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Abstract of the Dissertation
Three Dimensional Scene Recovery
from Image Defocus
by
Gopal Surya
Doctor of Philosophy
in
Electrical Engineering
State University of New York at Stony Brook

1994

Advisor: Prof. Muralidhara Subbarao

Three dimensional scene information consists of geometric and
photometric information. The distance and shape of objects in a
scene constitute the geometric information, while color and im-
age irradiance of objects constitute the photometric information.
Active methods of scene recovery use energy beams such as laser,
infrared light and sonar. Passive methods, on the other hand, use

only the ambient illumination of the scene. This dissertation deals

iii



with a new passive method of scene recovery using defocus informa-
tion. The method is based on a new spatial domain deconvolution
formula. It requires only two blurred images taken with different
camera parameters. The camera parameters include position, focal
length and aperture size of the optical system in the camera. The
computations in the method are local and hence it can be used for
obtaining the depth-map of a scene in real-time. The method has
been implemented on a prototype camera system and a large num-
ber of experiments have been performed. The experiments indicate
that the method is useful in practical applications such as autofo-
cusing and robot vision. The method has also been extended to
continuously focus on moving objects. A simple camera configura-
tion has been suggested for real-time focusing on moving objects.
This dissertation also deals with the problem of recovering the fo-
cused image of a scene from its blurred images. A spatial domain
technique and a Fourier domain technique have been investigated
for focused image recovery. Experimental results and comparisons
between the different techniques are provided. The experimental
results have also been compared with results obtained by computer

simulation.
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Chapter 1

Introduction

1.1 Importance of Vision

Visual perception is a powerful source of information to humans and an-
imals. It is essential for survival activities like gathering food and avoiding
predators. In humans, the visual system helps to perceive the shape, color,
distance and other characteristics of objects in a three-dimensional scene. The
central goal of computer vision research is to provide machines with visual
capabilities comparable to humans. The applications of this research are in
machine and robot vision, autonomous vehicle navigation, medical imaging
etc. This research could also help us understand the sensory and computa-

tional aspects of human vision.



1.2 Approaches to 3-D Shape

Recovery

The shapes and distances of objects in a scene constitute the 3-D geomet-
ric information in the scene, while the color and image irradiance constitute
the photometric information. There are many approaches to recover the 3-D
information of a scene. Active methods use lasers, sonar or infrared rays to
bounce off an object and determine its distance. Passive methods on the other
hand use the natural illumination of the scene and do not use any active en-
ergy sources. Some of the passive techniques are based on focus, stereopsis,

shading and motion parallax.

Stereopsis is the method of obtaining 3-D shape information using binoc-
ular vision. Two images of a scene are recorded by two different cameras (or
eyes) located at different positions in space. Features such as edges are ex-
tracted from one image and matched with the corresponding features on the
other image. The relative displacement of a feature from one image to an-
other is known as disparity. By measuring disparity, depth information can be

inferred through triangulation.

Shape recovery from shading is based on the fact that the brightness of
a surface depends on its orientation with respect to the light source and the
observer. The shape of an object may be inferred by estimating the surface

orientation at different points in its image.

Focus as a cue for depth and shape recovery is a relatively new idea in

computer vision. It is well known that objects at different distances from a



lens are focused at different distances from the lens. A 2-D image detector
when placed at a particular distance from the lens, registers an image which
is blurred by different amounts at different points in the image plane. The
amount of blur at a region in an image depends on the shape and distance of
the corresponding object in the scene. There are two approaches to recovering
3-D information from focus. In the traditional approach, the most focused
(sharpest) image along every possible direction is obtained by taking many
images of the scene and searching for the most focused image. In another
approach, there is no search involved and the focusing position along each di-
rection is directly estimated by measuring the amount of blur in that direction.
The blur is estimated from just one or two images, which are recorded at one
or two known lens positions. The latter approach is termed “Depth-from-
Defocus” to distinguish it from the search method which is termed “Depth-

from-Focus”. This research falls into the Depth-from-Defocus category.

1.3 Dissertation Overview

This dissertation is organized as follows. Chapter 2 describes the process
of image formation in an optical system. Camera models with single and
multiple lenses are described. The concepts of focused and blurred images are
introduced and mathematical models of the point spread functions of camera
systems based on geometric and wave optics are discussed. Actual values of
the point spread function and the optical transfer function based on geometric

and wave optics have been plotted for different values of blur. The plots



indicate that for high values of blur, the two models are almost identical. The
chapter concludes with a discussion of the image magnification and brightness

normalization issues that arise when using two or more images of a scene.

