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Abstract of the Dissertation
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A Fourier domain approach has been investigated for using im-
age defocus information in three-dimensional machine vision. Fast
new methods have been developed and implemented for recovering
distance and focused image of stationary and moving objects. The
methods can also be used in rapid autofocusing of video cameras.

The method for finding distance, named DFD1F, requires only
two images acquired at two different camera parameter settings.
Therefore it is very fast in comparison with depth-from-focus meth-

ods that require a large (10 or more) number of images. The camera
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parameters include focal length, diameter of camera aperture, and
the distance between the image detector and the camera lens. Any
one or more of these can be changed to obtain the two different
camera settings. Theoretical principles, computational algorithms,
and implementation issues are discussed. Experimental results in-
dicate that DFD1F is useful in practical three-dimensional machine
vision.

DFDIF has been extended for continuous focusing of moving
objects in a video camera. As part of this method, a new camera
structure has been proposed, and a new parameterization of the
Modulation Transfer Function data of the camera is used.

Four traditional methods and one new method have been in-
vestigated for restoring one of the blurred image used by DFD1F
to obtain a focused image. The new method is based on a spatial
domain approach for deconvolution.

DFDI1F does not have the correspondence problem that arises in
stereo vision, but, in general, it is less accurate than stereo vision in
recovering depth. Therefore DFDI1F can be combined with stereo
vision to reduce the correspondence problem and obtain accurate
depth estimates. This has been demonstrated successfully with

experiments on a prototype camera system.
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Chapter 1

Introduction

1.1 Motivation

Computational studies and perceptual experiments [?] indicate that in
human vision the computational processes that interpret visual information
in the early stages are generic ones. As a first approximation, these processes
can be considered to be conceptually independent modules that can be stud-
ied in isolation. Examples of such early vision processes are stereo, motion,
shape-from-texture, image defocus, etc. A second level study of visual per-
ception would involve the investigation of interaction between the early vision
processes and how the information from different processes are integrated ef-

ficiently to obtain a unique interpretation of the scene.

Early vision processes such as stereo and motion have been studied ex-
tensively in the past three decades by many researchers. However, the study
of image defocus module was started only a few years ago by a handful of

researchers. The potential of image defocus as a source of three-dimensional



information had not been recognized until then. There was no prior study
and literature that provided a comprehensive treatment of the image defocus
module and its possible applications in machine vision. This was the primary
motivating factor behind this dissertation.

In this thesis we have studied the image defocus as an independent mod-
ule in the context of three-dimensional machine vision. Image defocus contains
both geometric (distance and shape) and photometric (color and image irra-
diance) information. Theoretical principles, computational algorithms, and
implementation techniques, have been investigated for extracting both geo-
metric and photometric information from image defocus. Image defocus uses
ambient illumination and therefore is a passive method of sensing. Therefore
it is preferable in many applications when compared to active sensing methods
that need sending out beams of energy such as lasers, infrared light, and sonar

waves.

1.2 Depth from focus and defocus

(DFF & DFD)

In the image formed by an optical system such as a convex lens, objects at
a particular distance (or depth) from the lens will be focused whereas objects
at other distances will be blurred or defocused by varying degrees depending
on their distance. This suggests that the degree of image blur could be a source
of distance information. In prior literature, two approaches have been used

for obtaining depth information from image defocus. In the first approach,



one of the camera parameter such as the image detector position or the focal
length is varied until the object of interest is focused. Then the distance of the
object is obtained using a lens formula. This approach involves a search of the
camera parameter space to find the camera setting that brings a desired object
into focus. Therefore this approach requires acquiring and processing many
images (about 10 in practice). Most of the passive methods of autofocusing and
ranging (finding distance) in computer vision follow this approach [?, 7, ?, ?,
7, 7,7, 7). We call this approach to finding distance Depth-from-Focus (DFF)
as it involves first focusing the object. A recent work comparing different DFF

techniques can be found in [?, 7].

The second approach for finding distance, unlike DFF, does not require
focusing the object of interest [?, 7, 7, 7,7, 7, ?]. In this approach the level of
defocus of the object is taken into account in determining distance. Therefore,
we will call this approach to be Depth-from-Defocus (DFD). DFD approach
does not involve searching for the focused object. Therefore it requires pro-
cessing only a few images (about two or three) as compared to a large number
(about 10) of images in the DFF approach. In addition, only a few images are
sufficient to determine the distance of all objects in a scene using the DFD ap-
proach, irrespective of whether the objects are focused or not. DFD approach
involves less computation than the DFF approach. Also, methods based on
the DFD approach are about 5 times faster than those based on the DFF ap-
proach due to the reduction in the mechanical movement of camera parts for
changing camera parameters. In this thesis we take the DFD approach based

on a Fourier domain analysis of image defocus. Both depth-map recovery and



restoration of defocused images are investigated.

1.3 Overview

This dissertation is organized as follows. In chapter 2, the image formation
process in a camera system is presented. A camera model is presented for a
camera system and the parameters of the camera system are defined. Three
widely used models for the point spread function (PSF) of the camera are
presented. The three models are- PSF based on paraxial geometric optics
model of image formation, two-dimensional Gaussian PSF, and the PSF based
on wave optics model of image formation. The focused image of a three-
dimensional scene is defined and the defocused image of the scene is modeled
as the result of convolving the focused image with the camera PSF in small
image regions. This chapter forms the basis for the discussion in the remaining

chapters.

In chapter 3, we review some commonly used focus measures and Depth-
from-Focus methods. We also present a new DFF method and some exper-
imental results. The new method gives more accurate and higher resolution
depth-maps at the cost of sensing and processing far more images than the
traditional methods of DFF. The DFF methods serve as a benchmark for

evaluating the performance of DFD methods.

Chapter 4 contains a literature review of Depth-from-Defocus (DFD)
methods. Several methods are summarized and their advantages and dis-

advantages in comparison with our method are outlined.



In Chapter 5, a new fast method of determining distance of objects and
autofocusing a camera using image defocus information is presented. The
method, named DFDI1F, requires only two images acquired at two different
camera parameter settings and therefore is very fast in comparison with depth-
from-focus [?] methods which require a large number (10 or more) of images.
The camera parameters include focal length, diameter of camera aperture,
and the distance between the image detector and the camera lens. Any one
or more of these can be changed to obtain the two different camera settings.
DFDI1F is general in that it is not restricted to any particular model of the
point spread function of the camera such as Gaussian or cylindrical. It involves
the computation of only a few (about six) one-dimensional Fourier coefficients
of a discrete sequence obtained by summing the images along some direction.

Therefore DFD1F is very efficient and robust with respect to zero-mean noise.

DFDIF has been successfully implemented on a prototype camera system
named SPARCS. It can determine the distance of an object placed in front of
the camera in the range 0.6 meter to infinity in less than a second of computa-
tion on a personal computer. Based on the computed distance, the camera can
autofocus by moving the lens to the correct position. A large number (209) of
experiments on natural objects indicate that the method is useful in practical

applications such as robotic vision and rapid autofocusing.

In chapter 6, we extend DFD1F to continuous focusing of moving objects.
In the case of moving objects, the two images used by DFD1F must be recorded
simultaneously in a short time period. A new camera structure is proposed

for such recording of the images. In our method for continuous focusing, the



requirement of a large memory space has been avoided for storing the MTF
data of the camera’s optical system. This is achieved by using a parameteri-
zation scheme for the MTF data. The method has been implemented on an
actual camera system. Experimental results on this system indicate that the
method yields an RMS error in focusing of about 4.3% in lens position. The
image blur caused by a focusing error of this magnitude is barely noticeable by
humans. Therefore, in addition to machine vision, the method has practical

applications in video cameras such as camcorders.

Chapter 7 deals with image restoration methods that can be used in con-
junction with DFDI1F to obtain the focused image without actually moving
the lens to focus on the object. Two new methods are presented for recovering
the focused image of an object from only two blurred images recorded with
different camera parameter settings as in DFD1F. First a blur parameter ¢ is
estimated using DFD1F. Then one of the two blurred images is deconvolved to
recover the focused image. The first method is based on a recently proposed
Spatial Domain Convolution/Deconvolution Transform. This method requires
only the knowledge of o of the camera’s point spread function (PSF). It does
not require information about the actual form of the camera’s PSF. The sec-
ond method, in contrast to the first, requires full knowledge of the form of
the PSF. As part of the second method, we present a calibration procedure
for estimating the camera’s PSF for different values of the blur parameter o.
In the second method, the focused image is obtained through deconvolution
in the Fourier Domain using the Wiener filter. For both methods, results of

experiments on actual defocused images recorded by a CCD camera are given.



The first method requires much less computation than the second method.
The first method gives satisfactory results for up to medium levels of blur and
the second method gives good results for up to relatively high levels of blur.

Chapter 8 illustrates how DFDI1F can be integrated with stereo vision.
The integrated method combines the strengths of the two methods but over
comes their individual weaknesses. The integrated method is as accurate as
stereo vision but much faster than stereo vision alone. Experimental compar-
ison of using only stereo and the integrated approach on a slanted object are
presented.

Finally, a summary and possible extensions of this research is presented

in Chapter 9.



Chapter 2

Camera and PSF Models

2.1 Introduction

In this chapter we introduce a camera model for a typical camera system
used in machine vision. We also present three models for the point spread
function (PSF) of the camera system. The following chapters use the models

and notations introduced in this chapter.

2.2 (Camera Model

In an image forming optical system such as a convex lens, the image of
an object formed on an image detector plane will be usually blurred. The
degree of blur depends on the focal length f of the lens, the distance u of the
object from the camera and the distance s between image detector and the

lens (see Fig. 2.1). A well-known relation is the lens formula based on paraxial



geometric optics

= 4= (2.1)

Following this formula, a focused image is obtained under the condition that
s equals v. The degree of blur increases as the difference between s and v
increases. If f and v are known, then the distance (depth) u of the object can
be found using this formula.

A schematic diagram of a camera system with variable camera parameters
is shown in Fig. 2.2. It consists of an optical system with two lenses L1 and
L2. The effective focal length f is varied by moving one lens with respect to
the other. O.A. is the optical axis, P1 and P2 are the principal planes, Q1
and Q2 are the principal points, ID is the image detector, D is the aperture
diameter, s is the distance between the second principal plane and the image
detector, u is the distance of the object from the first principal plane, and v
is the distance of the focused image from the second principal plane.

The distance s, focal length f, and aperture diameter D, will be referred

together as camera parameters and denoted by e, i.e.

e = (s, f, D). (2.2)
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2.3 Models of Point Spread Function

In the following discussion, we consider the optical system to be circularly
symmetric around the optical axis. In Figure 2.2, if a point light source placed
at point P is not in focus, then it gives rise to a blurred image p on the image
detector ID. Since we have taken the aperture to be circular, the blurred image
of P is also a circularly symmetric function. Let the light energy incident on
the lens from the point P during one exposure period of the camera be one
unit. Then, the blurred image of P is the response of the camera to a unit
point source and hence it is the Point Spread Function (PSF) of the camera
system. Three forms of Point Spread Function are used often in the literature.

We will discuss each of them below.

2.3.1 Geometric Optics PSF

According to paraxial geometric optics model [?] , the blurred image of
P has the same shape as the lens aperture but scaled by a factor. This holds
irrespective of the position of P on the object plane. The blurred image of
P will be a circle with uniform brightness inside the circle and zero outside.
This is called a blur circle. The blur circle will be the point spread function
ha(z,y).

Let R be the radius of the blur circle and ¢ be the scaling factor defined

as ¢ = 2R/D. In Figure 2.2, from similar triangles, we have

2R s—vw 1 1
= — = =8|——— 2.3
9 D v S[v s] ( )
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Substituting for 1/v from Eq. (??) in the above equation, we obtain
1 1 1
g=s [ ————— ] (2.4)

Substituting for 1/v from Eq. (??) in the above equation and simplifying, we

obtain

(2.5)

Note that ¢ and therefore R can be either positive or negative depending on
whether s > v or s < v. In the former case the image detector plane is behind
the focused image of P and in the latter case it is in front of the focused image
of P.

In a practical camera system, if two images g;(z,y) for i = 1,2 are taken
at camera parameter settings of e;, then image magnification and mean image
brightness may change even though nothing has changed in the scene. For
example, moving the lens away from the image detector will increase image
magnification (because magnification is proportional to s) and changing the
aperture diameter changes mean image brightness (which is proportional to
7(D/2)?). In order to compare the blur in images ¢; and g in a correct and
consistent manner, they must be first normalized with respect to these factors.
Normalization with respect to image brightness is carried out by dividing the
image brightness at every point by the mean brightness of the image.

Normalization with respect to image magnification is more complicated.
It can be done by image interpolation and resampling such that the images
g1 and go correspond to the same field of view [?]. The relation between an

original image g(z,y) taken with s = sy and the corresponding magnification

13



normalized image g,(z,y) is given by g,(x/s0,y/s0) = g(z,y). However, in
most practical applications, the magnification change is less than 3% and can
be ignored. It is probably for this reason that most previous literature fails to
mention the magnification correction. But this cannot be overlooked from a
theoretical point of view.

In the following discussion we assume that the images have been normal-
ized. Without loss of generality, we assume that both the mean brightness
and magnification have been normalized to be 1. After magnification normal-
ization, the normalized radius R' = R/s of the blur circle can be expressed as

a function of the camera parameter setting e and object distance u as

R = 2 (1121, 20

If we assume the camera to be a lossless system (i.e., no light energy is

absorbed by the camera system) then

/_o; /_o; ho(z,y) de dy = 1 (2.7)

because the light energy incident on the lens was taken to be one unit. Using
this and the fact that the blur circle has uniform brightness inside a circle of

radius R’ and zero outside, we obtain the PSF to be a cylindrical function:

(

—7 if 2 +y? < R?

ho(z,y) = < (2.8)

0 otherwise.

\

The Optical Transfer Function (OTF) corresponding to the above PSF
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(Eq. 77) is
Ji(R' (e;u) p(w,v))
R'(e;u) p(w,v)

H,(w,v;e,u) = 2 (2.9)

where w, v, and p are spatial frequencies specified in radians/unit distance, J;

is the first order Bessel function, and p is the radial spatial frequency
plw,v) = Vw?+ 12 (2.10)

Eq. (7?7) explicitly represents the dependence of the OTF on the camera pa-

rameter setting e and the object distance w.

2.3.2 Gaussian PSF Model

In practice, the image of a point object is not a crisp circular patch of
constant brightness as suggested by geometric optics. Instead, due to diffrac-
tion, poly-chromatic illumination, lens aberrations, etc., it will be a roughly
circular blob with the brightness falling off gradually at the border rather than
sharply. Therefore, as an alternative to the above cylindrical PSF model, often
[?, 7, 7, 7] a two-dimensional Gaussian is suggested which is defined by

1 _w2+y2

ho(z,y) = 202 (2.11)

2m02”
where ¢ is a spread parameter corresponding to the standard deviation of the
distribution of the PSF. In practice, it is found that [?, 7] ¢ is proportional to
R ie.

o =cR for c>0 (2.12)

where c is a constant which is approximately equal to 1/4/2 in practice [?].

Since the blur circle radius R’ is a function of e and u, ¢ can be written as

15



o(e,u). (However, the image of an actual point light source for our camera was
closer to a cylindrical function than a Gaussian. The size of the cylindrical
function was, however, different from that predicted by paraxial geometric
optics.)

The OTF corresponding to the above Gaussian PSF is (w,v in radi-
ans/unit dist.)

Hy(w,v;e,u) = e~ 20" (ww) o* (eu) (2.13)

where
D /1 1 1
ole;u) = ¢y ( ————— ) (2.14)

Once again, Eq. (77) explicitly represents the dependence of the OTF on the

camera parameter setting e and the object distance u.

2.3.3 Wave Optics

In the wave optics model, light entering and leaving the lens are treated
as electro-magnetic fields. The defocusing model used here follows the models
used by Hopkins [?], Levi and Austing [?], and Stokseth [?]. According to Levi

and Austing [?], the OTF corresponding to a focus defect A is given by
4 1
Hy(p, A) = / VI — 2 cos [2nAp(t — p)]dt (2.15)
p
in polar coordinate. A is the defocus measure and it can be expressed as [?],

2
Azﬁ(l_1_1> (2.16)

where ) is the wavelength of the incident light. This gives an approximation

for the focus defect A in terms of the camera parameters e and the distance u
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of the object. The PSF of wave optics model is given by inverse Fourier-Bessel

transform on Eq. (77),
hy(r,A) = 27 /oo Hy(p, A)Jo(2mpr)pdp (2.17)
0

where J; is the zeroth order Bessel function of the first kind.
For any circularly symmetric PSF h(r), the spread parameter o is defined
as

o?=2r /oo r3h(r)dr (2.18)
0

For PSF based on geometric optics the spread parameter is o, = A/ V2. Tt
has been shown that for the wave optics PSF model, the spread parameter o,

has the following relation with o, [7]
oy~ o)+ 0 (2.19)

where gy is the spread parameter when the optical system is focused according
to geometric optics. As A gets larger, i.e. 0, >> 0y, the spread parameter for
geometric optics model and wave optics model will be almost the same. We
conclude that when the blur is moderate or large, for characterizing the blur
parameter o, Gaussian and geometric optics models are good approximations
for the wave optics model.

