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Abstract

We use the parazial geometric optics model of image formation to derive a set
of camera focusing techniques. These techniques do not require calibration of cam-
eras but involve a search of the camera parameter space. The techniques are proved
to be theoretically sound under weak assumptions. They include energy maximiza-
tion of unfiltered, low-pass filtered, high-pass filtered, and band-pass filtered images.
It is shown that in the presence of high spatial frequencies, noise, and aliasing, fo-
cusing techniques based on band-pass filters perform well. The focusing techniques
are tmplemented on a prototype camera system named SPARCS. The architecture of
SPARCS is described briefly. The performance of the different techniques are com-
pared experimentally. All techniques are found to perform well. One of them —the
energy of low-pass filtered image gradient— which has better overall characteristics is

recommended for practical applications.
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1 Introduction

Focusing cameras is an important problem in computer vision and microscopy. In
this paper we consider only those passive focusing techniques which do not require
calibration of the cameras. These techniques necessarily involve a search of the camera
parameter space. Therefore we will call these search focusing techniques. The camera
parameters include the distance between the lens and the image detector, and the
focal length of the lens. There are some focusing methods which do not search
the camera parameter space [?, 7, ?], but they require accurate calibration of the
camera parameters and the corresponding optical transfer function or the point spread
function. We first consider the case of focusing a camera to a target object by moving
the lens along the optical axis of the lens. The results of this case can be easily
extended to focusing a camera by adjusting its focal length, or by moving the target
object along the optical axis.

Many focusing techniques have been investigated and compared in the literature
(e.g. Krotkov 1987, Ligthart and Groen 1982, Schlag et al 1983). In these techniques,
a focus measure is defined which is a maximum for the best focused image and it
generally decreases as the defocus increases. Therefore, when the lens of a camera
is moved from one end to the other, typically the focus measure of the image of the
target object gradually increases, reaches a maximum at the focused lens position,
and then decreases gradually thereafter. The problem then is to find the lens position
at which the focus measure is a maximum. This is essentially a search of the lens
position space.

In the previous literature, most definitions of focus measure have been based on
heuristics. No proof has been provided about the theoretical soundness of these focus
measures, i.e. it has not been proved theoretically that the focus measures have a
global maximum for the best focused images. Some definitions of focus measures
involve non-linear operators and it is hard to prove or disprove their correctness.
Some other definitions are useful only for a very limited class of images. We have not
found any systematic and explicit analysis of the image defocusing phenomenon and

derivation of a focus measure based on such an analysis. Further, previous literature



has ignored an important aspect we call the “side-lobe effect” (explained later) which
may give rise to local maxima and cause the global maximum position to be shifted.
This makes searching for the position of global maximum difficult and introduces
error in the determination of focus position.

In this paper, first we describe a model of image defocusing derived from paraxial
geometric optics [?, 7, ?]. Based on this model we derive a class of focus measures
which we prove to be theoretically sound under weak assumptions, i.e. the focus
measures have global maximum for the best focused images. The assumptions cor-
respond to neglecting the side lobes(if they exist) in the optical transfer function of
the camera system. We then analyze the side-lobe effect and show how it can be
reduced through low pass filtering. Next we discuss a few other focusing techniques
from previous literature.

The focus measures derived in this paper have been implemented on a prototype
camera system named Stonybrook Passive Autofocusing and Ranging Camera System
(SPARCS). A brief description of SPARCS architecture is included. A number of
experiments were carried out using SPARCS to evaluate the focus measures derived
here. The experiments and their results are described. The experimental results
show that the focus measures derived here perform well. Based on these results, we
find that, one of the focus measures— the energy of low-pass filtered image gradient
— has the best performence overall. We conclude this paper by recommending it for

practical applications.

2 Camera Model

Image formation in a simple camera is shown in Figure ??. We have shown a thin
lens model for the optical system, but the analysis here can be easily extended to a
thick lens model [?]. Let P be a point on a visible surface in the scene and p’ be its
focused image. The relation between the positions of P and p’ is given by the lens

formula,
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where u is the distance between the lens plane and the object plane and v is the
distance between the lens plane and the image plane. In this figure, ID is the image
detector (CCD array), D is the aperture diameter, and s is the distance between
the lens plane and the image detector. The distance s, focal length f, and aperture

diameter D, will be referred together as camera parameters and denoted by e, i.e.

e = (s, f, D). (2)

In order to illustrate the theoretical basis of focus measures, we take the optical
system to be circularly symmetric around the optical axis and we use a paraxial
geometric optics model [?] for image formation. This is a good approximation in
practice to actual image formation process modeled by physical optics [?, ?]. However,

our analysis itself is applicable to physical optics model also.

