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Abstract

A method is presented for continuous focusing of moving objects. It is based
on DFD1F [20] which is a method for determining distance of stationary objects
using image defocus information. The proposed method requires recording of
two images of a moving object with different degrees of blur. The change in blur
is caused by varying camera parameters such as lens position, focal length, and
aperture diameter of the recording camera. The two images must be recorded
simultaneously in a short time period. A new camera structure is proposed for
such recording of the images. In the proposed method, the requirement of a large
memory space has been avoided for storing the MTF data of the camera’s optical
system. This is achieved by using a parameterization scheme for the MTF data.
The method has been implemented on an actual camera system. Experimental
results on this system indicate that the method yields an RMS error in focusing
of about 4.3% in lens position. The image blur caused by a focusing error of this
magnitude is barely noticeable by humans. Therefore, in addition to machine

vision, the method has practical applications in video cameras such as camcorders.



1 Introduction

In an imaging system such as a convex lens, the image of an object in front of the
lens will be usually blurred. The degree of blur depends on the focal length f of
the lens, the distance u of the object from the camera and the distance s between
image detector and the lens (see Fig. 1). A well-known relation is the lens formula
E
v

f_u

Following this formula, a focused image is obtained under the condition that s

(1)

equals v. The degree of blur increases as the difference between s and v increases.
If f and v are known, then the distance (depth) v of the object can be found using
this formula.

In Depth-from-Focus (DFF) approach [1, 2, 3, 4, 12], a search is made for the
lens position s or/and the focal length f which brings a stationary object to focus.
This involves acquiring about 10 images with different s or/and f and finding the
image which is in best focus. This approach is slow due to the mechanical motion
of camera parts to change s or/and f to record the required 10 or so images.

In Depth-from-Defocus (DFD) approach [5, 13, 14, 18, 7, 15, 20] there is no need to
search for s or/and f values which correspond to focusing the object. The level of
defocus is used in determining distance. This approach involves processing only a
tew images (about two or three) as compared to alarge number (about 10) of images
in the DFF methods. In addition, only a few images are sufficient to determine the
distance of all objects in a scene irrespective of whether the objects are focused or
not. Therefore this method is much faster than DFF due to the reduction in the
mechanical motion of camera parts.

The DFD approach has been successfully applied to high contrast step edges
[5, 6, 8, 16, 17]. Application of DFD to arbitrary objects has been investigated by
many researchers [5, 13, 14, 18, 7, 15, 20].

The problem of continuous focusing of a moving object using DFD approach

has not been investigated in the previous literature. In this paper we propose a
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camera structure and a method for this problem. The method is based on a DFD
method called DFDIF for stationary objects proposed by us [20].

The major distinguishing features of DFD1F in comparison with prior DFD
approaches are- (i) it requires the computation of only a few (about 6) and that
too only one-dimensional Fourier coefficients (hence the suffix 1F in DFD1EF), (ii)
it is general in that it is not restricted to any particular model of the point spread
function of the camera system, (iii) only a few (two or three) images acquired with
different camera parameter settings are needed, (iv) there is no restriction on the
camera parameter settings such as pin-hole aperture, etc., and (v) the method has
been demonstrated on a very large database of natural images.

Finding the distance of a moving object at a given time instant using a DFD
method requires the simultaneous recording of two images of the object at the given
time instant. The images have to be recorded with different camera parameter
settings. A camera system is proposed to accomplish this task.

A straightforward adaptation of DFDIF for moving objects would require a
large amount of memory space. The memory space is mainly needed to store a
large look-up table representing the low-frequency MTF data of the optical system
of the camera. A parameterization scheme is proposed for reducing the memory
requirement.

The method proposed here has been implemented on an actual camera system.
The results of experiments on this system are reported here. The results indicate
that the method has a root-mean-square (RMS) error of about 4.3% in the lens
position for focusing. The blurring due to this focusing error is barely noticeable
by the human vision system. Therefore the method has practical applications in
both machine vision and consumer video cameras. We believe that the accuracy
can be improved by using more accurate camera MTF and parameter data than
the one used in our experiments. The proposed method has also been tested on

simulated image data. Very accurate results were obtained in this case.