In order to compare the three models of PSF presented in this chapter,
3D plots of the PSFs for the three models are shown in Fig. 2.3. The PSFs
correspond to blur circle radius of 3.75 and 7.5 pixels. Fig. 2.4 shows 2D plots
of the cross sections of the circularly symmetric PSFs and their Modulation

Transfer Functions (MTF) for blur circle radius corresponding to 3.5, 7.5, and

17



15 pixels. We see that as the blur circle radius increases, geometric optics

model becomes closer approximation to the wave optics model.
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2.4 Image Defocusing as Convolution
Operation

Let f(z,y) be the focused image of a planar object at distance u. The
focused image f(z,y) at a point (z,y) of a scene is defined as the total light
energy incident on the camera aperture (entrance pupil) during one expo-
sure period from the object point along the direction corresponding to (z,y)
(Subbarao and Nikzad, 1990). We do not know of any previous literature on
focusing techniques which gives a precise and correct (we believe) definition
of the focused image as we have done here. Such a definition is essential for a
sound analysis of DFD methods.

For a planar object perpendicular to the optical axis, the blur circle radius
R is a constant over the image of the object. Let g(z,y) be the image of the
object recorded by the camera with parameter settings e = (s, f, D). In this
case the camera acts as a linear shift invariant system. Therefore g(z,y) will be
equal to the convolution of the focused image f(x,y) with the corresponding

point spread function

g(z,y) = h(z,y;e,u) * f(z,y) (2.20)

where * denotes the convolution operator. Convolution in the spatial domain
corresponds to multiplication in the Fourier domain. Therefore, if F' and G

are Fourier transforms of f and g respectively,
G(w,v) = H(w,v;e,u) F(w,v) (2.21)

The above discussion is valid only for the region close to the optical axis of
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a thin lens. However, the above equations are still a good approximation for

our camera system.
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Chapter 3

Review of Depth from Focus Methods

3.1 Introduction

In this chapter we review the literature on depth-from-focus (DFF) meth-
ods. The different methods proposed in the literature are summarized and

their strengths and weaknesses are outlined.

3.2 Depth from Focus

In depth-from-focus methods, the problem is to find the camera parameter
setting e, Eq. (7?7), that brings a desired object into focus. Once the best
focused setting is found, the object distance can be computed by using the lens
formula in Eq. (??). The focus setting can be found by recording a number
of images at different camera settings and computing a focus measure for
each of the recorded images. The image with the highest focus measure is
the focused image of the object and the corresponding camera setting is the

desired focus setting. Since this method involves focusing the object, it is called
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Depth-from-Focus (DFF). Approaches for Depth-from-Focus can be found in
[2,2,2,2,2,7,7,7,7, 7. We will discuss some of the common focus measures
that have been used in the literature. We will also describe a new DFF method

and related experimental results.

3.3 Focus Measures

A good focus measure should be sound in the absence of noise and robust
in the presence of noise. Also, another desirable characteristic is that the focus
measure should increase monotonically with decreasing defocus and should
have a sharp peak at the best focused image. Some widely used focus measures
that satisfy the above criteria are summarized below. References on this topic

can be found in [?, 7).

e Gray-level variance
The variance of image gray level can be used as a focus measure. This
can be seen intuitively as the more variation in the image suggests that
there are more details in the image. The variance of an N X N image is

computed as
1 N-1N-1

o* = 552 2 (9(zy) - )’ (3.1)

z=0 y=0
where p is the mean value of gray level within the image.

e Sum of gradient magnitude squared

In this approach [?, ?] gradient magnitude is computed as

[foe= L[] e

24



The focus measure is obtained by summing up the gradient magnitude

inside a window.

e Sum of Laplacian squared

Laplacian is a high pass filter. The focus measure using Laplacian is

Lol =[5

Focus measure for a certain point is obtained by applying the above filter

computed as

L+ (3.3)

over a region with the point of interest at the center.

Some related focus measures are Sum Modulus Difference [?], Sum Mod-
ified Laplacian [?], and energy of band-pass filtered images [?]. See [?] for a

detailed treatment of the various focus measures.

3.4 Shape and Focused Image Recovery

In a typical DFF method, the 3D shape of an object and its focused image
are recovered as follows. The camera setting is changed by moving the lens
with respect to the image detector. A sequence of images g; are recorded
for different lens positions s; for ¢ = 1,2,3,---,n. Usually the positions are
uniformly spaced with a spacing of ds. Focus measures are computed for each
image ¢; in small regions of size about 5 x 5 to 20 x 20. In each image region,
the image with the maximum focus measure is determined. The positions
of these images are used to compute the 3D shape. The focused images in

the different image regions are synthesized to obtain the focused image of the
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entire object. If the object is flat, the position of the maximum of the focus

measure can be found by binary search or Fibonacci search.

In the method outlined above the focus measures are computed at each
pixel and summed in small image regions of size about 5 x 5 to 20 x 20. The
larger the size of the image region the lesser the effect of noise and digitization
on the computed focus measure. Also, larger image regions are needed for poor
contrast images and for images with low spatial detail. However increasing
the size of the image region decreases the spatial resolution of the depth-map
recovered. Therefore there is a trade-off between the spatial resolution of the
depth-map and signal-to-noise ratio which depends on noise, image contrast,

and image detail.

We propose the following improvement to the DFF methods that increases
the spatial resolution of the depth-map at the cost of processing more images
and additional computation. A sequence of images are recorded with ds = p-F'
where p is the linear size of a pixel and F' is the F-number of the camera
system. The images stacked in order are considered to form an image volume.
The focus measure is computed at each pixel as in other DFF methods. Then,
instead of summing the focus measure in small image regions as in a typical
DFF method, the focus measure is summed in small image volumes. One can
consider summing in partially overlapping image volumes. Then the positions
of the focus measure maximums are found in small fields of view. From this
information, a dense depth-map and a focused image of the 3D object can be
reconstructed. Note that, summing in a 3 X 3 X 3 image volume has roughly the

same noise smoothing power as summing in a image region of size 5 x 5, but
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the spatial resolution of the depth-map in the former case is roughly twice that
of the latter case. In the next section we present some experimental results

related to this improved DFF method.

3.5 Experiments

In the first experiment, we used a CCD camera to take images of a cone
object with the tip of the cone placed at 65 cm and extending to around 2
meters with a base diameter of about 30 cm. A sequence of images of size
360 x 360 was taken by changing camera parameter s. The focal length was
35 mm, F-number was 4, effective pixel size was 0.011 mm and ds = 0.030
mm. The lens position was changed by a stepper motor with step numbers
0,1,---96. Step 0 corresponded to s = f, which focuses objects at distance
infinity. Fig. 3.1 shows that for a certain step, only part of the images will
be focused. Fig. 3.2 is the step number for each pixel where focus measure
is a maximum. Based on the computed step number, a focused image is
reconstructed. The reconstructed image is shown in Fig. 3.3. We see that the
image is focused everywhere in comparison with images in Fig. 3.1. Fig. 3.4
shows the depth-map of the object. Except for the lower corner of the image

where there was very little gray level variation, the results are good.

The second experiment was done using a microscope as the optical system.
A mustard seed was placed on a stage under the microscope and 40 images of
size 480 x 480 were recorded at 40 different step positions of the stage. The

successive step positions of the stage were 0.004 mm apart. Fig. 3.5 shows some



of these images. We see that only some part of these images are focused. The
reconstructed image that is focused everywhere is shown in Fig. 3.6. Figures
3.7 and 3.8 show the focus step number. They represent the depth-map with
a scaling factor of 0.004 mm per step. In Fig. 3.7, a brighter pixel corresponds

to a closer point on the object.
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Image Taken at Step 40 Image Taken at Step 57

Image Taken at Step 74 Image Taken at Step 91

Figure 3.1: Images of Cone Object Taken at Different Steps
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Image Taken at Step 22 Image Taken at Step 28

Image Taken at Step 34 Image Taken at Step 40

Figure 3.5: Images of Mustard Seed Taken at Different Steps
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3.6 Conclusion

The advantage of Depth-from-Focus over Depth-from-Defocus is that it
gives more accurate results. On the other hand, it takes more images and is
slower than DFD methods. It is often the case that the mechanical movement
of the camera lens takes up more time than computation itself. Therefore,
the more images needed implies the more time wasted in the movement of the
lens. However, DFF and DFD share some common advantages over stereo.
They don’t have to match two images, i.e., no correspondence problem. And
the hardware setup is simpler, only a single camera is needed. The accuracy
among these three methods can be ranked as, starting with the most accurate

one, stereo then Depth-from-Focus and Depth-from-Defocus comes in last.
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Chapter 4

Depth From Defocus Review

4.1 Introduction

In Depth-from-Focus (DFF) approach [?, 7, 7, ?, 7], a search is made for
the lens position s or/and the focal length f which brings a stationary object
to focus. This involves acquiring about 10 images with different s or/and f
and finding the image which is in best focus. This approach is slow due to
the mechanical motion of camera parts to change s or/and f to record the
required 10 or so images.

In Depth-from-Defocus (DFD) approach [?, 7, 7, 7, 7, 7, 7, 7] there is
no need to search for s or/and f values which correspond to focusing the
object. The level of defocus is used in determining distance. This approach
involves processing only a few images (about two or three) as compared to a
large number (about 10) of images in the DFF methods. In addition, only a
few images are sufficient to determine the distance of all objects in a scene

irrespective of whether the objects are focused or not. Therefore this method
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is much faster than DFF due to the reduction in the mechanical motion of

camera parts.

The DFD approach has been successfully applied to high contrast step
edges [?, 7, 7, 7, 7]. Application of DFD to arbitrary objects has been investi-
gated by many researchers [7, 7, 7, 7, 7, 7, 7]. In this chapter we will review

some of the DFD methods.

4.2 FEdge Based Method

Pentland [?, ?, 7] and Grossman [?] both addressed the problem of recov-
ering depth from blurred edges. Pentland modeled the point spread function
by the Gaussian model. The blurring process is therefore a convolution of a
step edge and a Gaussian function. He showed that if C'(z,y) is the Laplacian

of the observed image then the spread o of the Gaussian is related to C(z,y)

by
b z? C(z,y)
In|—2 | -2 — p|2\% 4.
nl 2%03] 52 n|— (4.1)

where b is the magnitude of the step edge and the center of the image coor-
dinate system is located on the edge with = axis perpendicular to the edge.
The two unknowns b and o are solved by a regression in 22. The depth is then
computed from o. The depth of edge is classified into three categories, small,

medium and large.

Grossman used edges placed at different depth. The measured width of

the edge is used as an index for the focus, therefore the depth. Experimental
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results are shown in his paper, but he does not provide a theoretical justifica-
tion for his method.

Subbarao and Gurumoorthy [?] presented a closed-form solution for the
problem. In this approach, the point spread function need not be a Gaussian.
They only assume the point spread function to be circularly symmetric. For

a step edge along the y-axis
f(z,y) = a+ bu(z) (4.2)

where u(z) is the unit step function and b the height of the step edge. Let
f(z,y) be blurred by a PSF h(z,y) that results in the blurred edge g(z,y). It
can be expressed as a convolution as in Eq. (77), g(z,y) = h(z,y) * f(z,v).
The definition of line spread function /() along the y-axis can be written as

) = [ hiz,y)dy (4.3)

The relation between the derivative of g(x,y) along x direction and the line

spread function I(z) is

dg(z,y)
oz

= bl(z) (4.4)

Therefore, one can obtain the line spread function from a blurred edge

9g(z,y)

o) = adeng, (45)

After the line spread function is obtained, the spread parameter o; is computed.
They also showed that the spread parameter og; is inversely proportional to

depth u. Combining Eq. (??) and Eq. (??) they obtain

op=mu ' +ec (4.6)
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where m and c are some constants that depend on the camera settings. This
formula can be used to find the depth from a blurred step edge once the spread
parameter of the line spread function is estimated.

Lai, Fu and Chang [?] expressed the spread parameter o; in terms of the
z and y components as

050y

O] = —— 4.7
- (4.7)

In this approach, they first search the image for edges. After the edges are
located, o, and o, are estimated separately using numerical iteration. Then

oy 1s used to find the distance.

4.3 General Scene

Previous section described methods based on edges. These methods can
not be applied in situations where no edge can be found. Many researchers
address this problem with different approaches. We will give a brief description
of some approaches in this section.

Pentland [?, 7] used a pin-hole camera to obtain the focused image. The
Gaussian point spread function is used in his analysis. If two images of the

scene are taken as

fi(r,0) = fo(r,0) x G(r,01) (4.8)

fa(r,0) = fo(r,0) x G(r, 09)

where G(r, o) is a two dimensional Gaussian function with variance o2, fy(r, )

is the focused image, fi(r,0) and fa(r,8) are the blurred images. Taking the
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Fourier transform and dividing one by the other, and applying the natural log

2
In % +2)272(02 — 0%) = In Fy(\) — In F3()) (4.9)
1
Since one of the image is taken by a pin-hole camera, o; = € for some small

value. The following relation is derived
k10'§+k2 ln02+k3 = lnFl()\) —lnFQ()\) (410)

where ki, ko and k3 are constants. The equation shows that the difference in
localized Fourier power is a monotonic increasing function of the blur in the
second image.

Implementation of this method involves first convolve the image with an
8 x 8 Laplacian filter, squaring the values, then convolving again with an 8 x 8
Gaussian filter. Values from the two images are compared to a lookup table
to find the depth information. In his experiment, a measured standard error
of 6% is reported at the speed of up to eight frames per second. However,
this method changes only one of the camera parameters D and requires two
dimensional convolution.

Ens and Lawrence [?] proposed a matrix based regularization method.
Consider two blurred images taken with change in camera parameter D. The

blurring process is therefore,
gz, y) = f(=z,y)*hi(z,y) (4.11)
g2(z,y) = f(z,y) * ha(z,y)

He defines a convolution ratio hs(z,y) of the two defocus operators hq(z,y)

and ho(z,y), such that

gi(z,y) * hs(z,y) = ga(z,y) (4.12)
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He argued that hs(z,y) must belong to a family of patterns that can be known
a priori and hs(z,y) gives unique depth indication. Regularization was used

to minimize the functional
g1T] - h3s — gQSH2 + A|[C] - h35||2 = minimum (4.13)

where [g1p7] is ¢1(2,y) in Toeplitz matrix form, hsg is h3(z,y) in vector form,
gas is the vector form of go(z,y), A is a scale parameter, and [C] is a matrix
minimizing the magnitude of the second term if h3g belongs to the expected

family of patterns. The Euler equation for Eq. (77) is solved for hsg as

hss = ([ngT]T[ngT] + )\[C]T[C])_l [ngT]Tg2S (4-14)

However, solving for hss is computationally expensive and [C] is difficult to
find except for simple parametric families. In stead, hs(z,y) is computed
iteratively to minimize

N—kN—k

2—:0 - [91($7y)[®]i13($,y) — QQ(x,y)]2 = minimum (4.15)

The operator [®] designates restricted convolution, where the border of hs(z, y)
are not convolved past the borders of g;(z,y). The size of ¢;(z,y) is N X N,
size of hs(z,y) is k x k, and size of go(z,y) is (N —k+ 1) x (N — k + 1).
Implementation of the method is to have all possible h3(z,y) prestored in a
table. For any two images ¢(z,y) and g¢2(z,y), Eq. (77) is used to seek out
the hs(z,y) that gives the minimum.

This method is iterative, it is therefore computationally intensive. Choos-

ing of the free parameters can be tricky, and the PSF has to be calibrated a
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priori. However, his experiments shows a RMS error of 1.3% in terms of dis-
tance from the camera for object range 80 cm to 90 cm.

Subbarao and Surya [?, 7] presented a spatial domain approach using S-
Transform. According to the third order S-transform [?], it is shown that the

blurred image can be expressed as

o(z,9) = F(@,0) + 22 (20, ) + [ (z 1) (4.16)

where hy, , are the moments of the point spread function, and f™"(z,y) are

the derivatives of f(z,y).