3 Point Spread Function

In Figure ??, if the object point P is not in focus, then it gives rise to a blurred image
p on the image detector ID. According to geometric optics, the blurred image of P has
the same shape as the lens aperture but scaled by a factor. This holds irrespective
of the position of P on the object plane. Since we have taken the aperture to be
circular, the blurred image of P is also a circle with uniform brightness inside the
circle and zero outside. This is called a blur circle.

Let the light energy incident on the lens from the point P during one exposure
period of the camera be one unit. Then, the blurred image of P is the response of
the camera to a unit point source and hence it is the Point Spread Function (PSF)
of the camera system. We will denote this PSF by h,(x,y).

Let R be the radius of the blur circle and ¢ be the scaling factor defined as

g =2R/D. In Figure ??, from similar triangles, we have

2R §— [1 1]
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Substituting for 1/v from Eq. (??) in the above equation, we obtain

i=s|p-1-4 ()



Therefore

()
Note that ¢ and therefore R can be either positive or negative depending on whether
s > wvors <wv. In the former case the image detector plane is behind the focused
image of P and in the latter case it is in front of the focused image of P.

If we assume the camera to be a lossless system (i.e., no light energy is absorbed

by the camera system) then

//ha(xay) dv dy = 1 (6)

because the light energy incident on the lens was taken to be one unit. Using this
and the fact that the blur circle has uniform brightness inside a circle of radius R and

zero outside, we get

ey = { 7 HEACEE )

0 otherwise.

In a practical camera system, if a sequence of images g¢;(x,y) are taken at camera
parameter settings of e; for 2 = 1,2,3,---, then image magnification and mean image
brightness may change even though nothing has changed in the scene. For example,
moving the lens away from the image detector will increase image magnification and
changing the aperture diameter changes mean image brightness. In order to define
and compare focus measures for this sequence of images in a correct and consistent
manner, the sequence of images must be first normalized with respect to these factors.
Normalization with respect to image brightness is carried out by dividing the image
brightness at every point by the mean brightness of the image.

Normalization with respect to image magnification is more complicated. It can
be done by image interpolation and resampling such that all images correspond to
the same field of view [?]. The relation between an original image g(x,y) taken with
s = s and the corresponding magnification normalized image g,(x,y) is given by
gn(x/30,y/50) = g(x,y). However, in most practical applications, the magnification
change is less than 3% and can be ignored. It is probably for this reason that most

previous literature fails to mention the magnification correction. But this cannot be

overlooked from a theoretical point of view.



In the following discussion we assume that the images have been normalized.
Without loss of generality, we assume that both the mean brightness and magnifica-
tion have been normalized to be 1. After magnification normalization, the radius of
the blur circle can be expressed as a function of the camera parameter setting e and

object distance u as

Rleiw) = 2 (l_l_l). (5)

The Optical Transfer Function (OTF) corresponding to the above PSF (Eq. 77?)
is
Jl(R(e;u) p(wvl/)) (9)
R(e;u) p(w,v)

where w, v, and p are spatial frequencies specified in radians/unit distance, .J; is the

Hy(w,vieu) = 2

first order Bessel function, and p is the radial spatial frequency
plw,v) = Vw?+ v (10)

Eq. (??7) explicitly represents the dependence of the OTF on the camera parameter
setting e and the object distance w.

In practice, the image of a point object is not a crisp circular patch of con-
stant brightness as suggested by geometric optics. Instead, due to diffraction, poly-
chromatic illumination, lens aberrations, etc., it will be a roughly circular blob with
the brightness falling off gradually at the border rather than sharply. Therefore, as
an alternative to the above PSF model, often [?, 7, 7. ?] a two-dimensional Gaussian

is suggested which is defined by

1 $2 2
hy(z,y) = N (11)

27wr?

where r is a spread parameter corresponding to the standard deviation of the distri-

bution of the PSF. In practice, it is found that [?, ?] r is proportional to R, i.e.
r = cR for ¢>0 (12)

where ¢ is a constant. It is approximately equal to 1/4/2 in practice [?]. Since blur

circle radius R is a function of e and u, r can be written as r(e,u). (However, the



image of an actual point light source for our camera was quite close to that predicted
by geometric optics and was far from a Gaussian.)

The OTF corresponding to the above PSF is (w, v in radians/unit dist.)
Hb(w, vie, u) _ e—%f(w,u) r2(e;u) (13)

where
r(e;u) :cg (1—3_3). (14)

Once again, Eq. (??) explicitly represents the dependence of the OTF on the camera

parameter setting e and the object distance w.