2 DFDITF

In this section we briefly describe DFD1F and present the background material
for the proposed method for continuous focusing of moving objects. Detailed
description of DFD1F can be found in [20].

2.1 Camera Model

A model for a camera with variable parameters is shown in Fig. 2. It consists of an
optical system with two lenses L1 and L2. The effective focal length [ is varied by
moving one lens with respect to the other. O.A. is the optical axis, P1 and P2 are
the principal planes, Q1 and Q2 are the principal points, ID is the image detector,
D is the aperture diameter, s is the distance between the second principal plane
and the image detector, u is the distance of the object from the first principal plane,
and v is the distance of the focused image from the second principal plane.

Object distance u is the only unknown parameter. The other parameters s, f,
and D are adjustable in the camera. We will refer these adjustable parameters

together as camera parameters and denote them by e, i.e.

e = (s,/, D). (2)

We take the optical system to be circularly symmetric around the optical axis. In
order to illustrate the theoretical basis of our method, we use a paraxial geometric
optics model [9] for image formation. This is a good approximation in practice to

the actual image formation process.

2.2 PSF and MTF

According to paraxial geometric optics, a point light source at point P in Fig. 2 will
form a blur circle on the image detector for a circular aperture. Let R be the radius

of the blur circle. Using the lens formula (1) and Fig. 1 we obtain
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This radius R is a function of object distance u and the camera parameters e defined
earlier in Eq. (2). Therefore it can be denoted by E(e, u). The Point Spread Function
(PSF) corresponding to the blur circle is a cylindrical function of the form:
21 if 2 2 < R2 ,
ho(ayie ) = { T e @

0 otherwise

The Fourier transtorm of the above PSF is the Optical Transfer Function (OTF):
Ji(Rfe,u) p(w,v))

R(e,u) p(w,v)
where w, v, and p are spatial frequencies specified in radians per unit distance, with
p(w,v) = Vw?+ 12, and J, is the first order Bessel function. The magnitude of the
OTF is the Modulation Transfer Function (MTF).

As an alternative to the PSF derived above using geometric optics, a two-

Hy(w,vieu) = 2

()

dimensional Gaussian has been proposed [5, 13, 10, 11]. The spread parameter o
of this Gaussian is a function of object distance « and camera parameters e. Except
when the blur circle radius £ is very small, a good approximation is the relation
o = R/\/2 [17]. Therefore we can write

D 1 1 1
U(e,u):SQﬂ [?—E—g] (6)
The Gaussian PSF is
1 :EQ _I_ y2
hy(x,y;e,u) = WGXP (—m) (7)

and the corresponding OTF is
Hy(w,vieu) = exp (3w +77) o*(e,u)) ®)

Fig. 4 shows a plot of the MTFs according to geometric optics, corresponding to
a Gaussian PSF, and the actual MTF of the lens used in our experiments (this MTF

data was obtained by the lens manufacturer through computer simulation).

2.3 Finding Distance

The image formation in a camera system can be thought of as the superposition

of the images of an infinite number of point light sources lying on visible surfaces
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in the 3D scene. In general, the blur circle radius changes from point to point due
to variation in distance. For a flat region perpendicular to the optical axis, the
distance v is a constant inside the region. Therefore, PSF for all points in this region
will remain the same. Consequently, the image formed on the image detector
can be modeled by a two-dimensional convolution of the PSF and the brightness
distribution or focused image in that region. Let f(z,y) be the focused image for
that flat region with constant distance . In DFD1F, the camera parameter setting
is first set to e;, and a blurred image ¢, (z,y) is obtained. The PSF h,(z,y) for this
blurring process may be modeled by Eq. (4) or Eq. (7). Similarly, a second image
g2(x,y) with a different degree of blur is obtained by another camera setting e,. In

the frequency domain we have

Gh(w,v) = H(w,v;ej,u) F(w,v) and
G2(w71/) = H(wvl/;e%u)F(va) (9)