In Chapter 3, we first introduce the Depth-from-Focus (DFF) technique
for 3-D shape recovery. DFF is essentially a search method, requiring the
acquisition and processing of a large number of images. The concept of a Fo-
cused Image Surface is explained followed by a survey of some of the commonly
used focus measures. The issues involved in the choice of window size for focus
measure computation are discussed. The advantages and disadvantages of this

technique over other techniques have also been listed.

Recently some researchers have attempted to recover 3-D shape infor-
mation directly by measuring the amount of blur in an image (Depth-from-
Defocus or DFD). DFD methods do not require focusing the object. They
directly estimate the distance of an object from a measure of the level of de-
focus. These methods require only a few images (about 2-3) for recovering
distance of an object, as compared to DFF methods which require a large
number of images (typically about 10-12 for a planar object). In addition,
only a few images are sufficient to determine the distance of all objects in the
scene using DFD methods, irrespective of whether the objects are focused are
not. For a 3-D scene, DFF methods require many more images. In the second
part of Chapter 3, we review some of the recent work on Depth-from-Defocus
(DFD). A few algorithms based on the processing of blurred step edges are
described first. For arbitrary objects, some of the Fourier domain methods

and a matrix based regularization method are reviewed. There is also a brief



note on the differential DFD methods for 3-D shape recovery.

In Chapter 4, we provide the theoretical basis and implementation details
of a new method for determining distance based on image defocus. The method
is based on a new Spatial Domain Convolution/ Deconvolution Transform,
which is introduced in [113] recently. This method is called the S-Transform
Method or STM. STM requires only two images taken with different camera
parameters such as lens position, focal length and aperture diameter. Both
images can be arbitrarily blurred and neither of them needs to be a focused
image. STM therefore, is very fast in comparison with the Depth-from-Focus
(DFF) methods, which search for the lens position or focal length of best focus.
Also, STM involves only simple local operations and can easily be implemented
in parallel to obtain the depth-map of a scene. It has been implemented on
an actual camera system. Experiments on the performance of STM and their
results on real-world objects are described in this chapter. The results indicate
that the accuracy of STM compares well with DFF methods and is useful in
practical applications. The utility of the method is demonstrated for rapid

autofocusing of electronic cameras.

Chapter 5 is an extension of the S-Transform Method for continuously
focusing on moving objects. Such a situation may arise in an autofocusing
video camera and in robotic vision, where the objects in the scene may be
slowly moving. We describe a spatial domain method based on STM. The
method is named Continuous STM or CSTM. Two variations of CSTM -
CSTM1 and CSTM2 - are described. CSTM1 is a straightforward extension

of STM described in Chapter 4. It involves calibration of the camera for a



number (about 6 in our implementation) of discrete lens positions. In CSTM2
the camera is calibrated just once corresponding to one lens position. The
calibration data corresponding to other positions are obtained by transforming
the data of the one lens position for which the camera is calibrated. We provide

the implementation details and experimental results.

In many applications it is required to obtain the focused image of a 3-D
scene. In Chapter 6 we investigate two methods for using a blur parameter
o for recovering the focused images of objects in the scene from their blurred
images. The first method of focused image recovery is based on the Spatial
Domain Convolution/ Deconvolution Transform (S-Transform) proposed in
[113]. This method uses only the blur parameter ¢ which is a measure of
the spread of the camera’s PSF. In particular, the method does not require
a knowledge of the the exact form of the camera PSF. The second method,
in contrast to the first, requires complete information about the form of the
camera PSF. We describe a camera calibration procedure for measuring the
camera PSF for various degrees of image blur. The calibration procedure
is based on recording and processing the images of blurred step edges. In
the second method, the focused image is obtained through a deconvolution
operation in the Fourier domain using the Wiener filter. For both methods
of recovering the focused image, results of experiments on an actual camera
system are presented. The results of the first method are compared with the
results obtained using two commonly used PSF models— cylindrical based on
geometric optics, and a 2-D Gaussian. The results of the second method are

compared with simulation results.



Finally, in Chapter 7, we summarize the contribution of this research and

indicate some avenues for future research.