4 Focus Measures

In this section we develop a theoretical basis for focus measures. Let f(x,y) be
the focused image of a planar object at distance u. The focused image f(x,y) at
a point (x,y) of a scene is defined as the total light energy incident on the camera
aperture (entrance pupil) during one exposure period from the object point along
the direction corresponding to (x,y) (Subbarao and Nikzad, 1990). We do not know
of any previous literature on focusing techniques which gives a precise and correct
(we believe) definition of the focused image as we have done here. This definition is
essential for a sound analysis of the focusing techniques.

Let g;(z,y) be a sequence of images of the object recorded for a sequence of camera

parameter settings e; where
e = (Si7f7D) or e = (S7fi7D) (15)

fore=1,2,3,---. Here we are considering the variation of only one camera parameter
at a time— either the lens position or the focal length because this is the usual mode of
operation of almost all cameras. Simultaneous variation of more than one parameter
in a random manner can lead to multiple maxima for the focus measure.

For a planar object perpendicular to the optical axis, the blur circle radius R is a
constant over the image of the object (this may not be obvious at first sight, but it

can be proved easily). In this case the camera acts as a linear shift invariant system.
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Therefore g; will be equal to the convolution of the focused image f(x,y) with the
corresponding point spread function. Convolution in the saptial domain corresponds
to multiplication in the Fourier domain. Therfore, if F' and G; are Fourier transforms

of f and ¢; respectively, we can write
Gilw,v) = Ha(w,vse1,u) F(w,v) (16)

Substituting for the right hand side of Eq. (??) from Eq. (??), we obtain

Ji(R(eizu) p(w,v))

Gi(w,v) = 2 R(eju) p(w,v)

Flw,v) . (17)

The left hand side of the above equation can be computed from the recorded images

g;. For a Gaussian PSF model, the expression corresponding to Eq. (?7) is
Gilw,v) = ez @) By y) (18)

Given the above defocusing model, the problem now is to define a focus measure
which is a maximum for the best focused image among the sequence of images ¢;(x, y)
and gradually decreases as the image blur increases. Except for the image sequence
g; which forms the input, no other information is assumed to be known such as the
actual values of the camera parameters e;, or the optical transfer function.

Figure 7?7 shows cross sections of the circularly symmetric optical transfer func-
tions H, for various values of the blur circle radius B. These OTFs are sinc-like with
a dominant main lobe followed by side lobes on either side. The OTF magnitude at
the origin is 1 and decreases monotonically to zero at p &~ 1.227/R at the end of the
main lobe. The first side lobe peak is approximately at 1.637 /R and has a value of
about 0.132. The amplitude of the side lobes fall off rapidly (as p=* [?]) with p. If
we consider the effect of only the dominant main lobe, we see that the OTFs have
the general characteristics of a low pass filter. As the blur circle radius increases (i.e.
blur increases), the higher frequencies are attenuated more. In the main lobe, the
higher a frequency, the more the attenuation. Roughly speaking, the area under the
main lobe increases with decreasing defocus. An obvious focus measure suggested by

this observation is the volume integral(taken over the main lobe)

My = //|Gi(w,z/)|dwdz/ (19)
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This focus measure is proved to be sound, monotonic, and unimodal, in Theorem
1 in the appendix assuming the OTF magnitude outside the main lobe to be zero.
Theorem 2 proves the same result for the case of a Gaussian OTF. In this case no
assumptions are made as the OTF has no side lobes. Further, the maximum value of

this focus measure is shown to be

/ / |F(w, 1) |dwdy (20)

when the blur circle radius is zero (i.e. when the observed image is in perfect focus).

This focus measure involves the computation of the Fourier transform of the im-
age which is computationally expensive (O(NZ%logN) for an image of size N x N).
Fortunately, we can define other focus measures which can be computed more effi-
ciently. For this purpose, we note that we can use the volume integral of any function
of |G;(w, )| which increases monotonically with increasing |G;(w, v)|. This is proved
in Theorems 3 and 4 in the appendix. Therefore, literally an infinite number of focus
measures can be defined. However, based on computational requirements and noise
sensitivity, we select only three measures. Before we proceed to the three measures,
we raise the question as to whether a sound focus measure can be defined which is not
a monotonic function of |G;(w,v)|. We believe that any such function would exhibit

local maxima for some |F(w,v)|.

