error
minimization approach. Then the root-mean-square (RMS)
error was computed between the fitted planes and the data.
The results are shown in Table 1. We see that the RMS error
for the traditional method is 0.40 lens steps (out of 97 steps)
whereas it is 0.37 lens steps for the SFF.FIS method. There-
fore, the improvement in accuracy in this case is marginal.

TABLE [
RMS ERROR.
] SFE.FIS
RMS Error (Slanted Planar 0.37 step
‘ Object)
RMS Error (Simulated 2.22 step
Cone Object)
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Fig. 12. 3D depth map for a cone object by the traditional method.
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Fig. 14. 3D depth map for a simulated cone object by the traditional method.
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Fig. 16. A simulated cone object.

Figs. 12 and 13 show the results on real data for the cone
object. As expected, the tip of the cone is sharper in the case of
our SFF method, whereas it is blunted in the case of the tradi-
tional method. The surface of the cone in Fig. 13 is a little
smoother than in Fig. 12. The actual cone object was made of
cardboard and was distorted. Therefore, we could not fit a
cone to the data in order to compare the accuracy of the two
methods as we did in the case of the planar object.
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Fig. 13. 3D depth map for a cone object by the new method (SFF.FIS).
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Fig. 15. 3D depth map for a simulated cone object by the new method
(SFE.FIS).

In order to do a rigorous quantitative comparison of our
SFF method with the traditional method, we did the following
experiment on simulation data. A camera simulation software
named Active Vision Simulator (AVS) [7] was used to gener-
ate 97 images of a cone object corresponding to 97 lens posi-
tions.

The relationship between the reciprocal of the object dis-
tance, 1/u, versus the lens step number is almost linear.
From (1) we have

~ %

R

where z = v — f specifies lens displacement from the reference
position at a distance of f from the lens. For our camera, the lens
position is specified in terms of a motor step number where each
step corresponds to a displacement of about 0.03mm. The refer-
ence position corresponds to step 0. The RMS errors mentioned
above are for the lens position and give a good indication of the

(14)

. performance of the method for application in camera systems. In
" order to compute the error in terms of object distance, we have

to consider the error differentials in (14).

|5(1/u)| = a8 4] (5)
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wherea=1/f2%
From the above relations we see that the relative(percentage)
error H—"’ in actual distance u increases linearly with distance,

and the absolute error {5 4| in actual distance increases quadrati-
cally with distance. For our camera, f= 35.0mm.

Setting |3z| to be the RMS error of 2.22 steps (= 2.22 x 0.03
mm) for the traditional method and 1.41 steps for the new

method, respectively, a plot of relative error ’%’is shown in

Fig. 8 and a plot of the absolute error is shown in Fig. 9.

In Fig. 8 we see that for the new method the percentage er-
ror in distance at 0.6 meters is about 2.07% and increases line-
arly to about 17.27% at 5 meters distance. This compares well
with the resulting error of about 3.26% at 0.6 meters, increas-
ing linearly to about 27.18% at 5 meters distance, that is ob-
tained with the traditional method.

Fig. 9 shows that, for the new method, absolute error in-
creases quadratically from 12.4 mm at 0.6 meters to about
863 mm at 5 meters distance. The corresponding numbers for
the traditional method are 19.6 mm at 0.6 meters and about
1359 mm at 5 meters distance.

IX. CONCLUSION

We have described a new Shape-from-Focus method based
on maximizing focus measures computed directly over the
Focused Image Surface (FIS) of objects. This method corre-
sponds to piecewise planar approximation of the shape of ob-
jects as opposed to piecewise constant approximation adopted
by SFF methods in the previous literature. We have experi-
mentally demonstrated the effectiveness of our SFF method on
real-world examples. The experiments indicate that our SFF
method gives more accurate results for curved objects than the
comparable traditional method.
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