The effect of the focused image [’ can be cancelled by taking the ratio of (G and G5:

Gi(w,v)  H(w,viep,u)
Go(w,v)  H(w,v;eq,u)

(10)

The left hand side above can be obtained by dividing the Fourier transforms of
the two blurred images. The right hand side can be pre-computed and stored in a
table as a function of the index variables w, v and distance v (the camera settings e,
and e, remain the same). The distance u can be solved by searching for the value of
u in the precomputed table where the left hand side and right hand side are almost
equal.

Theoretically, only one data point (specified by w and v ) may be sufficient to
solve for u. In practice, using several data points will be needed for robustness
against noise. If we use only the points along v axis then w = 0 in Eq. (10).
The Fourier coefficients along v axis can be computed by first summing up each
row of the image to obtain a one-dimensional signal and then performing a one-
dimensional Fourier transform on this signal. The processing is then reduced to
one-dimensional for a two-dimensional image.

Instead of solving Eq. (10) directly, in DFD1F both sides of the equation are
transformed by first taking logarithm and then dividing by w? + v?. This has been
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called the log-by-rho-squared (log/p?) transform [20]. The resulting expression is
then solved by a table look up procedure. This has some practical advantages.
Also, only low spatial frequency data points are used to reduce the effects of noise

and zero-crossings of the OTFE.

3 Continuous Focusing of Moving Objects

In DFD1F, the camera parameters have to be changed after recording the first image
g1 but before recording the second image ¢,. In most camera systems, this takes a
few seconds of time since some mechanical parts (e.g. lens, aperture, etc.) have to
be moved. In the case of moving objects this time delay is unacceptable because
the object would have changed its position during the delay period. The images
g1 and ¢, must correspond to the same position of the object. Therefore the two
images have to be recorded simultaneously in a short period of time. Fig. 3 shows
camera structures for accomplishing this.

InFig. 3(a), twoidentical cameras and a beam splitter with a mirror are used. The
cameras are identical in all respects except that their camera settings are different.

In Fig. 3(b), a single lens with two image detectors (ID1 & ID2) and a beam
splitter are used. Thereis a displacement of 2AS between the two image detectors.
This will serve as the change in lens position for the camera settings e; and e,.
Since the purpose of ID2 is to obtain one of the two images used by DFDI1F, it can
be a smaller CCD array as long as it is large enough to provide the image block
used in focusing. In our experimental setting, a 128 x 128 CCD will be sufficient. A
linear CCD with elongated sensor elements (fig. 3(f)) can also be used. The wider
pixel size will automatically sum up the image along one direction to obtain the
one-dimensional signal we need. The other image needed for DFDI1F will be a
subimage of the larger CCD. In this case, it will be a subimage from ID1.

Figure 3(c) shows a minor variation of Fig. 3(b) where two beam splitters and an
additional image detector are used. The image detectors marked ID1 and ID2 can
be smaller, for their purpose is obtain the two images used by DFDI1F. In this case,
image summation along one direction can be done by using a regular linear CCD

(with square sensor elements) by rotating the half silvered mirror hsm1 (about the



point Q) by a small angle.

In Fig. 3(d), a beam splitter and a lens are used for varying the focal length. The
two images used in focusing will be the image on ID2 and a subimage from ID1.
Therefore, ID2 can be made smaller.

In Fig. 3(e), a beam splitter and an aperture are used for changing the aperture.
This setup is similar to Fig. 3(d), except that the variation is aperture diameter
instead of focal length.

It is possible to combine the features of Fig. 3(b, d & e) in a single camera where

e; and e, are different in more than one camera parameter.