5 Three Focus Measures

5.1 Image Energy
M, = //|Gi(w,z/)|2dwdz/ (21)

This does not require the computation of Fourier transform of the image because it

can be computed efficiently using the Parseval’s theorem:

M, = //Igi(xay)lzdxdy (22)

An equivalent measure is the image grey level variance:

M, = %//(gi(xay)—m)zdxdy (23)

9



where y; is the mean of ¢g; and A is the area of image g;. Note that
Ml = MS/A_ /%2 (24)

According to Theorems 1 and 2 in the appendix, M, and therefore M; are mono-

tonic, unimodal, and sound focus measures.

5.2 Energy of image gradient

My = // [V gi(x, )| dady (25)
Note that
Igi(z,y) | . .,
‘7:{78:1; = jwGi(w,v) (26)

Therefore from Parseval’s theorem,

// (892 T,y ) dady = //wQIGi(w,y)P dody (27)
// (agz .y ) dudy = // V|G, )2 deod (28)

Adding the above two relations we get

Similarly,

M, = // (w2 + 1/2) |Gi(w, )] dwdy (29)

Therefore we see that M, measures the image energy after i;(w, ) has been high

pass filtered by a filter Ly such that
| La(w,v) [= VWi + 02 =p (30)

Therefore, according to Theorems 5 and 6 in the appendix, M, is a monotonic, uni-

modal and sound focus measure.

5.3 Energy of image Laplacian

M :/ (vzgi(:p,y))Z dxdy (31)
Note that
F (76 géf;’y)) = —w G(w,v) (32)
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and

M = —1/2 AW,V
f( dy* ) ratey .
= F(Vile,y) = = (0 4+ 07) Gilw,) (34

From Parseval’s Theorem

// (Vzgi(%y))z drdy = // (w? + 1/2)2 |G (w, v) P dwdy (35)

Therefore, M5 measures the image energy after (;(w,v) has been high-pass filtered
by a filter L3 such that

| Ls(w,v) |= (w2 + 1/2) = p? (36)

See Figure ?? for a plot of |La(w, V)| and |Ls(w, v)|. Therefore according to Theorems

5 and 6 in the appendix, M3 is a sound, unimodal and monotonic focus measure.

6 Analysis of Side Lobe Effect

In the previous section and the appendix, we ignored the presence of side lobes in
proving the monotonicity and the correctness of the focus measures. If the focused
image of an object has high energy frequency content in the side lobes, then the focus
measures discussed earlier may exhibit local maxima. This complicates the task of
searching for the global maximum. In order to illustrate this, consider the following

pathological case: an object whose Fourier spectrum is (see Figure ?77?)

1.63%)

() =8 (p— = (37

where 6 is the Dirac delta function, i.e., the Fourier spectrum is zero everywhere
except at the peak of the first side lobe. In this case, there is a local maximum for
all the focus measures defined earlier. Both increasing and decreasing the blur circle
radius causes the focus measures to decrease.

The above effect of the side lobe can be eliminated by an ideal Low Pass Filter
(LPF) which removes the side lobes (see Figure ??7). The cut off frequency p. of
the ideal LPF should be 1.227/R,,,, where R,,,, is the maximum blur circle radius

11



expected for the given operating range of the distance of the object. However, this
solution for the side lobe effect is too drastic. The disadvantages of this solution
are the computational cost of ideal lowpass filtering and the complete elimination of
frequency content beyond the cutoff frequency p. of the LPF. Such complete elimina-
tion of frequencies will make it impossible to focus on objects with non zero spectrum
only for p > p.. A better solution to the side lobe effect is to attenuate the side lobes
relative to the main lobe rather than complete elimination of the side lobes. For this
purpose we suggest a Gaussian lowpass filter. It can be implemented economically by
convolving the images in the spatial domain with a Gaussian having a small spread
(about o = 1.5 to 2.5 pixels). Convolution can be implemented efficiently as two
one-dimensional operations, first along rows, then along columns, because Gaussian
is seperable. If k is the factor by which we wish to attenuate the peak of the first side

lobe, the parameter r for the Gaussian low-pass filter can be computed as follows:

e = (38)

L V2 /—log k (39)

P
V2 —
m Rmax _log k (40)
roa 0.27624/—log k Rinas (41)

It £ =0.25 and R, = 5 pixels, then r = 1.63 pixels. The size of the one-dimensional

%

Gaussian filter in this case is about 7.

Another advantage to low-pass filtering the image is the reduction of noise and
the attenuation of aliased frequencies near the high end of the spectrum. Aliasing
will be a problem if the focused image is not band-limited within the frequency band
less than the Nyquist rate.