Chapter 2

Camera Models

In this chapter we review some of the basic ideas of image formation in
optical systems. We first consider a very simple model of a camera consisting
of a single lens. In practice, however, camera systems consist of multiple
lenses. Some of the terminology associated with such a system of lenses will
be introduced next. Finally we discuss some of the commonly used models of

blur based on geometric and wave optics.

2.1 Image formation

Consider a camera system consisting of a single convex lens as shown in
Figure 2.1. If there is a point source p at a distance u from the lens, then a
sharp or focused image p’ is formed on the other side of the lens at a distance

v. The distances u and v are related by the well-known lens formula,

1 1

1
v v f
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Figure 2-1: Image formation in a convex lens

where f is the focal length of the lens. If an image detector (ID) such as
a photographic film or a two-dimensional CCD array is placed exactly at a
distance v, a sharp image p' of the point p is formed. However, if the image
detector is placed at a distance s,s # v, then a blurred image p” of the point
source is formed. The blurred image of a point source is known as the Point
Spread Function (PSF) and will be denoted by h(z,y). The Fourier Transform
of the PSF is the Optical Transfer Function (OTF).

In practice, camera systems consist of a number of lenses. Figure 2.2
shows a camera system with two lenses. Many of the terms associated with

such systems are explained in [41]. The aperture stop (AS) is the element
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Figure 2-2: A two-lens camera model

of the imaging system which physically limits the angular size of the cone of
light accepted by the system. In a simple camera, the iris diaphragm acts as
an aperture stop with a variable diameter. The field stop is the element that
physically restricts the size of the image. The entrance pupil is the image of
the aperture stop as viewed from the object space, formed by all the optical
elements preceding it. It is the effective limiting element for the angular size
of the cone of light reaching the system. Similarly, the exit pupil is the image

of the aperture stop, formed by the optical elements following it.

Whenever there is a system of lenses, consisting of two or more lenses, it



can be shown that the lens formula (2.1) is still valid in the form,

1 1 1
Uu v feff

(2.2)

where f.¢; is the effective focal length of the system. However, the distances
u and v will have to be measured from two unique points on the optical axis,
namely, the first principal point (Q1) and the second principal point (Q2).
Imaginary planes erected perpendicular to the optical axis at these points, are
known as the first principal plane (P1) and the second principal plane (P2)
respectively.

The distance s, focal length f and the aperture diameter D will be referred

together as camera parameters and denoted by
e=(s,/,D). (2.3)

If, instead of a point source, there is a planar object perpendicular to the
optical axis, with the focused intensity distribution f(z,y), then the blurred

image corresponding to f(z,y) can be expressed as

9(z,y) = f(z,y) * h(z,y) (2.4)

where * denotes the convolution operation. Equation (2.4) is only an ap-
proximation and is valid only in the region close to the optical axis (paraxial

approximation). In the Fourier domain, equation (2.4) can be expressed as
G(w,v) = F(w,v)H(w,v) (2.5)

where G(w, v), F(w,v) and H(w, v) are the Fourier Transforms of g(z,y), f(z,y)

and h(z,y) respectively.

11



2.2 Geometric Optics

Geometric optics is based on simple ray-tracing and often yields useful
results. Usually camera systems have circular apertures and hence the PSF
is circularly symmetric. According to geometric optics, the blurred image of
a point source (PSF), is a circular patch of constant intensity and is known
as the blur circle. In Figure 2.1 let R be the radius of blur circle and D the
diameter of the lens aperture and s be the distance from the lens to the image
detector plane. Also let ¢ be the scaling factor defined by ¢ = 2R/D. From

similar triangles in Figure 2.1 we have

2R s—w 1 1
= — = =8|-— - 2.6
9 D v S[v s] ( )

Substituting for < from equation (2.1) in the above equation we obtain,

q=sl1—1—1] (2.7)

f u s
Therefore,
D D1 1 1
R=¢q—=s—|-———- 2.
T9 =55 [f U s] (28)

Note that ¢ and therefore R can be either positive or negative depending on
whether s > v or s < v. In the former case the image detector plane is behind
the focused image of p and in the latter case it is in front of the focused image
of p. It will be seen later in this chapter that it is required to normalize
the images with respect to magnification. Without loss of generality we shall
assume that magnification has been normalized corresponding to s = s¢. The
%z

normalized radius R' = of the blur circle can be expressed as a function

12



of camera parameter setting e and object distance u as

R(eu)= 20 [1 L 1] (2.9)

According to geometric optics the intensity within the blur circle is ap-
proximately constant. If we assume the camera to be a lossless system (i.e.,

no light energy is absorbed by the camera system) then

//h(:v,y) de dy = 1 (2.10)

because the light energy incident on the lens is taken to be one unit. Using

these facts, we obtain the PSF to be a cylindrical function

(

—7 if2® +y? < R”?

he(z,y) = 4 (2.11)

0 otherwise.