Py = /oo /oo z™y"h(z,y)dzdy (4.17)
om "
man =7 7 4.1
ffMey) = 5o o (z,9) (4.18)
And the focused image f(z,y) can be found from the blurred image by
h

fly) = glz,y) - % v*9(z,y) (4.19)

T o
= 9(@y)— Vv 9(zy) (4.20)

The image is first filtered by a smoothing filter proposed by Meer and
Weiss [?]. This filter can be applied separately along z and y directions to fit a
cubic polynominal in a small image region. The size for their implementation
is 9 X 9. Then third order S-Transform can be used. For two images with
blurring kernel spread parameters o; and o3, the following relation can be
derived

01(2,9) - g2(3,9) = (0% — 02) P2 g (4.21)

4
Therefore, the value (62 — 02)? can be estimated by
J J (g1 — g2)*dzdy
J 1 (2g)*dzdy

(07 —02)* =16 (4.22)
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This can be pre-stored through camera calibration and then used later as
a lookup table for finding the object distance. Experimental results on this
method yield an RMS error of 2.3% in the range from 50 centimeter to 5 meter.

The drawback of this method is it requires two dimensional operation.



Chapter 5

Depth From Defocus Using One-dimensional Fourier

Coeflicients (DFD1F)

5.1 Introduction

A new fast method of determining distance of objects and autofocusing
a camera using image defocus information is presented in this chapter. The
method, named DFDI1F, requires only two images acquired at two different
camera parameter settings and therefore is very fast in comparison with depth-
from-focus [?] methods which require a large number (10 or more) of images.

The major distinguishing features of DFD1F in comparison with prior
DFD approaches are- (i) it requires the computation of only a few (about 6)
and that too only one-dimensional Fourier coefficients (hence the suffix 1F in
DFDI1F), (ii) it is general in that it is not restricted to any particular model
of the point spread function of the camera system, (iii) only a few (two or
three) images acquired with different camera parameter settings are needed,

(iv) there is no restriction on the camera parameter settings such as pin-hole

43



aperture, etc., and (v) the method has been demonstrated on a very large
database of planar images.

DFEDIF has been implemented on a prototype camera system named
SPARCS. It can determine the distance of an object placed in front of the
camera in the range 0.6 meter to infinity in less than a second of computation
on a personal computer. Based on the computed distance, the camera can
autofocus by moving the lens to the correct position. Experiments indicate
that the method is useful in practical applications such as robotic vision and

rapid autofocusing.

5.2 Theoretical Basis

In this section we develop a theoretical basis for determining distance.
Let f(z,y) be the focused image of a planar object at distance u. The focused
image f(z,y) at a point (z,y) of a scene is defined as the total light energy
incident on the camera aperture (entrance pupil) during one exposure period
from the object point along the direction corresponding to (z,y) (Subbarao
and Nikzad, 1990).

Let ¢1(z,y) and go(z,y) be two images of the object recorded for two

different camera parameter settings €; and e; where

er = (s1,f1,D1) and ez = (sg, fo, D). (5.1)

The images ¢, and g, are normalized with respect to magnification, brightness,

and other factors such as sensor response and vignetting as necessary [7].
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For a planar object perpendicular to the optical axis, the blur circle radius
R' is a constant over the image of the object (this may not be obvious at first
sight, but it can be proved easily). In this case the camera acts as a linear shift
invariant system. Therefore g; will be equal to the convolution of the focused
image f(z, y) with the corresponding point spread function. Convolution in the
spatial domain corresponds to multiplication in the Fourier domain. Therefore,

if F" and G; are Fourier transforms of f and g; respectively,

Gi(w,v) = Hy(w,v;e1,u) F(w,v) and (5.2)

Ga(w,v) = Hy(w,v;eq,u)F(w,v). (5.3)

The effect of the focused image F' is eliminated by dividing G; by G5 to obtain

Gl(w7y) — Ha(w,l/;el,u) (5 4)
Ga(w,v) Hy(w,v;ez,u) '

with H,(w,v;e,u) defined in Eq. (77).

In the above equation, the distance w is the only unknown quantity.
Therefore we can solve the above equation to find the distance. Indeed, we
can obtain an equation similar to the above irrespective of the PSF model.
It is not restricted to any particular model of PSF such as the one based on
paraxial geometric optics, or on a Gaussian PSF. We will next discuss methods
for solving this equation. First we consider two special cases, and then the

general case.
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5.2.1 Paraxial Geometric Optics Model for PSF

Substituting for the right hand side of Eq. (??) from Eq. (7?), we obtain

Gi(w,v) _ Si(R(e1;u) p(w,v)) R'(ez;u)
Ga(w, v) Ji (R (e2;u) p(w, v)) R'(e1;u)’

(5.5)

The left hand side of the above equation is computed from the recorded images.
Explicit closed-form solution for u in the above equation is difficult to obtain
because of the presence of the Bessel function. But it can be solved easily

using numerical techniques.

5.2.2 Gaussian PSF Model

Interestingly, a closed-form solution for v can be obtained in the case of

a Gaussian PSF model. In this case we have

= e 3 (W) (ei—0) (5.6)

Taking logarithm on either side and rearranging terms, we get

-2 G (w,v)
2 _ 2 )
of — 0y Y In (GQ(w,l/)> : (5.7)

For some (w,v), the right hand side of equation (?7) can be computed from
the given image pair. Therefore equation (??) can be used to estimate o2 — o3
from the observed images. Measuring the Fourier transform at a single point
(w,v) is, in principle, sufficient to obtain the value of 0? — 02, but a more
robust estimate can be obtained by taking the average over some domain in

the frequency space. Let the estimated average be C given by

C = %//Bw;fﬂ In (g;EZZD dw dv (5.8)
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where B is a region in the (w, v) space not containing points where G (w, v) =
Ga(w,v), and A is the area of B. Therefore, from the observed images we get

the following constraint between o7 and o5:
ol —02 = C. (5.9)

Equation (??7) (and therefore Eq. (77) is a single equation in two unknowns o;
and o,. Therefore, this equation can not be solved without using an additional
constraint. Pentland [?] solved this equation by forcing o, to be zero (or nearly
zero). Forcing oy to zero corresponds to requiring the knowledge of the focused
image of the scene. In his experiments, Pentland obtained this information by
setting the camera aperture to be very small (pin-hole dimensions). However,
a very small aperture has two main problems: (i) it increases the camera
exposure period to a larger duration, and (ii) it increases diffraction effects
which distort the image.

One of the important contribution of this work is the recognition that an
additional constraint exists between ¢; and o3 in terms of the camera param-
eters e; and e,. It is the use of this constraint that removes the requirement
of a focused image or other information and makes our method sound and
useful in real-time applications such as autofocusing. As an alternative to this
constraint, Ens and Lawrence [?] adopted a heuristic approach where the PSF
for an inverse filter was forced to be smooth (regularization approach). The
following linear relation between o, and o5 can be obtained in terms of the

known camera parameters using Eq. (?7) and eliminating 1/u :

o = aoy+ (5.10)
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where

D, cD1<1 1 1 1)
a = — and = |04 —=]. 5.11
Dy /6 2 f1 f2 S2 51 ( )

Equations (?77,77) together constitute two equations in two unknowns.

From these equations we obtain
(c®—1) 03 + 2280, + 5 = C. (5.12)

Above we have a quadratic equation in o9 which is easily solved. In general
there will be two solutions. However a unique solution is obtained if D; = Ds.
We can also derive other special cases where a unique solution is obtained
(e.g.: Dy # Do, 81 = s = f1 = fo; in this case only the negative solution of
o is acceptable which is unique). Having solved for o, we obtain the distance
u from equation (77). Thus, the distance is determined from only two images
obtained with different camera parameter settings. This should be compared
to the DFF methods [?] which require recording and processing a large number
of images. Note that the camera parameter setting could differ in any one,
any two, or all three of the parameters: s, f, D.

Equation (??) plays a central role in determining distance. As noted
earlier, it is not restricted to any particular model of PSF (not even the as-
sumption of circular symmetry of the PSF is required). The left hand side of
Eq. (7?7) can be computed from the observed images ¢g; and g,. The right hand
side can be expressed as an analytic function as in Eq. (??) or Eq. (7?), if one
uses an analytic model for the PSF. In this case, standard numerical techniques
can be used to solve the equation. However, for practical camera systems, the

function on the right hand side is usually very complicated. In such cases, the
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right hand side can be represented by a table of values obtained by initial cam-
era calibration. Then, solving the equation corresponds to searching the table
to find a position where the stored value is nearly the same as the computed

left hand side value. The position found gives the distance of the object.

5.3 Engineering the Implementation

The DFD method described above was implemented by us on our camera,
system. However, the method was found to be unreliable for several reasons.
These reasons prompted us to make some important improvements to the
original method. We will discuss the reasons and the consequent modifications

next.

5.3.1 Choice of Fourier Coeflicients

The noise characteristic of our camera is apparent from Fig. 5.1. It shows
the picture of a uniform planar surface having constant reflectance and illumi-
nation. The noise introduced by our camera appears to have two components.
One is a regular vertical sine-wave pattern with a period of about 8 pixels, and
another is a zero-mean random component. The presence of these noise com-
ponents degrades the performance of our original method very significantly.

In order to overcome the above difficulty, we decided to use only the most
robust Fourier coefficients in determining distance. It should be noted that,
in principle, measurement of a single Fourier coefficient may be sufficient to

determine the distance. However, in practice, one needs to measure several
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(about 6 in our experiments) Fourier coefficients for a robust estimation of
distance. For the noise characteristics of our camera, it can be shown that the
Fourier coefficients along the vertical axis in the Fourier domain are the most
reliable (see Fig. 5.1).

Using only the Fourier coefficients along the vertical axis also results in
significant computational advantages. It is shown here that these coefficients
can be computed by first summing the pixels along rows, and then computing
one-dimensional Fourier coefficients. The application of a one-dimensional

Fourier transform instead of a two-dimensional
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Fourier transform results in tremendous computational savings.

For any image g(z,y), let g;(y) be the result of integrating g(z,y) with

respect to z, i.e.
a(y) = /_oo 9(z,y)dz (5.13)

Let G(w,v) and Gi(v) be the Fourier transforms of ¢g(z,y) and g¢;(y) respec-
tively. Then it can be shown that G(0,v) = Gi(v). Therefore, the two-
dimensional Fourier coefficients along the vertical (v) axis defined by G(0,v)
can be computed by first summing the image g(z, y) along the z-axis to obtain
gi(y) and then computing the one-dimensional Fourier coefficients G;(v). A
similar result can be derived for the case of Discrete Fourier Transform which
is the one used in our implementation. It is also possible to use the Fourier
coefficients along the horizontal axis, however, this requires a filtering step to

remove the vertical periodic noise in our camera.

If the spatial frequency spectrum of an image is localized in a small region
in the two-dimensional Fourier space, then, instead of a fixed set of axes (e.g.
vertical and/or horizontal) one has to compute Fourier coefficients along an
axis which passes through the region. In the worst case, finding such a region
may involve the computation of all 2D Fourier coefficients of the image. With
this extra computation, DFD1F can be used for all images with some spatial
frequency content.

Video images are scanned by rows rather than columns. Therefore, instead
of summing of row pixels after digitization, one can first integrate the analog
video signal rowwise using an analog integrator and then digitize the result

to obtain the required one-dimensional sequence. This saves both digitization
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hardware and digital summation hardware. From this point of view also, using

vertical Fourier coeflicients is better than using horizontal Fourier coeflicients.

5.3.2 Table Searching

The next important improvement to the original DFD method was in the
table searching step. Here is the problem. Suppose that a table of values
corresponding to the right hand side of Equation (?7) is given, and a set of
6 values (each one computed at a specific spatial frequency along the vertical
axis) corresponding to the left hand side of the same equation are given. Now,
given that the set of 6 values is noisy, what is the best strategy for searching
the table to find the distance u? We tried many approaches to this problem
which failed to perform satisfactorily on our camera system. Through much
trial and error, we finally engineered the following method which has been
implemented and is found to perform well. This method, to our satisfaction,
has a theoretical justification.

Let p be the spatial frequency (along the vertical axis). Now a table
corresponding to the right hand side of Eq. (?7) specified by Ti(p,u) is given
(e; and ey are fixed). Also, corresponding to the left hand side of Eq. (77), 6
computed values specified by T.(p), p = 1,2,---,6 are given. The problem is
to find the value of the index u in the table T(p, u) where all the six computed
values are nearly equal to the corresponding values in the table T,(p). The first
idea was to use a simple minimum-mean square error (MSE) method. But this
did not succeed because of the nature of the Optical Transfer Function (OTF)

of the camera whose cross-section looks like a sinc function (see Fig. 5.2).
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The MSE method relied too much on information in high frequencies
which were more noisy than the low frequencies. Therefore our next idea
was to try a weighted minimum-mean square error (WMSE) approach which
would almost equally emphasize information in both low frequencies and high
frequencies. Many weighting schemes were tried, but none of them performed
satisfactorily.

Finally, we devised a scheme where T;(p, u) and T.(p) were defined as

-2 |H(p;e1,u)] -2 2
Ty(pyu) = —5 In——"—"—- = — In|H(p;ey, = In|H(p; ez,
(p u) pg n|H(p;e2,u)| pg n| (p €1 u)| + pg n| (p €2 u)|

(5.14)

T = o it = i) + 5 iG] 6.19)
MSE was computed as

MSE(U‘) = Z[Ts(p7u) _Tc(p)]2 (516)

The value of u for which the MSE was a minimum was taken as an estimation
of the distance of the object. This method worked well. In the subsequent
discussion, we will refer to this method as DFD1F.MSE.

DFD1F.MSE was derived through the following arguments. Suppose the
PSF is a Gaussian, then the MTF is also a Gaussian as in Eq. (7?). In this

case, the variance of the PSF distribution is
5 —2
o = >z In |Hy(p,u)|. (5.17)

The variance 02 depends only on the camera parameters e and distance u as is
clear from Eq. (77). In particular, it does not depend on the spatial frequency

p. Therefore, the right hand side of Eq. (7?7) should be a constant (with respect
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to p because the left hand side is a constant). However, this is exactly true only
for a Gaussian MTF. But if the MTF of a camera is approximately Gaussian,
then there is reason to believe that the right hand side of Eq. (?7) will also
be approximately constant; in fact, for our purposes, it does not have to be
exactly constant. It would be sufficient if the quantity does not change “too

much”, say by a factor of more than about 2.

It is found that for relatively low frequencies (e.g. frequencies which are
less than half of the first zero-crossing) a Gaussian is generally close to the
MTF of practical cameras including our camera. Fig. 5.3 shows a comparison
of a Gaussian MTF, an MTF based on paraxial geometric optics, and the
MTF of our camera, all corresponding to the same variance. Fig. 5.4 shows
these same MTFs after the transformation specified by the right hand side of
Eq. (77). We call this the log/p* (log-by-rho-squared) transform as it involves
first taking the log of the MTF and then dividing the result by p?. In some
sense, the above scheme gives approximately equal emphasis to information in
the values computed at different spatial frequencies during the computation

of mean square error.

The log/p? transform is also very useful in another respect. In our im-
plementation, we need to interpolate T(p, u) with respect to p and u. Equa-
tions (??) and (?7?) can be used to do this. Applying the log/p? transform to
H(p;e1,u) in Eq. (77), we get an expression similar to Eq. (?7). As discussed
above, the right hand side of this expression is nearly a constant with respect
to p. Therefore a simple linear interpolation with respect to p can be used

on this expression to obtain good results. More interestingly, the square root
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of this expression varies almost linearly with 1/u. This behavior is predicted
by Eq. (?7). Therefore once again a linear interpolation can be used on the
square root of the expression with respect to 1/u. This interpolated data can
be transformed to obtain the table Ti(p,u) at small intervals of p and 1/u

from data given at coarse intervals.

DFD1F.MN: In another variation of the implementation, mean of T,(p)
and T, (p, u) were computed over p as
n

Y Te)  (518)

i=1

Ty(u) =

i — 1
> Ty(pi,u) and T, = =
i=1 n

S

Then the distance u was estimated to be that u for which |T,(u) — T,| was
a minimum. This method will be referred to as DFD1F.MN. Since T(p;, u)
and T,(p;) are almost constant with respect to p, this method works nearly as

good as the DFD1F.MSE method.