The noise magnitude spectrum usually remains the same in all images of the
image sequence ¢; . In this case , if the effect of the side lobes is neglected, then the
noise has no effect on the performance of the focus measures. The focus measures
remain monotonic and unimodal. Further, if the effect of side lobes is negligible, then

even aliasing has no effect on the performance of the focus measures. However if the
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frequency content in the side lobes is high due to noise, aliasing, or the focused image,
then the focus measures may exhibit local maxima and the global maximum may be
shifted. This makes the search for global maximum more difficult and introduces error
in the final result. Therefore the attenuation of side lobes improves the behaviour of
the focus measures.

According to Theorems 5 and 6 in the appendix, low pass filtering the image
sequence does not affect the soundness, monotonicity, or the unimodality of the focus

measures.

7 Band-pass filtering

Suppose that the image sequence G;(w, ) is filtered by the Gaussian low-pass filter
Hy(w,v) = =2 The Fourier spectrum of the resulting image sequence is

|Hy(w, v)| |Gi(w,v)| . The focus measures My and M3 for this image sequence are :

My = [ [|N(he(x,y)* gi(x,y) [ da dy

= [ J(w*+ ) [Hy(w,v)|" |Gi(w, v)[* dw dv
My = [V (hy(x,y) % gilx,y))” da dy

= [ [ (@ +v)) [Hyw,v)]? |Gilw,v)[* do dv

From the Fourier domain expressions for M) above, M} can be thought of as the
result of first filtering G;(w,v) by a filter, By(w,v), having the Fourier Magnitude
Spectrum |By(w,v)| = \/m |Hy(w, v)| and then measuring the spectral
energy of the resulting image. Similarly, M} can be thought of as the result of
first filtering G;(w,v) by a filter Bs(w, ) having the Fourier Magnitude Spectrum

|Bs(w,v)| = (W +v?)|Hy(w,v)|. A plot of |By(w, V)| and | Bs(w, v)| are shown in
Figure 77. We see that both these filters have band-pass characteristics. Experimental
results presented later show that these band-pass filters make the focus measures
to have sharp peaks while generally retaining monotonicity and unimodality. These
band-pass filters have the desirable characteristic of attenuating low frequencies which
contribute less to the focus measure and attenuating high frequencies affected by side

lobes and noise, but emphasizing medium frequencies.
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8 Discussion of other focus measures

A number of focus measures have been proposed in the literature [?, 7, ?]. Among
these, Tenengrad [?, ?, ?] has been found to be the best. More recently, a focus
measure based on a modified Laplacian operator (SML operator) is said to perform
better than Tenengrad [?].

Tenengrad [?, ?] is a measure of thresholded gradient magnitude. It is similar
to My except that only those points where the gradient magnitude is greater than a
pre-specified threshold are used in the calculation. The other points are not used in
the calculation of the focus measure. Because of the thresholding operation, a Fourier
domain filter analysis of this focus measure is not possible. More importantly, if the
threshold is non-zero, this focus measure cannot be proved to be theoretically sound,
i.e., it cannot be proved that the global maximum of the focus measure occurs for the
best focused image. Moreover, this focus measure involves the selection of a threshold.
For these reasons, and the fact that the focus measures discussed in this paper (M
to M3 and M to M) performed very well in a large number of experiments, we do
not recommend this method in actual applications.

Nayar [?] has proposed a new focus measure based on a new operator named

sum-modified-Laplacian  (SML). It is defined as :

829, 829,
M Gi = : 3F 42
The SMIL based focus measure SMLF is defined as
3292' 8292'
MLF = / / dz dy. 4
> (‘31'2 +‘9y2) o )

SML differs from the usual Laplacian in that the magnitude of the second deriva-
tives are summed instead of their actual values. Therefore it is a non-linear operator.
The focus measure SMLF is a simple summation of the result of applying the SML
operator; it does not involve squaring the integrand. For these reasons, it is not pos-
sible to provide a Fourier domain filter analysis of this focus measure. Further, as in
the case of Tenengrad, we do not believe that this focus measure can be proved to be

theoretically sound.
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One of the main reason that Tenengrad and SMLF were said to be better fo-
cus measures in the past was that they gave sharper peaks. The sharper the peak
produced by a focus measure the better it was thought because the location of the
position of the maximum was thought to be more accurate. However it should be
noted that a blunt peak of any focus measure can be sharpened by simply squaring
the values of the focus measure. In fact, the peak can be sharpened to any desired
degree by raising the values to some large positive power. ( See Figure ?? ). There-
fore, not only the sharpness of the peak, but also the smoothness (or monotonicity)
is important. Sharpening the peak of a focus measure will magnify and reveal hidden
local maxima. For bad focus measures, the amplitude of the local maxima will be
large where as it will be small for good focus measures, thus reducing the uncertainty
in locating the actual global maximum. In view of this observation, we believe that
Tenengrad and SMLF have no particular advantage over some of the focus measures

considered in this paper.