\

where h, is the PSF according to paraxial geometric optics. Due to circular

symmetry, we can represent

he(z,y) = h(r) where 7= 1/22+ y? (2.12)

If a PSF is circularly symmetric then the corresponding OTF, H(w,v) is also

circularly symmetric. Accordingly H(w,v) can be expressed as
H(w,v)=H(p) where p=+vw?+1? (2.13)

The OTF corresponding to the PSF h,(z,y) is given by

_ Ji1(2n R’ p)

2.14
Ry (2.14)

Hy(p)

13



where J; is the first order Bessel function.

The spread parameter is a quantity used to characterize a PSF and is
defined as the standard deviation of the distribution of the PSF h(z,y). Using
polar coordinates it can be shown that the spread parameter o, corresponding

to hy(z,y) is %. Therefore from equation (2.8) we have

op, =muT +c (2.15)
where
m = —f% (2.16)
and
¢= f% H _ ﬂ (2.17)

Thus, for a given parameter setting (i.e., for a given value of camera
parameters s, f and D), the spread parameter depends linearly on the inverse

distance u~!.

2.3 Wave Optics

Wave optics takes into account the wave nature of light, instead of the
simple rectilinear propogation model of light considered by geometric optics.
The PSF based on wave optics was first derived by Hopkins [51] and is also
discussed in [77, 103, 76, 111].

According to Levi and Austing [77] the OTF corresponding to a focus

defect A is given by

H(p,A) = %/1 V1 —1t2 cos [2nAp(t — p)] di (2.18)

o

14



The focus defect A is a measure of defocus and has been shown to be equal

to the radius of blur circle expressed in reduced units,

RI
8= 36/D)

(2.19)

where ) is the wavelength of light. The corresponding PSF for wave optics,

hy(r, A) can be found by the inverse Fourier-Bessel Transform given by
hy(r, A) = 27r/ H(p, A)Jo(2mpr)pdp (2.20)
0

where Jy is the Zeroth Order Bessel function of the first kind and r is the
reduced radial distance on the image detector plane.
The spread parameter of the PSF corresponding to wave optics was eval-

uated indirectly in [111] and was found to be of the form
o5~ o)+ 0, (2.21)

where o0, 0, are the spread parameters of wave and geometric optic PSFs
respectively and oy is a constant equal to the spread parameter of the PSF
obtained with a point source whose image is focused according to geometric
optics (i.e., o, = 0) [111].

For comparison, the OTF and PSF corresponding to wave and geometric
optics for different amounts of blur have been plotted in Figures 2.3 - 2.10.
Figures 2.3 - 2.6 show the PSF values obtained for a blur circle of radius 1
pixel, 3 pixels, 6 pixels and 9 pixels in our camera system. The radius of blur
circle is plotted in terms of A. The PSF for wave optics was obtained by
numerical integration using equations (2.18) and (2.20). In the plots the solid

line shows the PSF using wave optics and the dotted line shows the PSF with
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Figure 2-3: PSF for blur circle radius of 1 pixel

geometric optics. It can be seen that for higher degrees of blur, there is a closer
resemblance between the two models. Figures 2.7 - 2.10 show the OTFs, again
for a blur circle radius of 1, 3, 6 and 9 pixels. The OTF for wave optics was
obtained using equation (2.18) and for geometric optics was obtained using
equation (2.14). Once again, it can be seen that for large values of blur the

two OTF models are almost identical.

2.4 Gaussian Model

Some researchers [55, 93, 101, 106] considered the polychromatic illumi-

nation, lens aberrations etc. and proposed a two-dimensional Gaussian model
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for the PSF. Accordingly, the PSF is defined as

1 224t

2% (2.22)

ha(z,y) =

2
2mo}

where 0, is the spread parameter corresponding to the Gaussian PSF. In

practice, it is found that [108, 109] ¢ is proportional to R/, i.e.
o =kR for k>0 (2.23)

where k is a constant of proportionality characteristic of the given camera.
Except when o is very small (in which case diffraction effects dominate), in
most practical cases

k= (2.24)

Sl

is a good approximation [107, 109].
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In general, equation (2.15) is approximately valid for all the PSF models

considered so far and hence in general,
oc=mu'+c (2.25)

Equation (2.25) indicates that if we measure the spread parameter of the PSF
of a blurred image, we can possibly recover the distance u of the object in
terms of the camera parameters. This argument will be further pursued in
Chapter 4 and Chapter 5 for determining distance from image defocus. In
practice, none of the PSF models discussed above may be exactly valid and in
Chapter 6, we will describe a method of experimentally determining the PSF

of a camera by using step edges.

