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Abstract

A new method named DFDIF of determining depth
(range) from image defocus and rapid autofocusing of a
camera 1s presented. It requires only two images in the-
ory (but three images in our implementation). In contrast
with a related prior method [?, 7], DFDI1F is based on
computing only one-dimensional Fourier coefficients as op-
posed two-dimensional Fourier coefficients, thus providing
not only computational advantage but also robustness in
practical applications. DFDI1F is independent of the form
of the Modulation Transfer Function of the camera.

DFDI1F has been successfully implemented and tested on
an actual camera system named SPARCS built in our lab-
oratory. SPARCS can determine the distance of an object
placed in front of it at any distance in the range 0.5 me-
ter to infinity and successfully focus the object by moving
the lens with a root-mean square error of less than 6% in
terms of lens position. We believe this performance to be
unmatched by any prior method (based on tmage defocus)
we are aware of which uses only three or fewer images.

1 Introduction

A well-known approach for determining the distance of
an object in machine vision is what we call Depth-from-
Focus or DFF. In this approach, the space of physical pa-
rameters of a camera is searched to find a set of camera
parameter values which focuses the object. The distance is
then determined based on the values of the camera param-
eters. The search usually requires a large number (infinite
in theory but about 10 or more in practice) of images to be
acquired at different camera parameter settings and pro-
cessing. An example of recent work in DFF is [?].

Recently, some researchers [?, 7] have proposed meth-
ods for finding distance of an object which does not involve
focusing the object. They take the level of defocus of the
object into account in determining distance. Therefore,
we call the approach taken by these methods to be Depth-
from-Defocus or DFD. DFD methods do not involve any
searching and they require only a few (two in theory but
three or four in practice) images to be acquired and pro-
cessed. The distance of all objects in a scene can be deter-
mined from only these few images, irrespective of whether
the objects are focused or not in any of the images. Like
depth-from-stereo, DFD approach is easily implemented in
parallel, but unlike stereo, the problems of correspondence
and occlusion can be avoided.

Several methods based on DFD approach have been
proposed during the last 5 years (see CVPR/ICCV pro-

ceedings and IEEE-PAMI). These methods have one or
more weaknesses such as restriction on the form of the
point spread function of the camera systems, restriction
on the camera parameters and appearance of objects,
high noise sensitivity, limited range of effectiveness, etc.
Demonstration of the practical utility of DFD approach
has been far from satisfactory.

In this paper we outline (see [?] for details) a DFD
method named DFDI1F for arbitrary images which does
not restrict the form of the point spread function of the
camera systems. DFDIF has been correctly and suc-
cessfully implemented on an actual camera system named
SPARCS. Experimental results show that the method is
efficient, robust, and useful in practical applications. The
level of performance of the method is such that a major
camera manufacturer is planning to apply the method for
rapid autofocusing of consumer cameras.

DFD1F is derived from the DFD method proposed in [?]
named DFD2F. While DFD2F is theoretically sound and
complete, it is not efficient and not robust in the presence
of noise. We did implement DFD2F on SPARCS success-
fully, but, in comparison with DFDI1F, the performance
was unsatisfactory.

DFDIF has been successfully applied for both ranging
(i.e., determining distance) and rapid autofocusing. It is
more efficient than DFD2F [?] because it involves comput-
ing only one-dimensional Fourier coefficients as opposed
to two-dimensional Fourier coefficients (hence the suffixes
1F and 2F in their names). This facilitates easy hardware
implementation of DFD1F. Also, DFDI1F is robust in the
presence of zero-mean noise (not necessarily random) be-
cause it involves summing grey levels of many pixels, and
it uses a special technique for comparing computed values
to pre-stored calibration data which makes the method
practical.

2 DFDI1F

Due to space limitation (imposed by the referees of this
paper!), we refer the reader to [?, 7, 7] for details about
DFDI1F. However, we shall provide an outline of DFD1F
with emphasis on practical implementation so that our ex-
periments can be duplicated by others.

A schematic diagram of a camera system with variable
camera parameters is shown in Fig. 1. DFDIF is imple-
mented on a system named Stonybrook Passive Autofocus-
ing and Ranging Camera System (SPARCS) built by us
in our laboratory. Fig. 2 shows a schematic diagram of
SPARCS.



SPARCS has a SONY XC-711 color CCD camera, an
Olympus 35-70 mm motorized lens, a Contec mP1024/24
digital I/O board for the control of lens movement, a Data-
Translation QuickCapture DT2953 frame grabber, an IBM
PS/2 computer, and a SONY PVM-1342Q color monitor
for real-time image display. The lens motor is a stepper
motor with 97 steps numbered from 0 to 96. The system
is set up such that a C program running on the PS/2 com-
puter can move the lens to any desired position specified
by step number and take pictures and process them.