9 Discrete focus measures

Discrete versions of the focus measures were implemented on SPARCS. The expres-
sions for the N x N image ¢;(x,y) are given here. Each image was first normalized
with respect to mean. Magnification normalization was not done as the change in
magnification was less than 2%.

1. Variance

Variance is computed as
1
M, = WZZ(Qi(%y)—M)Q (44)
oy
1
= LYY (15)
oy

1
where p; = WZZgi(:p,y). (46)
z oy
2. Energy of image gradient

This focus measure is computed as

M, = > > (gz + g;) (47)
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where go(z,y) = gi(v+1,y) — gi(z,y)
and gy(z,y) = gi(w,y +1) = gi(,y).

3. Energy of Laplacian of the Image

Mz =373 (gow + 9)°
r oy

where

o ‘I’ gyy —
—gi(r — 1,y —1) —4dgi(z — L,y) —gi(x — L,y + 1)
—4gi(x,y — 1) 4+ 20g;(z,y) — 4gi(x,y + 1)

—gi(r+ 1,y —1) —4gi(e + 1,y) —gi(z + 1,y + 1).

4. Variance of low-pass filtered image

The image was first low-pass filtered by convolution with a two-dimensional Gaus-

sian. Since the Gaussian is a seperable filter, it was implemented as two one-

dimensional convolutions, first along rows and then along columns.

gilzy) = D> h(p,q) gz —py —q)
Poq
= 2.2 hi(p)hilq) gi(z = py —q)
Poq
= 2 he(p) 2o he(@)gi(z = p.y — q)-
P q
The variance of this smoothed image is computed similar to M;.
1 ' '
M =723 0@ y) —n
z oy
where
/ 1
= 3 2 2 il y).
z oy

5. Energy of low-pass filtered image gradient

(52)
(53)

(54)

The original image ¢; was first low-pass filtered as in the previous case to obtain

gi. Then M) was computed similar to M, except that ¢/ was used in place of g;.

6. Energy of Laplacian of the low-pass filtered image

M was computed similar to M3 except that the low-pass filtered image ¢/ was

used in place of the original image g;.
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10 SPARCS

The focus measures described here were implemented on a camera system named
Stonybrook Passive Autofocusing and Ranging Camera System (SPARCS). SPARCS
was built in the Computer Vision Laboratory at the Department of Electrical Engi-
neering, State University of New York, Stony Brook. A block diagram of the system
is shown in Figure ??7. SPARCS consists of a SONY XC-711 CCD camera and an
Olympus 35-70mm motorized lens. Images from the camera are captured by a frame
grabber board (Quickcapture DT2953 of Data Translation). The frame grabber board
resides in an IBM PS/2 (model 70) personal computer. The images taken by the frame
grabber are processed in the PS/2 computer.

The focal length of the lens can be varied manually from about 35mm to 70mm.
The F-number which is defined as the ratio of the focal length f to aperture diameter
D can also be set manually to 4, 8, 22 etc.. The lens system consists of multiple
lenses and focusing is done by moving the front lens forward and backward. The
lens can be moved either manually or under computer control. To facilitate computer
control of the lens movement there is a stepper motor with 97 steps, numbered 0 to
96. Step number 0 corresponds to focusing an object at distance infinity and step
number 96 corresponds to focusing a nearby object, at a distance of about 50cm from
the lens. The motor is controlled by a microprocessor, which can communicate with
the IBM PS/2 through a digital 1/O board (Contec mP1024/24). Pictures taken
by the camera can be displayed in real time on a color monitor (SONY PVM-1342
Q). The images acquired and stored in the IBM PS/2 can be transferred to a SUN
workstation.

The camera settings used in the experiment were

Focal Length = 35mm.
o - Number = 4.

Camera Gain Control = +6dB.

White Balance = Off.
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o Gamma Compensation = Off.

11 Experiments

Experiments were conducted on a large number of test objects. The results on three
of these objects will be presented. The three objects are (i) a cartoon (Figure 11),
(ii) picture of a face (Figure 12), and (iii) a “pin-hole” light source (Figure 13). The
last object has high spatial frequency content. It was chosen to observe the effect of
side lobes on the focus measures. The illumination for the first two objects was about
500 lux.