2.5 Image Normalization

In a practical camera system, if two images g;(z,y) for i = 1,2 are taken
at camera parameter settings of e;, then image magnification and mean image
brightness may change even though nothing has changed in the scene. For
example, moving the lens away from the image detector will increase image
magnification (because magnification is proportional to s) and changing the
aperture diameter changes mean image brightness (which is proportional to
7(D/2)?). In order to compare the blur in images ¢; and g in a correct and
consistent manner, they must be first normalized with respect to these factors.
Normalization with respect to image brightness is carried out by dividing the

image brightness at every point by the mean brightness of the image.
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Normalization with respect to image magnification is more complicated.
It can be done by image interpolation and resampling such that all images cor-
respond to the same field of view [110]. The relation between an original image
g(z,y) taken with s = s; and the corresponding magnification normalized im-
age gn(z,y) taken with s = sy is given by gn(z/s1,y/s1) = g(x/s0,y/50)-
However, in most practical applications, the magnification change is less than

3% and can be ignored.
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Chapter 3

Depth from Focus and Defocus

3.1 Introduction

Three dimensional scene information consists of photometric and geomet-
ric information. Photometric information consists of color and image irradi-
ance of objects and geometric information consists of distances and shapes of
objects in the scene. One of the central problems in computer vision is to re-
cover the geometric and photometric information of a scene from 2-D images
of the scene. In the next few chapters we focus on recovering the geomet-
ric information and in Chapter 6 we address the problem of recovering the

photometric information.

There are many approaches to 3-D depth recovery and are surveyed in
[11, 12, 60, 64, 98, 104]. Active methods such as infrared and sonar techniques
use an energy source for the purpose. Passive methods on the other hand,
are more attractive as they use only the ambient illumination. The most

important among the passive methods are based on stereo disparity, focus and
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motion parallax.

In this chapter we first outline the basis of Depth-from-Focus (DFF) meth-
ods and survey some of the focus measures that have been proposed. We also
indicate the advantages and pitfalls of this approach over other techniques.

Next we review some of the previous work on Depth-from-Defocus.

3.2 Focused Image Surface

Figure 2.1 shows the image formation in a simple optical system, such as
a convex lens. If P is a point source at a distance u from the camera system,
a sharp image p’ of P is formed at a distance v from the lens. The quantities

u and v are related to the focal length f of the lens by the lens formula,

1 1 1
E‘F;:? (31)

As mentioned in Chapter 2, if the image detector is placed exactly at a
distance v from the camera, a very sharp image p’ will be registered. If the
image detector is placed at some other distance s,s # v, a blurred image of
the point source is formed. The blurred image of the point source, is known
as the Point Spread Function (PSF) of the optical system and various models
of the PSF have been discussed in Chapter 2.

The problem of focusing is to find and adjust the value of focal length
[ or the distance s between the lens and the image detector (Figure 2.1) or
both, so that a specified object is in focus. One way of focusing then is to vary
f and/or s in small steps until the observed image of the object is in sharpest

focus. Once the values of f and s which correspond to focusing the object
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are found, the distance of the object can be calculated using the lens formula.
Therefore DFF is essentially a search method, which requires acquiring and
processing many images. The search may be optimized by using a binary
search or a Fibonacci search [67] technique. Typically about 10-12 images are

required for a planar object, in our implementation.

In a 3-D scene, however, different points in the scene will be at different
distances from the camera. Correspondingly, the sharpest image of each point
in the scene is formed at a specific distance from the camera. Figure 3.1 shows
a scene with a 3-D object. The sharpest image of the 3-D object is formed
along a surface, known as the “Focused Image Surface” (FIS). It can be seen
in Figure 3.1, that if a 2-D image detector is placed at a distance v; from the
lens, only points on the image detector which intersect the FIS are sharpest
(focused), while other points are blurred. If a sequence of images of the scene
are taken, with the image detector positions varying from S; to S as shown
in Figure 3.2, we obtain a three dimensional image volume. The problem then
is to recover the FIS from the image volume. In our implementation, about 25
images of the scene are required to recover the shape of a typical 3-D object

such as a cone.