3.1 Parameterization of MTF

In this paper we consider the case of changing lens position s for continuous
focusing. An alternative to this (which is employed by the human vision system)
is to change the focal length f. In order to continuously change s for continuous
focusing, it is necessary to store the MTF data for every possible value of s for each
possible object distance. This would require a large memory space. For example,
in our camera system, this would require storing about 6x100x100 floating point
numbers. Here we propose a scheme for parameterizing the MTF data so that the
memory requirement is drastically reduced (to about 100 floating point numbers
for our camera).

The problem of storing MTF data arises because, the two PSF models based on
paraxial geometric optics (Eq. 4) and and a Gaussian (Eq. 7) are not sufficiently
accurate for actual camera systems. The two PSF models are good approximations
but not adequate. This is particularly true for small F-number (less than 8) cameras.

The motivation for our parameterization scheme is based on the observation
that the MTF of our camera is roughly if not exactly a Gaussian for low frequencies.
This is clear from Figure 4. It shows a plot of a typical MTF (marked Lens Data) for
the lens used in our experiments. Figure 5 shows a plot of & obtained by applying

the log/p* transform to the lens MTF and then taking square root:

o(p,e,u) = ¢;—3 In H.(p;e,u) (11)
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where /1. represents the lens MTF. In this plot we see that ¢ is almost a constant
with respect to p for low frequencies. The average value of o in the range p =1
to p = 3.6 is taken as a measure of blur in one version of DFD1F. It can be used
as a spread parameter of the PSF. The plot of a Gaussian MTF with this average
o is shown in Figure 4 for comparison. We see that the Gaussian is close to the
lens MTF for low frequencies (up to p = 3.6). As expected, applying the log/p*
transform to the Gaussian MTF and taking the square root gives a function which
is constant with respect to p for all frequencies (see Fig. 5). Figures 4 and 5 also
show the plots of the MTF as predicted by paraxial geometric optics model and the
square root of the log/p* transform of the MTE. In this case the radius of the blur
circle is taken to be /2 times the & of the Gaussian.

From the above discussion we conclude that in practical applications a blur
parameter o can be defined as in Eq. (11) which is almost a constant with respect
to low frequencies. This can be used to characterize the MTF data of a lens system.

If the lens MTF is exactly a Gaussian, then from Eq. 6 we have:

Ds (1 1 1
=57 3) o

The minimum value of s is equal to f because objects at infinity come to focus at

v = f (see lens formula) and all other objects come to focus at v > f. Normalizing

the magnitude of o corresponding to s = s, [20] and using the lens formula, we

=23

Assuming s, = f and using the approximation vs ~ f? which holds for most

obtain

cameras, we obtain
S — 0

N

where F'# denotes the F-number (equal to £/D) of the camera. From the above

(14)

expression we see that o is directly proportional to the difference s — v and inversely
proportional to the F-number of the camera.

In the camera used in our experiments, the parameter s is changed by moving
the lens with respect to the image detector. The lens motion is effected by a stepper

motor with 97 steps numbered 0 to 96. When the lens is at step 0, except for



assembly error, s = f and therefore an object at infinity will be focused on the
image detector. When the lens is moved to the other end (lens step 96), an object
at a distance of about 0.55 meter will be focused. Each lens step corresponds to
a relative displacement of the lens with respect to the image detector of about
0.025mm. For each lens position there corresponds a unique object distance for
which the object will be in best focus on the image detector. For example, except
for a constant due to assembly error between the lens and the camera, Table 1
shows the relation between the lens position and the distance of an object in best
focus. Itis therefore convenient to specify object distances in terms of lens position.
For example, according to Table 1, if the distance of an object is said to be step 30,
it means that the object is at distance 1.320 meters from the camera.