5.4 Implementation

Our implementation does not depend on any particular model of PSF,
but it is strongly guided by the PSF based on paraxial geometric optics, and
the Gaussian PSF. DFDIF is implemented on a system named Stonybrook
Passive Autofocusing and Ranging Camera System (SPARCS). This system
was built during the last few years by our research group in the Computer
Vision Laboratory, Department of Electrical Engineering, State University of
New York at Stony Brook. Fig. 5.5 shows a schematic diagram and a picture

of SPARCS.

a7



SPARCS has a SONY XC-77 black/white CCD camera with a Olympus
35-70 mm motorized lens. Images from this camera are captured by a frame
grabber (QuickCapture DT2953 of DATATRANSLATION). The captured im-
ages are processed by an IBM PS/2 Model 70 personal computer. The focal
length of the lens can be varied manually from about 35 mm to 70 mm. The
F-number (ratio of focal length f to aperture diameter D) also can be varied
manually to 4, 8, 22, etc. The lens system consists of multiple lenses, and
focusing is done by moving the front lens forward and backward. This lens
motion can be done both manually and under computer control. The mo-
tor is a stepper motor with 97 steps numbered from 0 to 96. Step number
0 corresponds to focusing an object at distance infinity, and step number 96
corresponds to focusing a close object at around 50 cm distance. The motor
is controlled by a microprocessor which can communicate with the IBM PS/2

computer. In effect, the system is set up such that, a C program running on

the PS/2 can
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move the lens to any desired step number and take pictures and process them.
The communication between the microprocessor and the computer takes place
through a digital I/O board (Contec mPI024/24) and a motor-computer in-
terface. The pictures from the camera can be displayed on a color monitor
(SONY PVM-1342Q)) in real-time. Also, pictures stored in the PS/2 computer

can be displayed on the monitor.

In our experiments, the F-number was manually set to 4, and the focal
length was manually set to 35 mm. These settings were not changed during
the experiments. However, according to the lens data provided by the lens
manufacturer to us, due to the complex nature of the optical system, the focal
length changes by a small amount when the front lens is moved from one end
to the other. We also believe that the effective diameter D of the entrance
pupil also changes by a small amount when the front lens is moved, but we do

not have lens specification data related to this.

For F-number = 4, and focal length f = 35 mm camera setting, Table
1 shows the distance of an object which is in best focus as a function of the
lens step position. This data was obtained using a lens simulation program
by the lens manufacturer. Because the F-number is small, the aperture is
relatively large, and therefore this table can be shown to be different from the
one predicted by the paraxial geometric optics model. However, since DFD1F
uses the actual MTF of the lens instead of the one predicted by paraxial

geometric optics, it performs well.

Fig. 5.6 shows a plot corresponding to Table 1 where the vertical axis is

the reciprocal of distance and the horizontal axis is the lens position in motor
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Lens Step 0 5 10 15 20 25 30

Distance(m) oo | 5.300 | 3.750 | 2.850 | 2.500 | 1.930 | 1.720

Lens Step 35 40 45 50 55 60 65

Distance(m) | 1.465 | 1.320 | 1.170 | 1.080 | 0.965 | 0.900 | 0.822

Lens Step 70 75 80 85 90 95

Distance(m) | 0.770 | 0.715 | 0.670 | 0.628 | 0.595 | 0.560

Table 5.1: Lens Step vs Best Focused Distance (Simulated Data)

step number. In Table 1 and Fig. 5.6 we observe that there is a one-to-one
monotonic relation between lens position specified by a step number and the
distance of an object which would be in best focus when the lens is at that
position. Therefore, if an object is known to be in best focus, then its distance
can be found from the table (or Fig. 5.6) using the step number of the lens
position as an index into the table. Conversely, if the distance of an object
is known, the lens position for which it will be focused can be found from
the table (or Fig. 5.6). Since there are only 97 steps for the lens position in
our camera, only about 97 distinct distances can be measured. Further, we
observe in Table 1 that the distance of a best focused object decreases rapidly
in the beginning and more slowly later as a function of lens position specified
by the step number. In fact the two are approximately related by a reciprocal
linear relation. This is in fact predicted by the lens formula (??). For these

reasons, we will
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use the step numbers as units of distance in specifying the distance of an
object. For example, if the distance of an object is said to be step number 35,
it means that the object’s distance is such that the object would be in best
focus if the lens is moved to step number 35. If we assume that the distance
of an object of interest has approximately a uniform probability distribution
in the interval (0,00), then the object is more likely to be focused for a lens
position near step 0 than near step 96. Based on this argument, SPARCS is
implemented such that the initial position of the lens is always step 0.

The overall operation of SPARCS for finding the distance and autofo-
cusing of an object is summarized in a flow chart in Fig. 5.7. The stepwise
operation is also explained below with comments. The lens is first moved to
step 10 and a first image gy¢ is recorded. Optionally, we can specify the num-
ber of image frames (typically 4) to be recorded which are then averaged to
reduce noise. Such frame averaging is particularly needed under low illumina-
tions, and in the presence of flickering illumination such as fluorescent lamps.
Bright incandescent lamps are highly recommended for this reason. Under
low or flicker illumination, one image frame may be substantially different
from another. This was clearly evident from a number of tests on SPARCS.

The lens is then moved to step 40, and a second image g4 of the object
is recorded. Again, optionally, several frames may be recorded and averaged.

The object to be focused is specified by specifying a region on the
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image. The default region is the center of the image. The size of the region is

also an option and the default size is 128 x 128.

The two recorded images are then normalized with respect to brightness.
This is done by dividing the grey level of each pixel by the mean grey level
of the entire image. Our implementation does not normalize the images with
respect to other types of distortions such as vignetting and sensor response
characteristics as their effects are not significant for our camera. One nor-
malization we have deliberately ignored is the magnification normalization.
For our camera system, the change in the magnification due to change in lens
position was found to be negligible (about 2%). But if it is not negligible,

magnification normalization should be done.

Due to blurring and spreading of light from point objects, the grey levels
at the border of an image region are affected by light from points immediately
outside the image region. The light distributions produced by points inside
and outside the border overlap. We call this the image overlap problem [?].
In order to reduce the errors due to the image overlap problem, the image
is weighted (i.e. multiplied) by a two-dimensional Gaussian centered at the
center of the image and having a spread parameter o equal to about 1/3rd of
the image size (i.e. about 40 for a 128 x 128 image). The weighting function

1s

202

w(i, §) = exp (— (=" + (- DQ) (5.19)

with 1 = image_height/2, ] = image width/2, and ¢ and j are the row and

column indices. This function has a weight of 1 at the center and gradually
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reduces to about 0.325 at the border.

The two images ¢g; and go are then summed rowwise to obtain two one-
dimensional sequences, say gio[¢] and gaol].

The MTF of the lens system as a function of object distance u and spatial
frequency p was provided to us by the lens manufacturer. Plots of MTF for
lens step positions 10, 40, and 70 are shown in Figures 5.8, 5.9 and 5.10.
The manufacturer obtained this data using a computer simulation of the lens
system. The same data could be obtained through direct measurements on
the lens system using special equipment. The manufacturer provided the data
at intervals of 1 cycle/mm spatial frequencies starting from 1 cycle/mm to 15
cycles/mm. However, for our camera, each pixel corresponds to 0.6 cycles/mm.
This is calculated as follows:

Vertical sampling interval = 0.013 mm. Therefore, sampling frequency =
1 sample / 0.013 mm = 76.92 samples/mm. Therefore the maximum spatial
frequency which can be present in the image without aliasing distortion arising
=76.92/2 =38.46 cycles/mm. Let the image size be 128 x 128. In the discrete
Fourier transform, the highest frequency corresponds to the discrete index
128/2 = 64. Therefore, 64 corresponds to 38.46 cycles/mm, and one discrete
frequency index corresponds to 38.46/64 = 0.601 cycles/mm.

Therefore, the MTF data provided by the manufacturer is coarser (1 cy-
cle/mm) than what we would like (0.601 cycle/mm). In order to obtain the

MTF data at intervals of 0.601 cycles/mm from the data given at
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intervals of 1 cycle/mm, we used an interpolation scheme. This interpolation
is more easily carried out after applying the log/p? transformation discussed
earlier. After the transformation, a linear interpolation gives more accurate
results than a higher order interpolation directly on the MTF. Only for the
first point at p = 0.6 cycles/mm, we need to do either extrapolation after the
transformation, or an interpolation before the transformation.

For robustness against noise, we did not use data at points where the
MTF value was low. This threshold was arbitrarily chosen to be around 30%
of the maximum magnitude. This precludes usage of all data points after the
first zero crossing of the main lobe of the MTF. Also, it precludes the usage
of some data points to the left of the first zero crossing belonging to the main
lobe. One effect of this restriction on limiting the data points used is that
it restricts the maximum allowable blur in an image. The MTF is circularly
symmetric and its cross section has the general shape of a sinc function. A
plot of the MTF data of our camera is shown in Fig. 5.2.

Due to the restriction on the minimum MTF magnitude for using the
corresponding data, we cannot for example use an image acquired at step 10
of an object which is very close because the object will be very highly blurred.
Generally, for reliable estimates of distance, about 6 data points are needed.

After the interpolation, the Table corresponding to

—2 H
Ti(p;u) = —In Lt

2 ™ Haolp) (5.20)
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is obtained, where Hiy and Hyy represent the MTFs for lens positions 10 and
40 respectively. A plot for this table is shown in Fig. 5.11. The table size is
fixed to be 6 because we use 6 points in the estimation of distance.

Next, the first 6 discrete Fourier coefficients of ¢;¢ and g49 are computed.
Let these be Go(p) and Gyo(p) for p=1,2,---,6. The computed table 7, is

obtained by

O = Gty

Mean-square error is computed between 7, and T for different values of

(5.21)

u. The value of u for which the mean-square error is a minimum is taken to be
the estimated distance of the object. However, if the minimum error occurs
for a distance corresponding to higher than step 60 then it is considered to
be too far from step position 10 for reliable results. Therefore, in this case, a
third image is taken at step position 70, and the images taken at steps 40 and
70 are used in estimating distance. A plot of T;(p, u) for step positions 40 and
70 is shown in Fig. 5.12. Again, MSE is computed for this table. The value
of u for which MSE is a minimum is taken to be the distance of the object.
The distance of the object is printed on the computer terminal, and the lens

is moved to the corresponding position to focus the object.

5.5 Experiments

Three types of experiments were conducted under the following condi-
tions. Camera setting: focal length = 35 mm, F-number = 4, camera gain

control +6dB, White balance = off, Gamma compensation = off.

70



5.5.1 Experiment 1

This experiment was designed to test the accuracy of DFD1F. The illu-
mination was kept constant at 400 lux (about the ambient illumination in an
office environment). A fixed image size of 128 x 128 was used. Four image
frames were time-averaged to reduce noise. Eleven pictures shown in Fig. 5.13
were used as test objects: a step edge (ev), two human faces (fa, gl), four text
based objects (cl, c2, gs, sb), two cartoon pictures (mk, mn), a fruit bucket
(ft), and a tiger head (tg). Each object was placed at 19 different distances
shown in Table 5.1 (except oo corresponding to step 0). The distances will
be denoted by u; where ¢ is the step number of the lens position which would
focus an object at distance u; according to Table 5.1.

Three different programs corresponding to three methods of determining
distance were run. Two of them are DFD1F.MSE and DFD1F.MN. The third
is a depth-from-focus program [?] based on maximizing a focus measure. The
focus measure is defined as the energy of low-pass filtered image gradient [?].

It performs a binary search by moving the
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lens to find a position where the focus measure is a global maximum. The
lens position is then used as an index into a table to find object distance.
This method uses as many images as needed (about 10 or more as compared
to a maximum of 3 in DFDI1F) to find the best focused position. The depth
accuracy obtained by this method is better or close to the best accuracy ob-
tained by other known DFF methods (depending on image content and noise)
[7]. Therefore it serves as a good DFF method and a benchmark against
which DFD methods can be compared. We will refer to this DFF method as
DFF.BST.

The results of the experiments DFF.BST, DFD1F.MSE, and DFD1F.MN,
are shown in Table 5.2. In Table 5.2, the first column shows object distance.
Columns 2 to 4 correspond to the results of DFF.BST, DFD1F.MSE, and
DFD1F.MN. The entries there show the mean focus position + the standard
deviation for the 11 test objects as determined by the three programs. The
last row shows the overall root-mean-square (RMS) error for each program.
We see that, as expected, the mean focus position in each of the rows are more
or less a constant whereas the entries along a column increase monotonically.
The mean focus values are different from Table 5.1 because of a assembly error
between the lens and the CCD camera. The error corresponds to a constant
shift of about 12 lens steps. Plots of the reciprocal of distance as a function of
the these mean values is shown in Fig. 5.14. This Figure shows that the plots
are almost linear, except for a small glitch at the beginning for DFD1F.MSE

and DFD1F.MN. One can use these plots to find the distance of objects for
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Distance (m) | DFF.BST DFD1F.MSE DFDI1F.MN
5.300 16.09 £ 0.79 27.18 £ 6.62 26.73 £ 6.63
3.750 21.82 £ 0.83 21.82 £2.33 21.09 £+ 2.44
2.850 26.09 &+ 0.67 25.36 £2.71 25.00 + 2.73
2.500 30.82 £ 1.70 30.82 £1.75 30.00 &+ 1.93
1.930 35.55 £ 0.78 37.36 £ 2.27 36.82 + 2.33
1.720 42.09 £ 0.79 41.55 + 3.20 40.64 £ 3.33
1.465 47.73 £ 0.96 47.82 + 2.82 46.55 £+ 3.10
1.320 51.45 +1.50 50.27 £ 2.63 49.91 £ 2.66
1.170 56.18 +1.34 53.18 +3.13 52.45 £ 3.21
1.080 60.00 & 2.80 59.36 £+ 4.58 58.55 * 4.65
0.965 68.18 + 1.47 67.36 £ 5.09 65.82 &+ 5.32
0.900 71.91 £ 090 72.64 +2.67 70.82 £ 3.23
0.822 77.09 £ 281 75.91 +4.56 74.55 £ 4.76
0.770 85.00 £ 1.71 80.09 £ 3.18 78.91 & 3.39
0.715 89.27 +£2.00 82.00 +3.95 80.64 £ 4.18
0.670 93.00 & 0.74 85.27 +3.14 84.18 £ 3.32
0.628 94.36 + 1.67 88.55 £+ 3.58 86.91 &+ 3.93
0.595 95.09 &+ 1.56 90.09 £ 3.63 89.45 + 3.68
0.560 95.09 &+ 1.31 92.64 £ 3.47 92.00 &+ 3.53

RMS Error 1.62 3.61 3.76

Table 5.2: Results of Experiment 1
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any of the three programs.

The RMS error for DFF.BST is 1.52 steps out of 97 steps. This corre-
sponds to about 1.6% RMS error in the lens position for autofocusing. The
RMS error for DFD1F.MSE is 3.61 steps out of 97 steps. This corresponds
to about 3.7% RMS error in autofocusing. Blurring due to this small error
is not easily noticeable by humans. Therefore, it gives satisfactory results in
autofocusing applications. We see that this (3.7%) compares well with the
performance of DFF.BST method (1.6%) which is close to the best achievable
by any known DFD method. For DFD1F.MN, the RMS error in this case is
3.76 steps out of 97 steps. This is only a little worse than the DFD1F.MSE
method. This corresponds to about 3.8% RMS error in autofocusing. Once

again, it (3.8%) compares well with the DFF.BST method (1.6%).

5.5.2 Error Analysis

In the plot of Table 5.2 shown in Figure 5.14, we see that the reciprocal
of object distance 1/u is linearly related to lens position. This relation can be
specified by

l/u=az+b (5.22)

where z specifies lens position. For our camera, the lens position is specified in
terms of a motor step number where each step corresponds to a displacement
of about 0.03 mm. The RMS errors mentioned above are for lens position.
This gives a good indication of the performance of the method for application

in rapid autofocusing of cameras. As for error in determining object distance,
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it can be estimated by taking error differentials in Eq. (77?):

6(1/u)] = aldz| (5.23)
— |%| = a |[0z|u (5.24)
- |ou| = a|dz|u® (5.25)

From the above relations we see that the relative (percentage) error || in ac-
tual distance u increases linearly with distance, and the absolute error |du| in
actual distance increases quadratically with distance. For our camera system,
a =~ 0.0172. Setting |dz| to be the RMS error of 3.6 steps, a plot of the relative
error %] and absolute error |du| are shown in Figures 5.15 and 5.16. In Fig-
ure 5.15 we see that the percentage error in distance at 0.6 meter is about 4%
and increases linearly to about 30% at 5 meter distance. This compares well
with the error obtained by the DFF.BST approach of about 1.6% at 0.6 me-
ter increasing linearly to about 12.5% at 5 meter for DFF.BST. Figure 5.16
shows that absolute error increases quadratically from about 2.5 centimeter at
0.6 meter to about 1.5 meter at 5 meter distance. The corresponding numbers
for DFF.BST are about 1 cm at 0.6 meter and about 0.6 meter at 5 meter.
The total number of experiments conducted on DFD1F.MSE is 209 (=11
x 19). In each experiment, a maximum of 3 images were used. All the images
used in the experiments have been collected and stored in an image database

named SPARCS.DB1. This database which contains a

7



Relative Distance Error, du/u

04

DFFMSE
035:  DFDIFMN &=

DFDIFBST - -
03}

EAS|

025}

o
oA

Object Distance (m)
Figure 5.15: Error in Relative Distance

DFFMSE
LBF DFDIFMN &
DFDIFBST - -

Hm

Distance Error, du (m)
o =
~I N
[Sa] - ()]

o
(8]
T

Object Distance (m)
Figure 5.16: Error in Absolute Distance

78



total of 627 (=3 x 209) images will be made available to other interested

researchers for investigating different DFD methods.