3.3 Focus Measures

In the previous section we mentioned that 3-D shape recovery from DFF
involves searching for the most focused image among a sequence of images.

In this section we discuss the criteria for searching. The search is based on
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Figure 3-1: Image formation with a 3-D scene

maximizing a focus measure and the choice of a focus measure is very critical
to the performance of a DFF method. Considering the nature of the blurring
process as some kind of low pass filtering in the spatial frequency domain, many
different measures of focus have been proposed. Krotkov [67, 68], evaluated
many of the focus measures. Other surveys of focus measures may be found
in [35, 119]. Here we enumerate some of the commonly used focus measures.
1. Gradient Magnitude

The thresholded gradient magnitude (tenengrad) scheme was investigated

by Tenenbaum [121] and Schlag [100]. The gradient magnitude is defined as

[v9(z,y)| = J (%)2 + (%)2 (3.2)

where g(z,y) is an image. The focus measure is obtained by summing all the
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values of | 7/ g(z,y)|, which are greater than a threshold value. The partial
derivatives may be estimated by many discrete operators.
2. Laplacian

The Laplacian of an image is obtained as

0%g 0%
2 _

The Laplacian is a kind of high pass filter, which measures the high frequency
content of an image. By summing up the square of the Laplacian over an image
region, a focus measure may be obtained. There are many discrete operators
which yield an approximate value of the Laplacian of an image.
3. Gray Level Variance

By viewing the gray levels in an image as random variables, the variance

of an image is defined as
1 N-1N-1 9
0’ =15 2 2 9(@my)—p (3.4)
z=0 y=0
where p is the mean of the gray level distribution and size of the image being
N x N.
4. Sum Modulus Difference

The sum-modulus-difference was proposed by Jarvis [60] and is computed

SMD, =33 |g(z,y) — g(z,y — 1)| and (3.5)
SMDy =33 |9(z,y) — g(z +1,y)| (3.6)

The focus measure is then obtained as

SMD = SMD, + SMD, (3.7)
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5. Sum Modified Laplacian

The sum-modified Laplacian was recently proposed by Nayar [88]. It is

computed as

g(x,y)
0z?

9%9(z,y)
[t os

SML=YY

It is a variation of a simple Laplacian, and Nayar used it effectively on micro-

scope images.

6. Bandpass Filters

Subbarao et al [119] recently proposed some focus measures, which per-

form bandpass filtering on an image, instead of the usual high pass filtering.

Considering geometric optics, the OTF of an optical system is circularly
symmetric and a cross section looks as shown in Figure 2.7 - 2.10. There is a
main lobe and many side lobes in the OTF. If the focused image of an object
has high energy frequency content in the side lobes, then the focus measures
such as Laplacian and variance may exhibit local maxima. This complicates
the task of searching for the global maximum of a focus measure. In order to
overcome the problem caused by the OTF sidelobes, lowpass filtering with a
Gaussian was proposed. The combination of the lowpass filter and highpass

filter (Laplacian or variance), results in a bandpass filter.

Another advantage of lowpass filtering is the reduction of noise and the

attenuation of aliased frequencies near the high end of the spectrum.
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3.4 Window Size for Focus Measure

Computation

If a planar object is in the scene, then a focus measure can be computed
over the entire image, by summing up or integrating over the entire image.

For example,

o = %;ggu,y) — (3.9)

where the summation is done over a region of size N x N. But as indicated
in Figure 3.1, if the scene consists of 3-D objects, then different points of the
scene are at different distances from the camera and hence different regions
of the image are blurred by different degrees. Most of the researchers solve
this problem by considering a small window size of about 15 x 15 pixels and
assume that the surface is planar in those small regions (piecewise planar
approximation). If the window size is made too small, the focus measure is
more susceptible to the image overlap problem and noise and may lead to the
problem of local maxima. Hence, there is a trade-off involved in choosing a
window size for focus measure computation. It has been suggested in [119]
that the focus measure should be computed and maximized over the focused
image surface (FIS) to yield more accurate shape recovery as compared to the

methods using the piecewise planar approximation.
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3.5 Advantages of Depth-from-Focus (DFF)

In general, the advantages of Depth-from-Focus (DFF) methods over
other methods of depth estimation are the following.