FEach object was placed at different distances (cartoon: 820 mm, face: 950 mm,
pin-hole: 1320 mm) in front of the camera and the program was run. SPARCS
acquired one image of the object at each lens position. There are 97 lens positions
corresponding to 97 steps of the lens stepper motor. From each image thus acquired,
a 64 x 64 subimage of the object was extracted. Due to blurring and spreading of
light from point objects, the grey levels at the border of this subimage are affected
by image points immediately outside the subimage. This is called the image overlap
problem [?]. In order to reduce this border effect, the images were multiplied by a
two-dimensional Gaussian with a spread parameter of about 1/3 of the image size
(about 21).

Then all the 6 focus measures were computed and printed. This procedure was
repeated for each of the three objects. The 6 focus measures were normalized to have
the same peak values by dividing their values by their maximum values. The results
are plotted in Figures 77, 7?7, and ??. In the plots we see that all focus measures
reach a peak at almost the same location. The only difference lies in the sharpness
of peaks and the smoothness of the plotted curves.

The percentage change in a focus measure at any given lens position is useful in
determining the direction in which the lens should be moved for focusing. Plots of
this measure for Object 2 are shown in Figure 77 and Figure ??. It was computed as

M(i 4 step) — M(7)

TG + step) + (1) (56)

% change =
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where step was set to 5 and M (7) is a focus measure.

In comparing the different focus measures, we use the following criteria (i) mono-
tonicity, (ii) magnitude of slope, and (iii) smoothness. It should be emphasized that
good behaviour with respect to these criteria are important both when the images are
highly blurred and when the images are almost focused. It is in the highly blurred
images that the side lobe effect becomes significant. In the previous literature, the
behaviour with respect to highly blurred images has been ignored in the evaluation of
focus measures. This aspect is important because, when an object is highly blurred,
it is necessary to first determine the direction in which the lens should be moved
in order to focus the object. This is done by first computing the focus measure
for the current lens position, then moving the lens by a small amount, computing
the focus measure again, and comparing the two focus measures. The direction in
which the focus measure increases is the direction in which the lens should be moved
for focusing. Therefore, if a focus measure is almost flat (i.e. slope is small) or is
non-monotonic and noisy, then the direction of lens motion for focusing cannot be
determined reliably.

From Figures 7?7, 7?7, 7?7 and from many more experiments not reported here,
we make the following observations. The focus measures M; and M| are smooth but
generally exhibit small slopes for both highly blurred and almost focused images. Both
are very good focus measures but perhaps not the best, mainly because of small slope.
The focus measures My and M3 measure energy of high-pass filtered images. High-
pass filtering amplifies the side lobe effect. Our experiments support this observation
based on theory. Both M; and Mj exhibit almost flat and noisy curves for highly
blurred images. They exhibit sharp peaks near the focused position, but the peaks are
sometimes noisy and rough. The focus measures M}, and M) measure energy of band-
pass filtered images. They are found to be generally smooth and monotonic. They
exhibit moderately high slopes for both highly blurred and almost focused images.
Their peaks are reasonably sharp. The behaviour of M) and M} are somewhere near
the middle of the two extremes represented by M; and M] on the one end and M,
and M5 on the other.

Both M} and M} are very good focus measures. M, is somewhat smoother than
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M. For this reason, we believe M) to be a better focus measure and therefore we

recommend it for practical applications.

12 Conclusion

We have derived 6 focus measures which are proved to be sound under weak assump-
tions. Experiments show that all of them perform well. Theoretical and experimental
results suggest that one of the focus measures M} has better overall characteristics.
Therefore it is recommended for use in practical applications. At some additional
computational cost, better performance may be obtained by computing two or more
focus measures and making judgements based on all of them rather than only one of
them. At present we are investigating the use of the focus measures derived here in
depth-from-focus and shape-from-focus algorithms.

Acknowledgements: The support of this research in part by National Science
Foundation (IR18821923) and the Olympus Optical Corporation is gratefully acknowl-
edged.

13 Appendix

In this appendix we use the following notation and relations.

f(z,y) is the focused image of an object and F(w,r) is its Fourier transform
where w,v and p = Vw? + 12 are spatial frequencies expressed in radians/unit dis-
tance. ¢1(x,y) and ¢ga2(x,y) are two normalized images of the object recorded by a
camera with camera parameters e; and e,. R; and R, are the normalized blur cir-
cle radii corresponding to ¢; and g respectively. Hi(p) and Hy(p) are the camera
OTFs corresponding to g; and gq respectively. Gi(w,v) and Gy(w, v) are the Fourier
transforms of ¢; and ¢, respectively. Defocusing is a convolution operation and the

following relations hold:

Gh(w,v) = Hi(p)F(w,v) (57)
Gaylw,v) = Hy(p)F(w,v) (58)
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Definition of the focus measure My(7):
Mo(i) = // | Gr(w, v) | dwdy fori=1,2. (59)

a(x) is a monotonically increasing function such that if 0 < 2y < x5 then o) <
a(xg).