5.5.3 Experiment 2

In this experiment, the object distance was fixed to be 2 meter, but test
object and illumination were changed. The camera setting was same as before,
except that no image frame averaging was done (i.e. only one image frame was
used). A set of seven different standard charts were provided as test objects to
us by our lens manufacturer to test our method. These objects, titled A,B,...,G,
are shown in Fig. 5.17. The objects are: b/w edge, gradually changing gray
level pattern, light gray background with one thin white line at the center,
white background with one black thin line at center, edge with a small change
in gray level, and black background with one thin white line at the center. The
image size was fixed to be 64 x128. The results are shown in Table 5.3. We find
that the method performs very well for high illumination and high contrast
objects and the performance degrades gradually with decreasing illumination
and contrast. Overall the results indicate that DFD1F is useful in practical

situations.
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A B C D E F G
800 | Mean 32.2 31.0 262 299 325 31.1 249
(lux) | Std 040 045 117 122 067 094 1.14
200 | Mean 31.7 29.6 269 283 30.8 283 24.7
(lux) | Std 2.10 3.26 3.11 293 223 424 237
50 | Mean 289 324 265 227 315 376 316
(lux) | Std 4.87 15.07 23.46 22.42 16.10 17.51 24.06

Table 5.3: Experimental Results for Different Illuminations

5.5.4

In experiments 1 and 2, the objects were planar posters placed normal
to the optical axis. Those experiments were useful in doing a rigorous perfor-

mance and error analysis of DFD1F. Here we report the results of finding the

Experiment 3

distance of 3D objects.

For a 3D object, the radius of the blur circle changes from one point to
the other on its image. Therefore, the observed image cannot be modeled
as the result of convolving the focused image with a single PSF. Therefore,
theoretically, DFD methods cannot be used. Even the DFF approach has this
weakness although to a lesser degree. However, in practice, both DFD and

DFF methods can be used if the depth variation in the image window being

processed is not large. Some kind of “average”
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depth estimate in the image window is obtained.

Figure 5.18a-f shows the 3D objects used in our experiments. The ex-
periments were performed under room illumination (350-400 lux). The first
object (5.18a) is a stuffed animal which has a depth variation of about 2 to 3
cm. The second (5.18b) is a slanted page with printed characters which has
a depth variation of about 7 to 20 cm. These two objects were placed such
that their nearest points were located at 1, 2, and 3 meters. For each of the
three distances, DFF.BST, DFD1F.MSE, and DFD1F.MN programs were run
10 times to obtain the mean and standard deviation of the focused position.
The results are shown in Table 5.4. We see that all three methods give nearly
the same results.

The third test object (5.18¢) is a cone with its tip at 2 meters and its
axis approximately along the optical axis. In the 128 x 128 image window
processed by the three methods, the cone extended from 2 meters to 3.4 meters.
Again the programs were run 10 times and mean and standard deviations were
obtained (see Table 5.4). DFF.BST gave the mean focus position as lens step
24 corresponding to a distance of 3.2 meters from the camera. DFD1F.MSE
and DFD1F.MN gave lens steps 25.1 and 25.6 respectively corresponding to
a distance of about 2.9 meters. The results are closer to the distance of the
bottom of the cone, possibly because the fraction of the image area occupied
by the bottom half is much larger than the top half of the cone.

The last object (5.18d-f) was an occlusion edge created by two sheets of
paper placed 30 cm apart along the optical axis. The near portion (bottom

half) was placed at 1, 2, and 3 meters respectively. The results are shown in
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Object Distance DFF.BST DFF1F.MSE DFF1F.MN
Stuffed Animal 1.00m-1.02m | 65.0 £ 1.00 65.5 £ 0.50 64.1 £ 0.30
Stuffed Animal 2.00m-2.02m | 28.0 + 0.45 28.0 + 0.00 27.2 £ 0.40
Stuffed Animal 3.00m-3.02m | 17.8 + 0.60 22.3 + 0.78 22.1 £+ 0.94

Slanted Page  1.00m-1.07m | 55.6 = 0.80 54.0 & 0.00  52.2 + 0.40
Slanted Page  2.00m-2.12m | 27.0 + 1.00 29.5 £+ 0.67 28.6 £+ 0.49
Slanted Page  3.00m-3.20m | 18.0 £ 0.00 20.3 £ 0.90  20.2 £ 0.87
Occlusion Edge 1.00m, 1.30m | 56.8 +£ 0.98 53.0 £ 0.00 52.5 £ 0.50
Occlusion Edge 2.00m, 2.30m | 26.4 + 0.80 24.5 £ 0.50 24.9 £+ 0.30
Occlusion Edge 3.00m, 3.30m | 17.0 &+ 1.00 19.9 + 0.54 19.4 + 0.49
Cone 2.00m-3.40m | 24.0 £ 0.00 25.1 +0.54 25.6 £+ 0.49

Table 5.4: Results of Experiment 3

Table 5.4. Figure 5.18 shows three images, one with the top portion focused
(5.18d), one with the bottom portion focused (5.18¢), and the last one is the
focused image of the scene according to DFD1F.MSE (5.18f). We see that
in the last image, in comparison with the first two images, both the near
and the far portions are nearly focused. This is because DFD1F.MSE (as
does DFF.BST) gives a distance which is somewhere in between the near and
the far portions. These experiments show that DFD1F is useful in practical

applications.
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5.6 Conclusion

We have described the theory and implementation of a new DFD method
named DFDI1F for determining depth from image defocus information. The
method has been demonstrated successfully on an actual camera system built
by us. Experimental results here indicate that DFDI1F is useful for passive
ranging and rapid autofocusing. The ranging accuracy is high for nearby
objects and it decreases with increasing distance. DFDI1F can be combined
with a DFF method such as the DFF.BST to reduce the percentage error by a
factor of about 2 to 3 at the additional cost of acquiring and processing a few
(about 3) more images. This combination represents a good trade-off between

speed and accuracy.

In comparison with stereo method of ranging, DFD1F method does not
suffer from the correspondence problem, but it is in general less accurate than
stereo vision. Therefore DFD1F could be used to get a rough estimate of
distance which can then be used by a stereo algorithm to determine more ac-
curate distance. The computation associated with establishing correspondence
is reduced due to the availability of a rough estimate of distance. We will show

a simple implementation of combining DFD1F with stereo in chapter 8.

DFDI1F can be used to obtain a rough and coarse depth-map of a scene
very fast in parallel from only two images of the scene irrespective of whether
any object is focused or not. The entire field of view of the camera can be
divided into many smaller subfields of view, and an “average” depth estimate

of the scene can be obtained in each subfield of view using DFD1F. The images
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in the subfields of view can be processed in parallel.

DFDI1F can be used to estimate the focused image of an object from
only two observed images of the object, both of which are blurred. First the
distance of the object is determined. Then the PSF corresponding to one of
the blurred image is computed from a knowledge of the camera parameters.
The focused image is then estimated by deconvolving the blurred image with

the computed PSF. We will discuss this topic in chapter 7.

Distance of “plain” objects such as white walls which do no exhibit re-
flectance variation under uniform illumination cannot be determined by DFD1F.
However, a random illumination pattern can be projected onto such an object

to make it “textured”. DFDI1F can then be used to determine its distance.

Most existing camera systems (including our camera) are designed to
maximize the depth-of-field since the goal is to obtain a “good” image of the
scene for viewing by humans. However this minimizes the accuracy of DFD1F
since maximizing depth-of-field reduces the difference in blur between objects
at different distances. Therefore, DFD1F can be made much more accurate

by designing cameras with small depth-of-field for the purpose of ranging.

Finally, it is interesting to investigate the relevance of DFD methods to
human vision. DFD1F suggests that two images of a scene observed by human
eyes with different focal lengths can be used to extract a rough depth map of
the scene. There is evidence that the human eye deliberately exhibits small
fluctuations in its focal length to obtain two images. The following paragraph

is quoted from Weale [?] (page 18):
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113

. the state of accommodation of the un stimulated eye is not
stationary, but exhibits micro fluctuations with an amplitude of ap-
proximately 0.1 D (diopter: a unit of lens power given by the recip-
rocal of focal length expressed in meters) and a temporal frequency
of 0.5 cycles/second. He (Cambell, [?]) demonstrated convincingly
that these were not a manifestation of instrumental noise, since
they occurred synchronously in both eyes. It follows that their

origin is central.”

DFDI1F implies that such fluctuations could be used to perceive depth in the

entire scene simultaneously.
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Chapter 6

Continuous Focusing of Moving Objects

6.1 Introduction

The problem of continuous focusing of a moving object using DFD ap-
proach has not been investigated in the previous literature. In this chapter
we present a method for continuous focusing of moving objects. It is based on
DFDIF described in the previous chapter.

Finding the distance of a moving object at a given time instant using a
DFD method requires the simultaneous recording of two images of the object
at the given time instant with different degrees of blur. The change in blur
is caused by varying camera parameters such as lens position, focal length,
and aperture diameter of the recording camera. A new camera structure is
proposed for such recording of the images.

A straightforward adaptation of DFD1F for moving objects would require
a large amount of memory space. The memory space is mainly needed to store

a large look-up table representing the low-frequency MTF data of the optical
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system of the camera. A parameterization scheme is proposed for reducing
the memory requirement.

The method proposed here has been implemented on an actual camera
system. The results of experiments on this system are reported here. The
results indicate that the method has a root-mean-square (RMS) error of about
4.3% in the lens position for focusing. The image blur caused by a focusing
error of this magnitude is barely noticeable by humans. Therefore, in addition
to machine vision, the method has practical applications in video cameras such

as camcorders.

6.2 Camera Structures

In DFD1F, the camera parameters have to be changed after recording
the first image g; but before recording the second image g;. In most camera
systems, this takes a few seconds of time since some mechanical parts (e.g. lens,
aperture, etc.) have to be moved. In the case of moving objects this time delay
is unacceptable because the object would have changed its position during the
delay period. The images g; and g must correspond to the same position of
the object. Therefore the two images have to be recorded simultaneously in a
short period of time. Fig. 6.1 shows camera structures for accomplishing this.

In Fig. 6.1(a), two identical cameras and a beam splitter with a
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mirror are used. The cameras are identical in all respects except that their
camera settings are different.

In Fig. 6.1(b), a single lens with two image detectors (ID1 & ID2) and
a beam splitter are used. There is a displacement of 2AS between the two
image detectors. This will serve as the change in lens position for the camera
settings e; and e,. Since the purpose of ID2 is to obtain one of the two images
used by DFDI1F, it can be a smaller CCD array as long as it is large enough
to provide the image block used in focusing. In our experimental setting, a
128 x 128 CCD will be sufficient. A linear CCD with elongated sensor elements
(fig. 6.1(f)) can also be used. The wider pixel size will automatically sum up
the image along one direction to obtain the one-dimensional signal we need.
The other image needed for DFD1F will be a subimage of the larger CCD. In
this case, it will be a subimage from ID1.

Figure 6.1(c) shows a minor variation of Fig. 6.1(b) where two beam
splitters and an additional image detector are used. The image detectors
marked ID1 and ID2 can be smaller, for their purpose is obtain the two images
used by DFD1F. In this case, image summation along one direction can be done
by using a regular linear CCD (with square sensor elements) by rotating the
half silvered mirror hsm1l (about the point Q) by a small angle.

In Fig. 6.1(d), a beam splitter and a lens are used for varying the focal
length. The two images used in focusing will be the image on ID2 and a
subimage from ID1. Therefore, ID2 can be made smaller.

In Fig. 6.1(e), a beam splitter and an aperture are used for changing the

aperture. This setup is similar to Fig. 6.1(d), except that the variation is in
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aperture diameter instead of focal length.
It is possible to combine the features of Fig. 6.1(b, d & e) in a single

camera where e; and ey are different in more than one camera parameter.

6.3 Parameterization of MTF

In this chapter we consider only the case of changing lens position s for
continuous focusing. An alternative to this (which is employed by the human
vision system) is to change the focal length f. In order to continuously change
s for continuous focusing, it is necessary to store the MTF data for every
possible value of s for each possible object distance. This would require a
large memory space. For example, in our camera system, this would require
storing about 6x100x100 floating point numbers. Here we propose a scheme for
parameterizing the MTF data so that the memory requirement is drastically
reduced (to about 100 floating point numbers for our camera).

The problem of storing MTF data arises because, the two PSF models
based on paraxial geometric optics (Eq. ??) and and a Gaussian (Eq. 77) are
not sufficiently accurate for actual camera systems. The two PSF models are
good approximations but not adequate. This is particularly true for small
F-number (less than 8) cameras.

The motivation for our parameterization scheme is based on the observa-
tion that the MTF of our camera is roughly if not exactly a Gaussian for low
frequencies. This is clear from Figure 6.2. It shows a plot of a typical MTF

(marked Lens Data) for the lens used in our experiments. Figure 6.3 shows
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a plot of ¢ obtained by applying the log/p* transform to the lens MTF and

then taking square root:

o(p,e,u) = \/;—22 In H.(p; e, u) (6.1)

where H. represents the lens MTF. In this plot we see that o is almost a
constant with respect to p for low frequencies. The average value of o in the
range p = 1 to p = 3.6 is taken as a measure of blur in one version of DFD1F.
It can be used as a spread parameter of the PSF. The plot of a Gaussian
MTF with this average o is shown in Figure 6.2 for comparison. We see that
the Gaussian is close to the lens MTF for low frequencies (up to p = 3.6).
As expected, applying the log/p? transform to the Gaussian MTF and taking
the square root gives a function which is constant with respect to p for all
frequencies (see Fig. 6.3). Figures 6.2 and 6.3 also show the plots of the MTF
as predicted by paraxial geometric optics model and the square root of the
log/p* transform of the MTF. In this case the radius of the blur circle is taken
to be v/2 times the o of the Gaussian.

From the above discussion we conclude that in practical applications a
blur parameter ¢ can be defined as in Eq. (??) which is almost a constant with
respect to low frequencies. This can be used to characterize the MTF data of

a lens system.
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If the lens MTF is exactly a Gaussian, then from Eq. (??) and o = R/v/2
we have:
Ds (1 1 1
ey 6.2
2v/2 ( [ u s) (6.2)
The minimum value of s is equal to f because objects at infinity come to focus
at v = f (see lens formula) and all other objects come to focus at v > f.

Normalizing the magnitude of o corresponding to s = s¢ [?] and using the lens

formula, we obtain

=2} o

Assuming so = f and using the approximation vs ~ f2 which holds for most

cameras, we obtain
§—v
0= ———
1 2F#
where F'# denotes the F-number (equal to f/D) of the camera. From the

(6.4)

above expression we see that ¢ is directly proportional to the difference s — v
and inversely proportional to the F-number of the camera.

In the camera used in our experiments, the parameter s is changed by
moving the lens with respect to the image detector. The lens motion is effected
by a stepper motor with 97 steps numbered 0 to 96. When the lens is at step
0, except for assembly error, s = f and therefore an object at infinity will be
focused on the image detector. When the lens is moved to the other end (lens
step 96), an object at a distance of about 0.55 meter will be focused. Each
lens step corresponds to a relative displacement of the lens with respect to the
image detector of about 0.025mm. For each lens position there corresponds a

unique object distance for which the object will be in best focus on the image
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detector. For example, except for a constant due to assembly error between
the lens and the camera, Table 1 shows the relation between the lens position
and the distance of an object in best focus. It is therefore convenient to specify
object distances in terms of lens position. For example, according to Table 1,
if the distance of an object is said to be step 30, it means that the object is
at distance 1.320 meters from the camera.