When the lens is at one extreme position corresponding
to step number 0 of motor, an object at distance infinity
will be in best focus. As the lens is moved gradually to the
other extreme position, the step number increases from 0
to 96, and simultaneously the distances of objects in best
focus decreases monotonically from infinity to about 50
cm. Based on this observation, we can associate with each
step number a distance corresponding to best focus and
vice versa. This relation between step number and object
distance can be used to specify distances of objects in terms
of step numbers. We shall do so since it is convenient in
autofocusing. As an example, if the distance of an object
is said to be step number 35, it means that the object’s
distance is such that the object would be in best focus
if the lens is moved to step number 35. Incidentally, the
relation between lens step number and the reciprocal of
best focused object distance is almost linear [?]. It can be
stored in a lookup table.

The overall operation of SPARCS for finding the dis-
tance of an object can be summarized as below. The lens
is first moved to step 10 and a first image g0 of the ob-
ject of interest is recorded. The lens is then moved to
step 40, and a second image gao of the object is recorded.
(Lens position is only one of a set of camera parameters
such as focal length and aperture diameter. Any one or
more of these parameters may be changed for the second
image.) Optionally, we can specify the number of image
frames (typically 4) to be recorded which are then aver-
aged (over time) to reduce electronic noise. Such frame
averaging is particularly needed under low illuminations,
and in the presence of flickering illumination such as fluo-
rescent lamps. Bright incandescent lamps are highly rec-
ommended for this reason.

As in consumer cameras, the object to be focused is
specified by specifying a region on the image. The default
region is the center of the image but it can be changed.
The size of the region is also an option and the default size
is 128 x 128.

In order to reduce the effect of the image overlap prob-
lem [?] at the borders of an image, the image is weighted
(i.e. multiplied) by a two-dimensional Gaussian centered
at the center of the image and having a spread parameter
o equal to about 1/3rd of the image size (i.e. about 40 for
a 128 x 128 image).

The two images are then summed rowwise to obtain
two one-dimensional sequences, say gio[¢] and gso[é]. This
step is a major improvement over DFD2F. As a result of

summing grey levels along rows, the effect of any zero-
mean noise is greatly reduced. The noise need not even
be random. In fact, our camera has a systematic periodic
noise of vertical bar pattern of about 10 pixels period which
had adverse effect on the performance of DFD2F.

The two 1D sequences are then normalized with respect
to brightness. This is done by dividing each value of the
sequence by the mean value of the entire sequence. At
present, our implementation does not normalize the se-
quences with respect to other types of distortions such as
vignetting and sensor response characteristics of the cam-
era as these distortions were not significant. For the same
reason, we ignored the magnification normalization. In
SPARCS, the change in magnification due to change in
lens position is only about 2%. If these distortions are not
negligible, then they must be corrected for.

Next, the first 6 discrete Fourier coefficients correspond-
ing to lowest 6 non-zero frequencies of gio and gao are
computed. (Theoretically, a single Fourier coefficient suf-
fices, but in practice, more are needed. The number 6 was
chosen empirically based on noise and maximum allowable
blur.) Let these be Gio(p) and Guo(p) for p =1,2,---,6.
A computed table T¢ is obtained by calculating

=2, Gio(p)
PQI Gao(p) W

The Modulation Transfer Function (MTF) of the lens
system as a function of object distance uw and spatial fre-
quency p was provided to us by the lens manufacturer.
This information was provided for both lens positions—
step number 10 and 40. The MTF of our camera is cir-
cularly symmetric, and therefore the two MTFs can be
denoted by Hio(p,u) and Hao(p, u) where u is the object
distance (expressed in lens step number corresponding to
best focus). The manufacturer obtained this MTF data
using a computer simulation of the lens system. The same
data could be obtained through direct measurements on
the lens system using special equipment. The manufac-
turer provided the data at intervals of 1 cycle/mm spatial
frequencies starting from 1 cycle/mm to 15 cycles/mm.
However, for our camera, each pixel corresponds to 0.601
cycles/mm (inter pixel distance: 0.013 mm). Therefore,
the MTF data provided by the manufacturer is coarser (1
cycle/mm) than what we would like (0.601 cycle/mm).