Definition of the focus measure Mg(i) :

Mg(@')://aq Gi(w, v) |)dwdy fori=1,2. (60)

L(w, v) is the transfer function of a filter.

Definition of the focus measure M, (7) :

M) = [ [ 1 Lww) | a(] Giw,v) |)dwdy (61)

The first theorem shows that M, is a sound focus measure assuming that the
OTF is zero outside the main lobe. It increases monotonically as the blur circle
radius decreases (i.e. the image blur decreases) and reaches a maximum when the
image is in best focus (i.e. the blur circle radius is zero). The Theorem also shows
that My has a unique maximum and therefore has no local maxima. In this theorem,
the paraxial geometric optics model is used for the OTF, except that the magnitude

of the OTF outside its main lobe is taken to be zero.

Theorem 1 If

201 (F1p) for 0< Rip < 1.227
Hy(p) = fe B B (62)
0 elsewhere
201 (Rap) for 0< Ryp < 1.227
Hy(p) =1 ™ S (63)
0 elsewhere
and
|R2|>|R1|> 0 (64)
then
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(i) Mo(1) > Mo(2) and
(ii)
lim Mo(1) ://|F(w,z/)|dwdz/

|R1|—>0

Proof (i) | Ry | > | Ry |
— 1> | Hi(p) | > | Ha(p) |2 0for 0 < p < 227
= | Hi(p) || Flw,v) | > | Ha(p) || F(w,v) |
= | Gi(w,v) | > | Gaw,v) |
— [ [ | Gi(w,v) | dodv > []]Gy(w,v) | dwdv
— Mo(1) > Mo(2)

(ii)
lim Mo(1) = éifgo//'Hl(p) | Fw,v) | dodv

|R1|—>O
= [ | F(w,) | dwdy
because

lim Hi(p)=1

|R1|—>0

Theorem ?? is the same as Theorem 7?7, except that the OTF corresponds to a
Gaussian. In this case the OTF has no side lobes and therefore no assumptions are

made. The proof of this theorem is similar to that of Theorem ?7.

Theorem 2 If

H(p) = )= (65)
r1 =cRy, ry =cRy ¢ is a proportionality constant (66)

and
| Ry | > |Ri| > 0 (67)

then

(i) Mo(1) > Mo(2) and
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(i)
lim Mo(1) ://|F(w,z/)|dwdz/

|R1|—>0

M, is a focus measure defined as the volume integral of a monotonically increasing
function of |G/(w, v)|. Typical examples of the monotonically increasing function «(x)
are a(z) = 2? or a(z) = 2" for n > 0. Theorem ?? shows that M, has properties

similar to My. With minor exceptions, the proof of this theorem is similar to Theorem

?7.

Theorem 3 If the conditions 7?7 to 7?7 in Theorem 7?7 are satisfied, then

!

(()Mo(1) > My(2) (68)

and

(i) Tim Mu(1) ://a(| Fl(w,v) |)dwdv. (69)

|R1[—0
Proof Similar to Theorem ??; the main step to be noted is that
| Gi(w,v) | > | Gafw,v) |
= o Gi(w,v) ) > af] Ga(w,v) |).

Theorem 4 If conditions 7?7 to 7?7 are satisfied, then relations 77 and 7?7 will be

true.

Theorem ?? shows that a focus measure which works correctly for an image
sequence will also work correctly if the entire image sequence is filtered by the same
filter L(w,r). Therefore, band pass filtering the image sequence will not affect the

monotonicity or the location of the maximum of a focus measure.

Theorem 5 If conditions 7?7 to 7?7 are satisfied, then

1

()M (1) > My(2) (70)
and
(i) lim M. (1) :// | L(w, v) || F(w,v) | dwdv. (71)

|R1|—>0
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Proof Similar to the proof of Theorem ?7; the main step to be noted is that
| Gilw,v) | > | Ga(w,v) |
= | L(w,v) [| Gilw,v) | > | L(w,v) || Galw,v) | .

Theorem 6 If conditions 7?7 to 7?7 are satisfied, then relations 77 and 7?7 will hold.

Proof Similar to Theorem ?7.
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Figure 13: Object 1 Figure 14: Object 2

Figure 15: Object 3
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