The relation between the lens position s (in mm) and the corresponding
step number 7 is given by s = f 4+ ¢ ds where ds is the lens displacement in
mm per step of the motor. Similarly, if j specifies object distance in lens step,

then we have v = f + j ds. Using these relations and Eq. 77 we can write

oo ds
C 2V2FH#

(i —j) (6.5)
The above relation implies that the blur parameter ¢ which characterizes the
lens MTF varies linearly with respect to both lens position ¢ and object dis-
tance 7 with the same proportionality constant or slope. It is found that, after
a minor modification, this model holds well for the actual lens MTF. The
modification that is needed is the addition of a constant ¢,,;,. This can be
justified as follows. When an object is in best focus we have ¢ = j in the above
expression. Therefore o is zero according to this model. However, in practice,
even when a point light source is in best focus, its’ image is not a point which
is dimensionless but the wellknown Airy pattern (bright and dark rings due
to diffraction). Further, when the aperture is large (F-number of less than 8),

the paraxial assumption (i.e. the light rays incident on the lens are almost

parallel to the optical axis) does not hold. Therefore, instead of a single point
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where all rays from a point source are focused, there is only what is called
a circle of least confusion which has finite dimensions. For these reasons, we

propose the following model for the blur parameter o
0 = Opmin + K|i — j| (6.6)

(Another alternative model is 0® = 02, + K2(¢ — j)?.) The parameters o,
and K are both approximately inversely proportional to the F-number of the
camera system.

We next show some plots for the MTF data of our camera which indicate
that the above model for ¢ is a good approximation to our camera.

Figure 6.4 shows a plot of the MTF data for the lens system used in our
experiments. In this plot, one axis corresponds to spatial frequency p and the
other axis corresponds to distance of the object being imaged. (The distance
of the object is specified in terms of the lens position or lens step number.)

Figure 6.5 shows a plot of the MTF data in Figure 6.4 after the log/p?
transform and taking square root. Here we see that, as before, the value of ¢ is
almost a constant with respect to low frequencies for all object distances (lens
steps 0 to 90). Therefore, o has been averaged with respect to low frequencies
and the resulting plot is shown in Figure 6.6. Here we see that o is almost

linear with respect to object distance specified in lens step. ¢ has a minimum

value 0,,;, at step 40 corresponding to the
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distance of the best focused object. On either side of the minimum, the slope
is almost the same.

Figure 6.6 corresponds to an object distance of step 40. Similar plots have
been obtained for object distances 0,10,20,...,90, and are shown as a 3D plot in
Figure 6.7. We see that ¢ is a minimum along the diagonal and varies linearly
on either side of the diagonal. The minimum value o,,;, along the diagonal is
almost a constant. The axes in this plot are lens position and object distance
specified in step numbers. The slope on either side of the diagonal are almost
the same. This implies that ¢ depends only on the difference between lens step
i and object step j. These plots indicate that our proposed model (Eq. 77)
can be used for practical camera systems. For the plot data in Figure 6.7,

Omin = 8.904 x 10~* and K = 1.343 x 10~ 3mm.

6.4 Computational Steps

A flow chart of the algorithm for continuous focusing is shown in Fig. 6.8.
Initially the lens is moved to step 15 which corresponds to focusing an object at
about 3 meters distance. The variable Lens_Step in the flow chart corresponds
to the position of the lens at any given instant. The stored table T[] is
computed next for two camera settings e; and es. In our experiments, the
only camera parameter that was different for the two camera settings was the

lens position. The first one was
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Lens_Step—15 and the second one was Lens_Step+15. In principle, other pa-
rameters such as focal length and aperture diameter, could also be varied. The
parameters could be varied either one at a time or, two or more simultaneously.

In our experiments, the stored table was computed as

~

5[] = [Omin+ K |i—(Lens_Step—15)|]* — [omin + K |i — (Lens_Step+15)|]?

(6.7)
Two images g; and g, are recorded corresponding to the camera settings e
and e2. The image size in our experiments was 128 x 128. Both were summed
along rows to obtain one-dimensional signals.

The two images g; and g, are normalized as in DFD1F with respect to
mean brightness. In our implementation, normalization with respect to mag-
nification was not done as the change in magnification was small (about 2-3%).

A few low frequency Fourier coefficients of g; and ¢, are computed. In
the experiments, the first 6 coefficients were computed. The table T,[j] is then

computed using the log/p* transform as

2 _ =2 |Gi(py)
T.jl= —1n J 6.8
=) o8
Next the mean value of T, is computed as
I .
T, = E Z Tc[]] (69)
j=1

The mean T is compared with the stored table values T,[i] and the index
1 for which the two values are closest is found. This index gives the lens step

position for focusing the object. The index is also used to find the actual
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distance of the object through another table lookup. The lens is moved to the
focusing step position and the variable Lens_Step is set to this new position.
Next the above algorithm is repeated beginning from the computation of

T,[i]. The algorithm terminates when the camera power is turned off.

6.5 Experiments

Three poster pictures—FACE, NAVY, and OPTCON- shown in Figures
6.9, 6.10, and 6.11 respectively, were used as test objects. The reason for using
planar objects is that it simplifies error analysis in the image window being
processed. The estimated distance of the object can be compared with the
actual distance to compute RMS errors. For 3D objects with depth variation
in the image window of interest, the estimated distance will be some kind of
“average” of different points in the window as discussed in chapter 5.

Experiments were done under the following camera settings: focal length:
35 mm, F#: 4, White balance: off, Gamma compensation: off, camera gain
control: +6dB, illumination: 300 Lux. Each picture was placed at 24 different
positions in sequence at time instants 1 to 24. The initial position was about

1 meter from the camera. The object was then
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moved gradually closer to the camera to a distance of about 0.6 meter. Next
the object was moved gradually away up to a distance of about 5 meters. Then
the object was moved back in steps to about 1 meter from the camera.

In Figure 6.12, the plot labeled ‘Actual’ shows the actual distance (in lens
step number) of the “moving” object at different time instants. The estimated
distance at each time instant for the three objects are plotted in Figure 6.12.
We see that at the beginning there is a kind of “warm-up” period when the
errors are relatively large. This is because, at the beginning the lens position
(at step 15) was very far from the focused lens position (around step 55).
Therefore the recorded images were highly blurred resulting in more error.
After a few time instants, the camera “locks” onto the “moving” object and
continuously focuses onto the object. During this “locked” period, focusing
error is small because the lens position is not too far from the focused position
and therefore the recorded images are less blurred.

In the beginning, no matter where the object is, the initial lens position
will be at step 15. At each time instant, the camera records two images, one
at 15 steps behind and another at 15 steps ahead of the current lens position.
Using these images, it estimates the distance of the object and moves the
lens to focus it. After moving the lens, it again records two more images and
repeats the process. There are 24 x 3 = 72 data points in Fig. 6.12. The RMS
error based on these 72 focusing results is about 4.2 lens steps out of 97 steps,

or about 4.3%. The image
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blur due to a lens position error of this magnitude is small and is not easily
noticeable by humans. Therefore, in addition to machine vision, the method
is useful in camcorders.

Figure 6.13 shows the results of experiments on simulated image data.
Paraxial geometric optics model of image formation was used to compute the
blurred images corresponding to the three images in Figures 6.9, 6.10, and

6.11. We see that the focusing results are very good as expected.

6.6 Conclusion

In this chapter, we have extended the DFD1F method for continuous fo-
cusing of moving objects. Practical camera structures for the implementation
are also presented. Experimental results show that the method can be ap-
plied to consumer video cameras such as camcorders. The method can also be

applied to robotic vision for continuous tracking of moving objects.
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Chapter 7

Focused Image Recovery

7.1 Introduction

In machine vision, early processing tasks such as edge-detection, image
segmentation, stereo matching, etc. are easier for focused images than for
defocused images of three-dimensional (3D) scenes. However, the image of a
3D scene recorded by a camera is in general defocused due to limited depth-
of-field of the camera. Autofocusing can be used to focus the camera onto a
desired target object. But, in the resulting image, only the target object and
those objects at the same distance as the target object will be focused. All
other objects at distances other than that of the target object will be blurred.
The objects will be blurred by different degrees depending on their distance
from the camera. The amount of blur also depends on camera parameters such
as lens position with respect to the image detector, focal length of the lens,
and diameter of the camera aperture. In this chapter, we address the problem

of recovering the focused image of a scene from its defocused images.
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A spatial domain approach, named STM, comparable to the DFD1F was
proposed by Subbarao and Surya [?, 7, 7. STM also uses image defocus in-
formation to estimate distances. In STM and DFDI1F, two defocused images
of the scene are recorded simultaneously with different camera parameter set-
tings. The defocused images are then processed to obtain the distance of
objects in the scene in small image regions. In this process, first a blur param-
eter ¢ which is a measure of the spread of the camera’s point spread function
(PSF) is estimated as an intermediate step. In this chapter we present two
methods for using the same blur parameter ¢ for recovering the focused images
of objects in the scene from their blurred images.

The first method of focused image recovery is based on a new spatial
domain convolution/deconvolution transform (S transform) proposed in [?].
This method uses only the blur parameter ¢ which is a measure of the spread
of the camera’s PSF. In particular, the method does not require a knowledge
of the the exact form of the camera PSF. The second method, in contrast to
the first, requires complete information about the form of the camera PSF.
For most practical camera systems, the camera PSF cannot be characterized
with adequate accuracy using simple mathematical models such as Gaussian or
cylindrical functions. A better model is obtained by measuring experimentally
the actual PSF of the camera for different degrees of image blur and using the
measured data. This however requires camera calibration. An alternative
but usually a more difficult solution is to derive and use a more accurate
mathematical model for the PSF based on diffraction, lens aberrations, and

characteristics of the various camera components such as the optical system,
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image sensor elements, frame grabber, etc. As part of the second method,
we present a camera calibration procedure for measuring the camera PSF for
various degrees of image blur. The calibration procedure is based on recording
and processing the images of blurred step edges. In the second method, the
focused image is obtained through a deconvolution operation in the Fourier

domain using the Wiener filter.

For both methods of recovering the focused image, results of experiments
on an actual camera system are presented. The results of the first method are
compared with the results obtained using two commonly used PSF models—
cylindrical based on geometric optics, and a 2D Gaussian. The results of the
second method are compared with simulation results. A subjective evaluation
of the results leads to the following conclusions. The first method performs
better and is much faster than the methods based on simple PSF models.
The focused image recovery is good for up to medium levels of image blur
(upto an effective blur circle radius of about 5 pixels). The performance of
the second method is comparable to the simulation results. The simulation
results represent the best attainable when all noise, except quantization noise,
is absent. The second method gives good results upto relatively high levels
of blur (upto an effective blur circle radius of about 10 pixels). Overall the
second method gives better results than the first, but it requires estimation
of the camera’s PSF through calibration and is computationally several times

(about 4 in practice) more expensive.
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7.2 Estimation of Blur Parameter o

The blur parameter ¢ is a measure of the spread of the camera PSF. For

a circularly symmetric PSF denoted by A(z,y) it is defined as

o = /oo /oo(x2 +9%) h(z,y) dz dy (7.1)
oo Joo
For a PSF model based on paraxial geometric optics, it can be shown that the
blur parameter o is proportional to the blur circle radius. If R is the blur circle
radius, then ¢ = R/v/2, Eq. (??). For a PSF model based on a 2D Gaussian
function, o is the standard deviation of the distribution of the 2D Gaussian
function.

In both STM and DFD1F methods, the blur parameter o is first estimated
and then the object distance is estimated based on ¢. In addition to object
distance, the blur parameter depends on other camera parameters as defined
in Eq. (7?). The parameters include- the distance between the lens and the
image detector denoted by s, the focal length f of the lens, and the diameter
D of the camera aperture. Both STM and DFD1F require at least two images,
say g1(z,y) and go(x,y), recorded with different camera parameter settings,
say e1 = (s1, f1,D1) and e2 = (so, fo, D2) respectively, such that at least
one, but possibly two or all three, of the camera parameters are different, i.e.
81 # g or fi # fa, or Dy # Dy. DFDI1F and STM also require a knowledge of
the values of the camera parameters e; and ez (or a related camera constant
which can be determined through calibration). Using the two blurred images
g1, 9o, the camera settings (or related camera constants) e; and eg, and some

camera calibration data related to the camera PSF, both STM and DFD1F
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methods estimate the blur parameter ¢. A Fourier domain method is used in
DFDI1F whereas a spatial domain method is used in STM. The methods are
general in that no specific model is used for the camera PSF, such as a 2D
Gaussian or a cylindrical function.

Both STM and DFDI1F have been successfully implemented on a proto-
type camera system named SPARCS. Refer to chapter 5 for the description
of SPARCS. Experimental results on estimating o have yielded a root-mean-
square (RMS) error of about 2.7% for STM and about 3.7% for DFD1F. One
estimate of o can be obtained in each image region of size as small as 48 x 48
pixels. By estimating ¢ in small overlapping image regions, the scene depth-
map can be obtained.

In the following sections we describe two methods for using the blur pa-
rameter ¢ thus estimated (using STM or DFD1F) to recover the focused image

of the scene.

7.3 Spatial Domain Approach

In this section we describe the spatial domain method for recovering the
focused image of a 3D scene from a defocused image for which the blur param-
eter o has been estimated using either DFD1F or STM [?, ?]. The recovery
is done through deconvolution of the defocused image using a new Spatial-
Domain Convolution/Deconvolution Transform (S Transform) [?]. The trans-
form itself is general and applicable to n-dimensional continuous and discrete

signals for the case of arbitrary order polynomials. However, a special case
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of the general transform will be used in this section. First we summarize the
S-Transform Convolution and Deconvolution formulas that are applicable here

and then discuss their application for recovering the focused image.

7.3.1 S-Transform

Let f(z,y) be an image which is a two variable cubic polynomial in a

small neighborhood, defined by
3 3—m
=> Y amaz™y" (7.2)
m=0 n=0

where @y, n, are the polynomial coefficients. Let h(z,y) be the PSF of a camera.

The moment Ay, ,, of the PSF is defined by

/ / "y"h(z,y) dedy (7.3)

Let g(z,y) be the blurred image obtained by convolving the focused image

f(z,y) with the PSF h(z,y). Then we have

g@y) = [ [ 1@=¢y—mhm) ddn (74)

By substituting the Taylor series expansion of f in the above relation and

simplifying, the following relation can be obtained:

(_1)m+n
min!

gz, )= >

0<m+n<3

fm,n(x, y)hm,n (75)

Equation (?77) expresses the convolution of a function f(z,y) with another
function h(z,y) as a summation involving the derivatives of f(z,y) and mo-

ments of h(x,y). This corresponds to the forward S-Transform. If the PSF
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h(z,y) is circularly symmetric (which is largely true for most camera systems)

then it can be shown that
hojg = hig=hig =hos=hso=ho1 =hio=0and hog = hg> (7.6)
Also, by definition in Eq. (??), for the PSF of a camera,
hop =1 (7.7)
Using these results, equation (??) can be expressed as

o(a,9) = Fle,9) + "2 2 f(a) (7.9

where v/? is the Laplacian operator. Taking the Laplacian on both sides of
the above equation and noting that 4-th and higher order derivatives of f are

zero as f is a cubic polynomial, we obtain

Vi(z,y) =V f(z,y) (7.9)

Substituting the above equation in Equation (?7) and rearranging terms we

obtain

Flo) = (o) ~ "2 2 g(a,) (7.10)

Equation (??) is a deconvolution formula. It expresses the original function
(focused image) f(x,y) in terms of the convolved function (blurred image)
g(z,y), its (i.e. ¢’s) derivatives, and the moments of the point spread function
h(z,y). In the general case this corresponds to Inverse S-Transform [?)].
Using the definitions of the moments of h(z,y) and the definition of the

blur parameter o of h(z,y), we have hog = hgs = 02/2, and therefore the
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above deconvolution formula can be written as
0.2

f(@,y) = 9(z,9) —  V° 9(=,9) (7.11)
The above equation suggests a method for recovering the focused image f(z, y)
from the blurred image g(x,y) and the blur parameter o. Note that the above
equation has been derived under the following assumptions (i) the focused
image f(z,y) is modeled by a cubic polynomial (as in Eq. 7?) in a small (3 x 3
pixels in our implementation) image neighborhood, and (ii) the PSF h(z,y)
is circularly symmetric. These two assumptions are good approximations in
practical applications and yield useful results.

Equation (7?) is similar in form to the previously known result that a
sharper image can be obtained from a blurred image by subtracting a con-
stant times the Laplacian of the blurred image from the original blurred image
[7]. However that result is valid only for a diffusion model of blurring where
the PSF is restricted to be a Gaussian. In comparison, our deconvolution for-
mula is valid for all PSFs that are circularly symmetric including a Gaussian.
Therefore, the previously known result is a special case of our deconvolution.
Further, the restriction on the circular symmetry of the PSF can be removed
if desired in our method of deconvolution using a more general version of the
S-Transform [?]. Such generalization is not possible for the previously known
result. In our deconvolution method, the focused image can be generalized to
be an arbitrarily high order polynomial although such a generalization does
not seem useful in practical applications that we know.