The relation between the lens position s (in mm) and the corresponding step
number ¢ is given by s = f 4 ¢ 6s where és is the lens displacement in mm per
step of the motor. Similarly, if j specifies object distance in lens step, then we have
v = [ + j 6s. Using these relations and Eq. 14 we can write

0s
N

The above relation implies that the blur parameter ¢ which characterizes the lens

(i —J) (15)

MTF varies linearly with respect toboth lens position : and object distance j with the
same proportionality constant or slope. It is found that, after a minor modification,
this model holds well for the actual lens MTF. The modification that is needed is
the addition of a constant ¢,,;,. This can be justified as follows. When an object is
in best focus we have : = j in the above expression. Therefore ¢ is zero according
to this model. However, in practice, even when a point light source is in best focus,
its” image is not a point which is dimensionless but the wellknown Airy pattern
(bright and dark rings due to diffraction). Further, when the aperture is large
(F-number of less than 8), the paraxial assumption (i.e. the light rays incident on
the lens are almost parallel to the optical axis) does not hold. Therefore, instead of
a single point where all rays from a point source are focused, there is only what is
called a circle of least confusion which has finite dimensions. For these reasons, we

propose the following model for the blur parameter o
0= 0min + K|t — | (16)

10



2

(Another alternative model is o = o2, + K*(i — j)?.) The parameters c,,;, and
K are both approximately inversely proportional to the F-number of the camera
system.

We next show some plots for the MTF data of our camera which indicate that
the above model for ¢ is a good approximation to our camera.

Figure 6 shows a plot of the MTF data for the lens system used in our experi-
ments. In this plot, one axis corresponds to spatial frequency p and the other axis
corresponds to distance of the object being imaged. (The distance of the object is
specified in terms of the lens position or lens step number.)

Figure 7 shows a plot of the MTF data in Figure 6 after the log/p? transform
and taking square root. Here we see that, as before, the value of ¢ is almost a
constant with respect to low frequencies for all object distances (lens steps 0 to 90).
Therefore, o has been averaged with respect to low frequencies and the resulting
plot is shown in Figure 8. Here we see that o is almost linear with respect to object
distance specified inlens step. ¢ hasa minimum value 7,,;, at step 40 corresponding
to the distance of the best focused object. On either side of the minimum, the slope
is almost the same.

Figure 8 corresponds to an object distance of step 40. Similar plots have been
obtained for object distances 0,10,20,...,.90, and are shown as a 3D plot in Figure 9.
We see that ¢ is a minimum along the diagonal and varies linearly on either side
of the diagonal. The minimum value o,,;,, along the diagonal is almost a constant.
The axes in this plot are lens position and object distance specified in step numbers.
The slope on either side of the diagonal are almost the same. This implies that o
depends only on the difference between lens step : and object step 5. These plots
indicate that our proposed model (Eq. 16) can be used for practical camera systems.

For the plot data in Figure 9, 0,,,;,, = 8.904 x 10~* and K = 1.343 x 10~*mm.

4 Computational Steps

A flow chart of the algorithm for continuous focusing is shown in Fig. 10. Initially
the lens is moved to step 15 which corresponds to focusing an object at about

3 meters distance. The variable Lens_Step in the flow chart corresponds to the
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position of the lens at any given instant. The stored table 7,[¢] is computed next
for two camera settings e; and e;. In our experiments, the only camera parameter
that was different for the two camera settings was the lens position. The first
one was Lens_Step-15 and the second one was Lens_Step+15. In principle, other
parameters such as focal length and aperture diameter, could also be varied. The
parameters could be varied either one at a time or, two or more simultaneously. In

our experiments, the stored table was computed as
T,i] = [omin+ K |i — (Lens_Step—15)[]> = [0min + K |i — (Lens_Step+15)[]* (17)

Twoimages ¢; and ¢, are recorded corresponding to the camera settings e; and e,.
The image size in our experiments was 128 x 128. Both were summed along rows
to obtain one-dimensional signals.

The two images ¢, and ¢, are normalized as in DFD1F with respect to mean
brightness. In our implementation, normalization with respect to magnification
was not done as the change in magnification was small (about 2-3%).