A transform named log-by-rho-squared transform was
applied to the the two MTF's to obtain two tables Tho and
Tuo defined by

Te(p) =

-2 -2
Tio(p,u) = p—21nHlo(P7U)7 Tao(p,u) = —5InHso(p, u)
(2)

The effect of the above transform is to make the new values
nearly a constant with respect to p. The reason for this
is that, for low frequencies, the MTF resembles a Gaus-
sian. However, the fact that it is not a Gaussian exactly
does not introduce any errors into DFD1F. This step is
an important improvement over DFD2F. In order to ob-
tain these table data at intervals of 0.601 cycles/mm from



the data available at intervals of 1 cycle/mm, we used a
linear interpolation scheme. Linear interpolation gives sat-
isfactory results because the log-by-rho-squared transform
makes the table values to be nearly constant.

For robustness against noise, we discarded data at
points where the magnitude of the Fourier coefficients
G1o(p) or Gauo(p) was low. This threshold was arbitrar-
ily chosen to be around 30% of the maximum magnitude.
One effect of this restriction on limiting the data points
used is that it restricts the maximum allowable blur in an
image. This limitation is purely due to practical reasons
and not theoretical. This problem is easily solved in prac-
tice by taking one or two additional images as described
later.

Next we compute what we call a stored table T, defined
as

Ts(p,u) = Tiolp,u) — Tuo(p,u) (3)

The most important relation which facilitates the determi-
nation of object distance regardless of the appearance of
the object is

Te(p) = Ts(p,uo) (4)

where wuo is the actual distance of the object. (Direct
use of an equivalent and simpler relation G10(p)/Gao(p) =
Hio(p, uo)/Hao(p, uo) resulted in very poor performance.)
Therefore, mean-square error (MSE) is computed between
T. and T, for different values of u. The value of u for
which the MSE is a minimum is taken to be the estimated
distance of the object. However, if the minimum error oc-
curs for a distance corresponding to higher than step 60
then g1¢ is considered to be too much blurred for reliable
results. This is because an object at best focus distance
step 60 or beyond would be highly blurred when the lens is
moved to step 10. Therefore, in this case, a third image is
taken at step position 70, and the images taken at steps 40
and 70 are used in estimating distance in a similar manner
as before.

The distance of the object is printed on the computer
terminal, and the lens is moved to the corresponding step
number to focus the object, thus accomplishing autofocus-
ing.

In another variation of the implementation, mean of
Te(p) is computed over p and it is compared with the mean
values of Ts(p,u) (again computed over p), and the value
of u for which the two means are closest is taken as the
distance of the object. This method also performed almost
as good as the MSE method.

3 Experiments

Experiments were performed under the following condi-
tions: Camera setting: focal length = 35 mm, F-number =
4, camera gain control +6dB, White balance = off, Gamma
compensation = off, illumination about 200 lux.

Three different objects, a human face (Fig. 3), text
(Fig. 4), and a cartoon (not shown), were used. Each
object was placed at 16 different distances, and for each
distance, our program was run about 5 times. In each case,

four image frames were averaged to reduce noise. The es-
timated distance of the object, expressed in terms of the
corresponding best focused lens position (in step number)
is shown in Fig. 5. This Figure represents the result of
255 experiments (many points in the plot overlap exactly
and therefore are not distinguishable). A straight line was
fitted to this data using the least-squares approach. The
resulting straight line along with two parallel lines on ei-
ther side of it at a distance equal to the RMS error is shown
in the figure. The RMS error is 5.6 steps out of 97 steps
which corresponds to about 6% error. The region enclosed
by the two parallel lines gives an idea about the uncer-
tainty in the measurement of distance using our method.
We see that about 90% of the points are within the two
parallel lines corresponding to the RMS error (5.6 steps).
In these cases the quality of the focused images were very
good as judged visually by humans.

Numerous informal experiments were carried out on a
wide variety of objects at many different distances. The
results were comparable to those above. Additional exper-
iments were conducted under different illumination condi-
tions and different objects. The results were again good
except under very poor illumination (50 lux) [?]. (Ambient
illumination in an office is about 200 lux).

4 Work in Progress

Further improvements to DFD1F have been done re-
garding computation, memory, image overlap problem,
and hardware implementation. A user friendly computer
simulation system called Image Defocus Simulator (IDS)
has been developed [?] which can synthesize defocused im-
ages sensed by a CCD camera as a function of camera
parameters and scene parameters. We have found this to
be an extremely useful research tool for testing DFD meth-
ods.

An entirely new DFD method based on a new spatial-
domain convolution/deconvolution transform (S trans-
form) has been developed, implemented, and successfully
demonstrated on SPARCS [?]. The performance of this
method is approximately comparable to DFD1F.
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Stonybrook Passive Autofocusing and Ranging Camera System-
SPARCS - is a prototype camera system developed at the
Computer Vision Labatory for experimental research in robotic
vision, State University of New York at Stony Brook
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