The main advantages of this method are (i) the quality of the focused
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image obtained (as we shall see in the discussion on experimental results), (ii)
computational complexity, and (iii) the locality of the computations. Simplic-
ity of the computational algorithm is another characteristic of this method.
Given the blur parameter o, at each pixel, estimation of the focused image
involves the following operations (a) estimation of the Laplacian which can be
implemented with a few integer addition operations (8 in our implementation),
(b) floating point multiplication of the estimated Laplacian with ¢2/4, and (c)
one integer operation corresponding to the subtraction in Eq. (?7). For com-
parison purposes in the following sections, let us say that these computations
are roughly equivalent to 4 floating point operations. Therefore, for an N x N
image, about 4N? floating point operations are required. All operations are lo-
cal in that only a small image region is involved (3 X 3 in our implementation).
Therefore the method can be easily implemented on a parallel computation

hardware.

7.3.2 Experiments

A set of experiments is described in Section 7.5 where the blur parameter
o is first estimated from two blurred images and then the focused image is
recovered. In this section we describe experiments where ¢ is assumed to be

given.

A poster with printed characters was placed at a distance of step 70
(about 80 cms) from the camera. The focused image is shown in Figure 7.1.

The camera lens was moved to different positions (steps 70, 60, 50, 40, 30 and
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20) to obtain images with different degrees of blur. The images are shown
in figures 7.2a-7.7a. The corresponding blur parameters (os) for these images
were roughly 2.2, 2.8, 3.5, 4.7, 6.0 and 7.2 pixels. These images were deblurred
using equation (?7). The results are shown in Figures 7.2d-7.7d. We see that
the results are satisfactory for small to moderate levels of blur corresponding
to about ¢ = 3.5 pixels. This corresponds to about 20 lens steps or a blur
circle radius of about 5 pixels.

In order to evaluate the above results through comparison, two standard
techniques were used to obtain focused images. The first technique was to
use a two-dimensional Gaussian model for the camera PSF (Eq. 77). The
spread parameter of the Gaussian function was taken to be equal to the blur

parameter o.
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The focused image was obtained using the Wiener filter [?] specified in

the Fourier domain by:

1 |Hw )
H(w,v) |H(w,v)?+T

M(w,v) = (7.12)

where H(w,v) is the Fourier Transform of the PSF and I' is the noise-to-signal
power density ratio. In our experiments I' was approximated by a constant.
The constant was determined empirically through several trials so as to yield
best results. Let g(x,y) be the blurred image, and f(z,y) be the restored
focused image. Let their corresponding Fourier Transforms be G(w,v) and
F(w,v) respectively. Then the restored image, according to Wiener filtering
is

A

F(w,v) = G(w,v)M(w,v). (7.13)
By taking the inverse Fourier Transform of F'(w, ), we can obtain the restored
image f(z,y).
The results are shown in Figures 7.2c-7.7c. We see that for small values of
o (about 3.5 pixels), the Gaussian model performs well, but not as good as the
previous method (Figs. 7.2d-7.7d). In addition to the quality of the focused
image that is obtained, this method has three important disadvantages. The
first is computational complexity. For a given o, first one needs to compute
the the OTF H(w,v), and then the Wiener filter M(w,v). It is possible to
precompute and store M (w, v) for later usage for different values of . But this
would require large storage space. After M(w, v) has been obtained for a given
o, we need to compute G(w,v) from g(z,y) using FFT algorithm, multiply

M (w, v) with G(w, v) to obtain F(w, ), and then compute the inverse Fourier
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transform of F'(w,v). The complexity of the FFT algorithm is O(N%logN)
for an N x N image. Roughly, at least (2N? + 2N?[og,N) floating point
operations are involved. For N = 128 used in our experiments, the number of
computations is at least 16/N2. In comparison, the number of computations
in the previous case was 4N2. Therefore, this method is at least 4 times
slower than the previous method. The second disadvantage of this method is
that the computations are not local because of the computation of the Fourier
transform of the entire image. The third disadvantage is the estimation of the

noise parameter I'.

In the second standard technique of focused image recovery, the PSF was
modeled by a cylindrical function based on paraxial geometric optics (Eq. 7).
The relation between blur circle radius and spread parameter o are taken to
be R = v/20. With a knowledge of the blur parameter o, it is thus possible to
use equation (??7) and generate the entire cylindrical PSF. The focused image
was again obtained using the Wiener filter mentioned earlier, but this time

using the cylindrical PSF.

In computing the Wiener filter, computation of the discrete cylindrical
PSF at the border of the corresponding blur circle involves some approxima-
tions. The value of a pixel which lies only partially in the blur circle should
be proportional to the area of overlap between the pixel and the blur circle.
Violation of this rule leads to large errors in the restored image, especially for
small blur circles. In our implementation, the areas of partial overlap were

computed by resampling the ideal PSF at a higher rate (about 16 times),
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calculating the PSF by ignoring the pixels whose center did not lie within
the blur circle, and then downsampling by adding the pixel values in 16 x 16
non-overlapping regions.

The results of this case are shown in Figures 7.2b-7.7b for different de-
grees of blur. The images exhibit “ripples” around the border between the
background and the characters. Once again we see that the results are not as
good as for the S transform method. For low levels of blur (upto about R =5
pixels) Gaussian model gives better results than the cylindrical PSF, and for
higher levels of blur (R greater than about 5 pixels) the cylindrical PSF gives
better results than the Gaussian PSF.

In addition to the quality of the final result, the relative disadvantages of
this method in comparison with the S transform method are same as those for

the Gaussian PSF model.

7.4 Second Method

In the second method, the blur parameter ¢ is used to first determine
the complete PSF. In practice, the PSF is determined by using ¢ as an index
into a prestored table that specifies the complete PSF for different values of
o. In theory, however, the PSF may be determined by substituting ¢ into
a mathematical expression that models the actual camera PSF. Since it is
difficult to obtain a sufficiently accurate mathematical model for the PSF,
we use a prestored table to determine the complete PSF. After obtaining the

complete PSF, Wiener filter is used to compute the focused image. First

124



we describe a method of obtaining the prestored table through a calibration

procedure.

7.4.1 Camera Calibration for PSF

Theoretically, the PSF of a camera can be obtained from the image of a
point light source. However, in practice, it is difficult to create an ideal point
light source that is incoherent and polychromatic. Therefore the standard

practice in camera design is to estimate the PSF from the image of an edge.

Let f(z,y) be a step edge along the y-axis on the image plane. Let a be
the image intensity to the left of the y-axis and b be the height of the step.

The image can be expressed as
f(z,y) =a+bu(x) (7.14)

where u(z) is the standard unit step function. If g(z,y) is the observed image

and h(z,y) is the camera’s PSF then we have,

9(z,y) = h(z,y) * f(z,y) (7.15)

where * denotes the convolution operation.

Now consider the derivative of g along the gradient direction. Since dif-

ferentiation and convolution commute, we have

99 of

9 = h(x,y)*% (716)

= h(z,y)*bd(x) (7.17)
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where 0(z) is the dirac delta function along the z axis. The above expression

can be simplified to obtain

dg
5. =) (7.18)

where 6(z) is the line spread function of the camera defined by

8(z) = / bz, y)dy (7.19)

—00

For any PSF h(z,y) of a lossless camera, by definition, we have

/oo /oo h(z,y) de dy =1 (7.20)
Therefore we obtain
w dg(z,y)
= 7.21

Therefore, given the observed image g(z,y) of a blurred step edge, we can

obtain the line spread function #(z) from the expression

[/
0(z) = ﬁ%dz (7.22)
After obtaining the line spread function é(z), the next step is to obtain the
PSF or its Fourier Transform, which is known as the Optical Transfer Function
(OTF). Here we outline two methods of obtaining the OTF, one assuming the

separability of the OTF and another using Inverse Abel Transform.

Separable OTF

Let the Fourier Transforms of the PSF h(z,y) and LSF 0(z) be H(w,v)

and ®(w) respectively. Then we have [?]

d(w) = H(w,0) (7.23)
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If the camera has a circular aperture then the PSF is circularly symmetric.
If the PSF is circularly symmetric (and real), then the OTF is also circularly
symmetric (and real), i.e. H(w,v) is also circularly symmetric. Therefore we
get

H(w,v) = ®(Vw? + 1?) (7.24)

Once we have the Fourier Transform of the LSF, ®(w), we can calculate
H(w,v) for any values of w and v. However, in practice where digital im-
ages are involved, v/w? + v2 may have non integer values, and we may have
to interpolate ®(w) to obtain H(w,v). Due to the nature of ®(w), linear in-
terpolation did not yield good results in our experiments. Therefore interpo-
lation was avoided by assuming that the OTF to be separable, i.e. H(w,v) =
H(w,0)H(0,v) = ®(w)®(v). A more accurate method, however, is to use to

the Inverse Abel Transform.

Inverse Abel Transform

In the case of a circularly symmetric PSF h;(r), the PSF can be obtained

from its LSF 6(z) directly using the Inverse Abel Transform [7] :

= [ e

where 6'(z) is the derivative of LSF 6(x). Note that h(z,y) = hi(r) if r =

dzx (7.25)

vz? 4+ 32 In our implementation the above integral was evaluated using a
numerical integration technique.
After obtaining H(w,v), the final step in restoration is to use equa-

tions (77) and (?7?) and obtain the restored image.
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7.4.2 Calibration Experiments

All experiments were performed using the SPARCS camera system. Black
and white stripes of paper were pasted on a cardboard to create a step discon-
tinuity in reflectance along a straight line. The step edge was placed at such
a distance (about 80 cms) from the camera that it was in best focus when the
lens position was step 70. The lens was then moved to 20 different positions
corresponding to step numbers 0,5,10---90,95. At each lens position, the im-
age of the step edge was recorded, thus obtaining a sequence of blurred edges
with different degrees of blur. Twelve of these images are shown in Figure 7.8.
The difference between the actual lens position and the reference lens position
of 70 is a measure of image blur. Therefore, an image blur of 420 steps cor-
responds to an image recorded at lens position of step 50 and an image blur
of -20 steps corresponds to an image recorded at lens position of step 90. The

size of each image was 80 x 200.
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In our experiments, the step edge was placed vertically and therefore
the image intensity was almost a constant along columns and the gradient
direction was along the rows. To reduce electronic noise, each image was cut
into 16 horizontal strips of size 5 X 200 and in each strip, the image intensity
was integrated (summed) along columns. Thus each strip was reduced to just
one image row. In each row, the first derivative was computed by simply
taking the difference of gray values of adjacent pixels. Then the approximate
location of the edge was computed in each row by finding the first moment of
the derivative, i.e., if ¢ is the column number where the edge is located, and
g:(7) is the image derivative at column %, then
=1 iga (i)

_ \?) (7.26)

=1 92(3)

The following step was included to reduce the effects of noise further. Each

|

row was traversed on either side of position ¢ until a pixel was reached where
either g,(i) was zero or its sign changed. All the pixels between this pixel
(where for the first time, g, became zero or its sign changed) and the pixel at
the row’s end were set to zero. We found this noise cleaning step to be very
important in our experiments. A small non-zero value of image derivative
caused by noise at pixels far away from the position of the edge affects the
estimation of the blur parameter ¢ considerably.

From the noise-cleaned g, (i), the line spread function was computed as

(i) = % (727)

Eight LSFs corresponding to different degrees of blur are plotted in Figure

7.9. It can be seen that, as the blur increases the LSF function becomes
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more flat and spread out. The location of the edge ¢ was then recomputed
using equation (7?). The spread or second central moment of the LSF, o; was

computed from

o = J %(i —7)20(0) (7.28)

i=1
The computed values of o; for adjacent strips were found to differ by only
about 2 percent. The average &; was computed over all the strips. It can be
shown that oy is related to the blur parameter ¢ by ¢ = v/20;. The effective
blur circle radius R is related to ¢ by R = v/20. The values of R computed
using the relation R = 20, for different step edges are shown in Figure 7.11.
Figure 7.11 also shows the value of R predicted by ideal paraxial geometric
optics. The values of R obtained for a horizontal step edge are also plotted
in the figure. The values for the vertical and horizontal edges are in close
agreement except for very low degrees of blur. This minor discrepancy may be
due to the asymmetric (rectangular) shape of the CCD pixels (13 x 11 microns
for our camera).

The PSF’s were obtained from the LSFs using the inverse Abel Transform.
Cross sections of the PSFs thus obtained corresponding to the LSFs in Figure

7.9 are shown in Figure 7.10.

7.4.3 Experimental Results

Using the calibration procedure described in the previous section, the
PSFs and the corresponding OTF's were precomputed for different values of the

blur parameter 0. These results were prestored in a lookup table indexed by o.
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The OTF data H(w,v) in this table was used to restore blurred images using
the Wiener filter M (w,v). Figures 7.2e-7.7e show the results of restoration
using the separability assumption for the OTF and Figures 7.2f-7.7f are the
results for the case where the inverse Abel transform was used to compute
the PSF from the LSF. Both these results are better than the other results
in Figures 7.2(b,c,d)-7.7(b,c,d). The method using the inverse Abel transform
is better than all the other methods. We find that the results in this case
are good even for highly blurred images. For example, the images in Figures
7.6a and 7.7a are severely blurred corresponding to 40 and 50 steps of blur or
o equal to about 6.0 and 7.2 pixels respectively. It is impossible for humans
to recognize the characters in these images. However, in the restored images
shown in Figures 7.6f and 7.7f respectively, many of the characters are easily
recognizable.

In order to compare the above results with the best obtainable results,
the restoration method which uses the inverse Abel transform was tested on
computer simulated image data. Two sets of blurred images were obtained
by convolving an original image with a Cylindrical and a Gaussian functions.
The only noise in the simulated images was quantization noise. The blurred
images were then restored using the Wiener Filter. The results are shown in
Figures 7.12 and 7.13. We see that these results are only somewhat better
but not much better than the results on actual data in Figures 7.2f-7.7f. This
indicates that our method of camera calibration for the PSF is reliable.

The main advantage of this method is that the quality of the restored

image is the best in comparison with all other methods. It gives good results for
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even highly blurred images. It has two main disadvantages. First, it requires
extensive calibration work as described earlier. Second, the computational
complexity is the same as that for the Wiener filter method discussed earlier.
For an N x N image, it requires at least 2N? + 2N?log,N floating point
operations as compared with 4N? floating point operations for the method
based on spatial domain deconvolution. Therefore, for an image of size 128 X
128, this method is at least 4 times slower than the method based on spatial
domain deconvolution. Another disadvantage is that it requires the estimation

of the noise parameter I' for the Wiener filter.
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7.5 Experiments with Unknown o and
3D Object

In the experiments described earlier, the blur parameter ¢ of a blurred
image was taken to be known. We now present a set of experiments where o is
unknown. It is first estimated using one of the two depth-from-defocus meth-
ods proposed by us recently (DFD1F or STM [?, 7]). Then, of the two blurred
images, the one that is less blurred is deconvolved to recover the focused im-
age. Results are presented for both the first method based on spatial-domain
deconvolution and the second method which uses inverse Abel transform.

The results are shown in Figures 7.14(a-d). The first image in Fig. 7.14a is
the focused image of an object recorded by the camera. The object was placed
at a distance of step 14 (about 2.5 meters) from the camera. Two images of
the object were recorded with two different lens positions—steps 40 and 70 (see
Fig. 7.14a). The blur parameter ¢ was estimated using the depth-from-defocus
method proposed in [?]. It was found to be about 5.5 pixels. Using this, the
results of restoring the image recorded at lens step 40 is shown in Fig. 7.14a.
Similar experiments were done by placing the object at distances steps 36, 56,
and 76 corresponding to 1.31, 0.9 and 0.66 meters from the camera. In each

of these cases, the focused image, the two recorded image at steps 40
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Focused Image Blurred Image Blurred Image
(Focus at Step 14) (Lens at Step 40) (Lens at Step 70)

Restored by Restored by Actual
S-Transform PSF (Abel Transform)

Fig. 7.14(a) Depth Estimation with Restoration for Step 14

Focused Image Blurred Image Blurred Image
(Focus at Step 36) (Lens at Step 40) (Lens at Step 70)

Restored by Restored by Actual
S-Transform PSF (Abel Transform)

Fig. 7.14(b) Depth Estimation with Restoration for Step 36
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Focused Image Blurred Image Blurred Image
(Focus at Step 56) (Lens at Step 40) (Lens at Step 70)
Restored by Restored by Actual
S-Transform PSF (Abel Transform)

Fig. 7.14(c) Depth Estimation with Restoration for Step 54

Focused Image Blurred Image Blurred Image
(Focus at Step 76) (Lens at Step 40) (Lens at Step 70)
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Fig. 7.14(d) Depth Estimation with Restoration for Step 76




and 70, and the restored images are shown in Figs. 7.14b-d. The blur param-
eters in the three cases were about 1.79, 1.24, and 2.35 pixels respectively. In
the last two cases, the images recorded at lens step 70 was less blurred than
the the one recorded at step 40. Therefore the image recorded at lens step 70
was used in the restoration.