A few low frequency Fourier coefficients of ¢; and ¢, are computed. In the
experiments, the first 6 coefficients were computed. The table 7.[;] is then computed

using the log/p? transform as

L =2 \Galpy)
T.]j)] = —1n 18
U= 2 Gyy) (19
Next the mean value of T, is computed as
_ 1k

The mean 7. is compared with the stored table values T[i] and the index ¢ for
which the two values are closest is found. This index gives the lens step position for
focusing the object. The index is also used to find the actual distance of the object
through another table lookup. The lens is moved to the focusing step position and
the variable Lens_Step is set to this new position.

Next the above algorithm is repeated beginning from the computation of T'[i]

The algorithm terminates when the camera power is turned off.
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5 Experiments

Three poster pictures—-FACE, NAVY, and OPTCON- shown in Figures 11, 12, and
13 respectively, were used as test objects. The reason for using planar objects is that
it simplifies error analysis in the image window being processed. The estimated
distance of the object can be compared with the actual distance to compute RMS
errors. For 3D objects with depth variation in the image window of interest, the
estimated distance will be some kind of “average” of different points in the window.

Experiments were done under the following camera settings: focal length: 35
mm, F#: 4, White balance: off, Gamma compensation: off, camera gain control:
+6dB, illumination: 300 Lux. Each picture was placed at 24 different positions in
sequence at time instants 1 to 24. The initial position was about 1 meter from the
camera. The object was then moved gradually closer to the camera to a distance
of about 0.6 meter. Next the object was moved gradually away up to a distance of
about 5 meters. Then the object was moved back in steps to about 1 meter from the
camera.

In Figure 14, the plot labeled ‘Actual’ shows the actual distance (in lens step
number) of the “moving” object at different time instants. The estimated distance
at each time instant for the three objects are plotted in Figure 14. We see that at
the beginning there is a kind of “warm-up” period when the errors are relatively
large. This is because, at the beginning the lens position (at step 15) was very far
from the focused lens position (around step 55). Therefore the recorded images
were highly blurred resulting in more error. After a few time instants, the camera
“locks” onto the “moving” object and continuously focuses onto the object. During
this “locked” period, focusing error is small because the lens position is not too far
from the focused position and therefore the recorded images are less blurred.

In the beginning, no matter where the object is, the initial lens position will be at
step 15. At each time instant, the camera records two images, one at 15 steps behind
and another at 15 steps ahead of the current lens position. Using these images, it
estimates the distance of the object and moves the lens to focus it. After moving
the lens, it again records two more images and repeats the process. There are

24 x 3 = 72 data points in Fig. 14. The RMS error based on these 72 focusing results
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is about 4.2 lens steps out of 97 steps, or about 4.3%. The image blur due to a lens
position error of this magnitude is small and is not easily noticeable by humans.
Therefore, in addition to machine vision, the method is useful in camcorders.
Figure 15 shows the results of experiments on simulated image data. Paraxial
geometric optics model of image formation was used to compute the blurred images
corresponding to the three images in Figures 11, 12, and 13. We see that the focusing

results are very good as expected.

6 Conclusion

We have described a camera structure and method for continuous focusing of
moving objects. The method is based on the DFD1F method which uses image
defocus information. Experimental results show that the method is useful in both

machine vision and consumer video cameras.
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Lens Step 0 5 10 15 20 25 30 35 40 45
Distance(m) co | 5.300 | 3.750 | 2.850 | 2.500 | 1.930 | 1.720 | 1.465 | 1.320 | 1.170
Lens Step 50 55 60 65 70 75 80 85 90 95
Distance(m) | 1.080 | 0.965 | 0.900 | 0.822 | 0.770 | 0.715 | 0.670 | 0.628 | 0.595 | 0.560

Table 1. Lens Step vs Best Focused Distance
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Fig. 2 Camera Model and Camera Parameters
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Fig. 3 Camera Structures for Focusing on Moving Object
hsm: half silvered mirror

fm: full mirror
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Move Lens to Step 15
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Fig. 10 Flow Chart for Focusing on Moving Object
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Fig. 13 Test Image, OPTCON Fig. 14 Experiment Results
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Fig. 15 Simulation Results
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