In another experiment, a 3D scene was created by placing three planar
objects at three different distances. Two images of the objects were recorded
at lens steps 40 and 70. These images are shown in Figure 7.15. It can be
seen that different image regions are blurred by different degrees. The image
was divided into 9 regions of size 128 x 128 pixels. In each region the blur
parameter o was estimated and the image in the region was restored. The nine
different estimated values of o are 3.84, 4.76, 4.76, 0.054, 0.15, 0.46 (for image
with lens step 40) and -2.65, -2.55 and -2.55 (for image with lens step 70)
respectively. The different restored regions were combined to yield an image,
where the entire image looks focused. Figure 7.15 shows the results using both
the first and second methods of restoration. Currently each region can be as
small as 48 x 48 pixels, which is a small region in the entire field of view of
640 x 480 pixels.

In the last experiment, a planar object was placed inclined to the optical
axis. The nearest end of the object was about 50 cms from the camera and the
farthest end was about 120 cms. The blurred images of the object acquired
with lens steps 40 and 70 are shown in FIg. 7.16(a,b). The images were divided

into non-overlapping regions of 64 x 64
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(a) Blurred Image (b) Blurred Image
(Lens Step 40) (Lens Step 70)

(c) Restored by (d) Restored using Actual
S-Transform PSF (Abel Transform)

Fig. 7.15 Depth Estimation with Restoration for 3-D Object
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Figure 7.16(a): Image of Slanted Object with Lens Step 40

Figure 7.16(b): Image of Slanted Object with Lens Step 70
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Figure 7.16(d): Restored Using Actual PSF (Abel Transform)



pixels and a depth estimate was obtained for each region. The different regions
were then restored separately as before and combined to yield the restored
image as shown in Fig. 7.16(c,d). The restored images appear better than
either of the blurred images. However, there are some blocking artifacts, which
are due to the “warp around” problem of the FFT algorithm and the finite

filter size in the case of the S-Transform method.

7.6 Conclusion

The focused image of an object can be recovered using two defocused
images recorded with different camera parameter settings. The same two im-
ages can used to estimate the depth of the object using a depth-from-defocus
method. For a 3D scene where the depth variation is small in image regions of
size about 64 x 64, each image region can be processed separately and the re-
sults can be combined to obtain both a focused image of the entire scene and a
rough depth-map of the scene. If, in each image region, at least one of the two
recorded defocused images is blurred only moderately or less (0 <= 3.5 pixels),
then the focused image can be recovered very fast (computational complexity
of O(N?) for an N X N image) using the new spatial domain deconvolution
method described here. In most practical applications of machine vision, the
camera parameter setting can be arranged so that this condition holds, i.e. in
each image region at most only one of the two recorded defocused images is
severely blurred (o > 3.5 pixels). In those cases where this condition does not

hold, the second method which uses the inverse Abel transform can be used
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to recover the focused image. This method requires camera calibration for the
PSF and is several times more computationally intensive than the first method
above. The methods in this chapter can be used as part of a 3D machine vision
system to obtain focused images from blurred images for further processing

such as edge detection, stereo matching, and image segmentation.
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Chapter 8

Integration of Stereo and DFD1F

8.1 Introduction

In human vision, the primary source of depth information is stereo dispar-
ity. The images formed in the left eye and and the right eye are first processed
to establish correspondence between image points in the two images. Then the
distance of objects in the 3D scene are determined through triangulation. A
similar method is used for depth recovery in machine vision using two cameras.

A review of stereo ranging methods can be found in [7].

The primary computational task in stereo is establishing correspondence
between points in the left and right images. This problem is known as the cor-
respondence problem. It is complicated by occlusion, i.e. some object points
visible in one image may not be visible in the other image. The computational
time required for solving the correspondence problem can be reduced by using
a rough depth-map information obtained from other methods such as motion,

shading, focus, and defocus. A number of approaches of combining different
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methods with stereo have been studied by researchers [?, 7, 7,7, 7,7, 7, 7]. In
this chapter we consider the integration of Depth-from-Defocus and Stereo.

Stereo ranging is much more accurate than depth-from-defocus method
but stereo is computationally much slower than depth-from-defocus method.
By combining the two methods, the correspondence problem associated with
stereo can be simplified and the coarse accuracy associated with depth-from-
defocus can be improved. In the combined method, first a rough depth-map
is obtained using depth-from-defocus method. Then the rough depth-map
is used to solve the correspondence problem. Next the stereo triangulation
principle is used to recover an accurate depth-map of the scene.

In this chapter we illustrate the integration of DFD1F and stereo with
an example. We use an area matching algorithm, Sum of Squared Differences
(SSD) [?, 7], to solve the correspondence problem. The SSD method is simple
and it serves our purpose well. It should be noted that DFDI1F can also be
used with other correspondence matching algorithms. In our experiment, we
were able to speed up the matching process by approximately a factor of three
by integrating DFD1F and stereo. Further improvement can be achieved by a

better calibration of the stereo camera system.

8.2 Stereo Camera System

A stereo camera system with two cameras is shown in Fig. 8.1. Two cam-
eras with parallel optical axes are displaced by a distance b. The displacement

b is often referred to as the baseline. Origin is taken at the center of the
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baseline and the x and z axes are taken to be parallel to the baseline and the
optical axes respectively. Image coordinate systems (z;,y) and (z,,y,) are
defined on the left and the right image planes with origin on the optical axis
and the axes parallel to the (z,y) axes.

An object point (z,y, z) will form two image points on the left and right
images as points (z},y;) and (z},y.). The following relation can be found by

triangulation|?]

z, z+b/2 z.  x—0b/2
== d X = 8.1
7 . an F . (8.1)
with
Yi_ Y _ Y B b
—_— = — = — a,nd = — 82
f 5 =z f z (82)
Solving for the unknowns
7 7 2 / / 2
p=p @2 U2 T (g
Ty — Ty Ly — Xy Ty — Ty

The difference z; — . is called disparity. We will denote disparity by d. Two
immediate observations can be seen from these equations. First, disparity is
inversely proportional to object distance z. This indicates that the accuracy
of distance measured through stereo is more accurate for closer objects than
for far away objects. Secondly, disparity d is proportional to b, i.e., a larger

baseline will have a better accuracy in
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origin of left image origin df right image

Figure 8.1: Schematic of Stereo Camera System



object distance recovery. However, the trade-off in this case will be a larger
matching space and objects are more likely to be seen in one image only but

not both.

8.3 Experiments

First the stereo system was calibrated to establish the relationship be-
tween 3D world coordinates and their corresponding 2D image coordinates.
Once this relationship is established, 3D information can be inferred from 2D
information and vice versa. The calibration was done as follows. A step edge
was used to align the two cameras in the horizontal direction to make the two
optical axes nearly parallel to each other. Then a set of fixed spacing dot
patterns were used to find the disparity at various distances. Two images of
the dot patterns taken by the left and right cameras at distance 90 cm are
shown in Fig. 8.2. We have highlighted the areas that will be used to find the
disparity for this particular distance. Within the area, the centroid of each
dot was computed and matched to the corresponding point in the other image.
The disparity for this distance was computed as the average disparity of all
the points within the area. In this case, the average of 64 points was used.
Table 8.1 shows the lens step number verses distance and disparity obtained
by this calibration method. The disparity at distances oo and 530 ¢cm were

obtained through interpolation using (?77).
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Figure 8.2: Equally Spaced Dotted Patten Used in Calibration



Lens Step 0 5 10 15 20 25 30

Distance(m) oo | 530 |37 | 285 250|193 | 1.72

Disparity(pixel) -48 -17 -5 20 31 65 80

Lens Step 35 40 45 50 55 60 65

Distance(m) 1.465 | 1.32 | 1.17 | 1.08 | 0.965 | 0.90 | 0.822

Disparity(pixel) 110 126 | 155 172 201 | 218 246

Lens Step 70 75 80 85 90 95

Distance(m) 0.77 | 0.715 | 0.67 | 0.628 | 0.595 | 0.56

Disparity(pixel) 267 291 | 314 337 359 | 388

Table 8.1: Lens Step vs Best Focused Distance and Disparity

We have earlier expressed object distances in terms of the focused lens
position specified as step number of the stepper motor of the lens. We have
also seen that this lens step number is linearly related to inverse distance.
Therefore, we can expect a linear relationship between disparity and object
distance specified in lens steps since disparity is also linearly related to inverse
distance. This can be verified from the plot of disparity versus lens steps in
Fig. 8.3. A straight line was fitted to represent this relationship. For our
stereo camera system, the relation between disparity d and lens step [ can be

expressed as
d=ag+al with ap = —H4, and a; = 4.616. (8.4)

We will be using this equation to find the matching space in our
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Figure 8.3: Disparity vs Lens Step
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Image Taken by Right Camera

Figure 8.4: Slanted Object Used in Experiment



experiment.

A slanted object was used in our experiment. The depth of the object
extended from 60 cm to 150 cm but the part visible in both cameras was from
about 70 cm to 120 cm. The two images of size 640 x 480 taken by the two
cameras are shown in Fig. 8.4. In the SSD method, a point in the left image
was matched to each point on the corresponding epipolar line in the right
image. In the actual implementation, since the initial calibration to determine
the epipolar line was not accurate, the search for the best match was made
in a narrow image region that included 3 rows above and 3 rows below the
expected epipolar line. A window size of 11 x 11 was used to compute the
sum of squared differences. The point that gave the minimum SSD was taken
to be the match point. Our implementation was not computationally optimal
and therefore the computation time on SUN SPARCstation IPX was about
150 minutes.

In Fig. 8.5, an object point moving along line L will be recorded on the
left image at point pj. The same point will form an image somewhere on the
epipolar line, depending on the distance of the object. For object distance P,
a rough depth estimation can be obtained, (P_ to P,), by applying DFD1F
on the left camera. Therefore, matching space can be reduced to in between
p'. and p’_ instead of the whole epipolar line.

In the combined method, a rough depth-map in terms of camera lens
steps is first computed for the left image using DFD1F. This information is
then used to reduce the number of possible matching points on the right image.

From our earlier discussion, the RMS error for DFD1F was
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Figure 8.5: Epipolar Line



3.6 steps. Therefore, assuming an error of roughly three times the RMS error,
the worst case error was taken to be 10 steps. Substituting £10 in Eq. 77,
we obtain the search space for matching to be 92 pixels. Therefore, instead
of searching the entire epipolar line of size 640 pixels, only 92 pixels were
searched. The implementation of the SSD matching algorithm in this case
was similar to the previous case. The computational time in this case was
roughly 50 minutes, about 1/3 of the time in the previous case.

In general, let DFDI1F indicate the focused step number to be k£ for a
point (zj,y;) in the left image. Also, let £m steps be the confidence interval
for the distance of the point in lens steps. One will then need to search for

match points on the right image within the range
(z; +ao+ a1 (k—m),y) «— (z;+ ao + a1 (k+m),y) (8.5)

provided that the potential match point is not outside of the right image. With
this approach, the matching space depends on a portion of the epipolar line
predicted by DFD1F instead of the whole epipolar line.

Experimental results are shown in Fig. 8.6 and Fig. 8.7. Both SSD method
and combination of DFD1F and SSD method were implemented for the sake of
comparison. In Fig. 8.6, the disparity at each pixel is displayed on the image as
gray levels— the brighter pixel the larger the disparity. In Fig. 8.7, the distance
obtained by both methods are plotted. It shows that by combining SSD with
DFD1F, the number of mismatch points can be reduced and a better result

can be obtained with less computation time.

157



158

Disparity by SSD

Disparity by Combining DFD with SSD

Figure 8.6: Experimental Results, Disparity Map
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Chapter 9

Conclusion

In this dissertation, we started with the investigation of Depth-from-Focus
(DFF) method. This method is essentially a search method that requires a
large number of images. Based on the focus measures computed on each of
these images, the 3D shape of the scene is reconstructed. An implementation
of DFF is tested on images from a video camera system and a microscope.
Due to the large number of images required and the mechanical movements
of the camera system, DFF method is slow when compared with the Depth-
from-Defocus (DFD) method. However, the accuracy of DFF is usually better

than DFD method.

The main subject of this dissertation is a new DFD method— DFDIF.
The method is based on computing the Fourier coefficients of the images. By
processing two images of the scene with different degrees of blur, DFD1F can
find the depth information with a root-mean-square error of 3.7% for stationary
objects. This figure was obtained using a prototype camera system based on

a large number of experiments. Although the theoretical basis of DFDI1F is
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relatively simple, much creative engineering is needed to make the method
work on a real camera system. Complete details of our implementation of
DFDI1F are presented in this dissertation.

We extended DFDIF to continuous focusing of moving objects. Focusing
of moving objects requires simultaneous acquisition of two images with differ-
ent camera parameter settings. We have proposed some camera structures to
accomplish this task. The other problem in making DFD1F work on moving
objects is the large memory space needed to store a lookup table. This prob-
lem has been overcome by a parameterization scheme for the camera’s MTF
data. Experimental results show that the method has an RMS error of 4.3%
in terms of lens position. In a commercial camera system, this amount of error
is hardly noticeable by human eyes due to the large depth-of-field.

The two images used by DFD1F can also be used to find the focused im-
age. This is done by first estimating the spread parameter of the camera point
spread function. Two methods are presented here for focused image restora-
tion. The trade off between the two methods are speed and performance. For
a small blur, the first method based on S-Transform can be used to restore
the focused image. It requires only local operations and no camera calibration
is necessary. For a larger blur, the second method based on calibrated PSF
can be used to produce better results. But the second method requires the
computation of 2D FFT. Hence, it is slower.

It is possible to find a coarse depth map of an entire scene by dividing
the scene image into many small subimages and applying DFD1F on these

subimages. The coarse depth-map thus obtained can be used by a stereo
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ranging camera system to speed up correspondence matching. Experiments on
a slanted object using DFD1F and stereo have been presented to demonstrate
the advantages of combining DFDI1F and stereo.

The research reported in this thesis can be further extended in many
ways. We think that the accuracy and performance of DFD1F can be further
improved using new techniques and more than the 6 Fourier coefficients used
in our implementation. It is also of interest to investigate the integration of
DFF with DFD and stereo, and possibly other approaches such as motion
and shading. Designing a special-purpose hardware using DSP chips for real-
time implementation of DFD1F is important in real-time 3D machine vision.
Techniques for calibrating and implementing DFD methods on a microscope

are useful in medical and biological image analysis.
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Appendix A

Error Senstivity Analysis of DFD1F

In this appendix, we will analyze the error in depth estimation due to
some small error in camera, parameters. A numerical example will be provided.
From the discussion in chapter 2 and 5, the stored table used by DFDI1F is a
function of object distance u, camera parameters e; and e;. Therefore, the
stored table Ty in Eq. (?7) is a function of s1, Dy, fi, 82, Da, fa, and u. The

error sensetivity can be expressed as

(STS (Sfl (SDl 6f2 6.D2 (S’LL
= Ps P Pp,—+ P, P P,
Vel + (e 1 + Fp, D, + 5 + o 1, + Fpy,—— Dy + P, v,

(A1)
The parameters Py, Py, Pp,, Ps,, Py,, Pp,, and P, are list as follows

Geometric Optics PSF Model:

o - () (- )
o = () - et
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) =201/ (5 —w— %)

P, =

Numerical Example:

For camera settings: focal length f = 35 mm, F# =4 (D = f/F# = 8.75

mm), taking two images at steps 10 and 40, object distance u = 1.5 meter.

Using the geometric optics PSF model with p = 27 0.6. The following

quantity can be obtained.

51 = 35248 mm f;

s = 35992 mm fo
p= 0.6 X271 u=
R, = b5.52pixels Ry =

35.000 mm Dy
35.000 mm Dy
1500.0 mm
1.90 pixels

= 8.750 mm

= 8.750 mm

Using the equations above, the parameters is computed as

P, = -131.033 Pj
P, = -34719 P,
P, = -3913

131.982 Pp, =

35.703 Pp, =

2.151

-0.1510
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Suppose there was an error in the lens movement when taking the first
image. i.e, lens step was 11 instead of 10. Therefore, s; changes from 35.248

mm to 35.2728 mm.

& 35.2728 — 35.248

= = 0.0007036 A2

81 35.248 (4.2)
0T (581

= P,,— = —0.09221 A3

Ts 1 31 ( )

This error will contribute to du/u (assuming there is no other source of

error),
du _ 0T,

— =" /Pu = —0.09221/ — 3.913 = 0.02357 (A.4)

A 2.4% error in distance will be introduced by this error in lens movement,

or a distance estimation error of 35.4 mm.
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