1. No Correspondence Problem: In binocular stereo vision, two rays
of light from the same point on an object are obtained from two imaging
systems which have a different view or projection. Combining the conjugate
points on both images is known as the correspondence problem. Most of the
algorithms for solving the correspondence problem are computation intensive
and heuristic in nature.

There is no correspondence problem in DFF methods, as only a single
optical system is used.

2. No Occlusion Problem: Occlusion is another serious problem with
binocular stereo vision. If there are occluding surfaces (one surface in the fore-
ground and another in the background), then all the objects present in one
image may not be present in the other image. Hence establishing correspon-
dence will be even more difficult.

There is no occlusion problem with DFF methods, if a relatively small
window size is chosen for focus measure computation.

3. Parallel Implementation: Since computation of a focus measure
usually involves local computations, a DFF algorithm can be implemented
with parallel processing elements.

4. Single Imaging System: The requirement of a single imaging system
for DFF leads to a more compact hardware (instrument). In some applications

such as microscopes and endoscopes, it is not feasible to have two or more
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cameras, as the objects may be too small and the overall size of the system

may be a critical design issue.

3.6 Disdvantages of Depth-from-Focus (DFF)

1. Large number of images: The most important disadvantage of
DFF methods is that it requires a large number of images, taken with different
camera parameters. Usually, for a planar object perpendicular to the optical
axis, about 10-12 images are required to obtain a depth estimate using DFF.
If the scene consists of 3-D objects the number of images may be very large
(about 25 in our experiments).

2. Stationary Scene: Moving the lens to a different position for acquir-
ing an image involves mechanical motion of the lens system and hence could
be time consuming. Moreover, the scene has to remain stationary during the
entire period of time taken to acquire all the images. If the scene consists of
objects which are moving slowly, DFF methods are diffcult to use.

The Depth-from-Defocus (DFD) algorithm that we investigate in the sub-
sequent chapters requires only two or three images and hence eliminates some

of the limitations of DFF.

3.7 Depth-from-Defocus (DFD)

The previous sections described some of the Depth-from-Focus (DFF)
algorithms. DFF methods are essentially search methods, which search for a

set of camera parameters corresponding to the sharpest image of the scene.
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Recently some researchers have pursued a different class of algorithms known
as the Depth-from-Defocus (DFD) algorithms. In this section we review some
of the recent work on DFD.

DFD methods do not require focusing the object. They directly estimate
the distance of an object from a measure of the level of defocus. These methods
require only a few images (about 2-3) for recovering distance of an object, as
compared to DFF methods which require a large number of images (typically
about 10-12 for a planar object). In addition, only a few images are sufficient
to determine the distance of all objects in the scene using DFD methods,
irrespective of whether the objects are focused are not. For a 3-D scene, DFF
methods require many images (typically about 25 images).

As mentioned in the previous sections, the image of a scene formed by an
optical system contains information about the distance (or depth) of objects in
the scene. Objects at a particular distance are focused, whereas other objects
are defocused (blurred) by different degrees. The amount of blur depends on
the distance of the objects and also the characteristics of the imaging system.
By measuring the amount of blur at any given point in an image, it seems
possible that the distance of the corresponding point in the scene could be
determined.

The central problem in DFD is then to measure the amount of blur in a
small region of an image. The image g(z,y) recorded on an image detector, is
a result both of the characteristics of the scene and of the lens system. It has

been shown in equation (2.5) that in the Fourier domain,

G(w,v) = F(w,v) H(w,v) (3.10)
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where G(w,v) is the Fourier Transform of the observed image, F'(w, ) is the
Fourier Transform of the focused image and H(w,v) is the Fourier Transform
of the PSF, h(z,y). If the underlying focused image f(z,y) is known (or
its Fourier Transform F(w,v) is known), possibly the PSF h(z,y) can be
recovered. Conversely, if H(w,v) is known, the focused image f(z,y) could
possibly be recovered from the corresponding blurred image g(x,y). The latter
is a case of image restoration. However, in the general case, neither f(z,y)
nor h(z,y) is known, resulting in two unknown functions and hence requiring
two images for a solution.

There are a number of DFD algorithms falling into different categories
and varying largely in application and complexity. The classification of the
different algorithms is shown in Figure 3.3. In the following sections we briefly

review these algorithms.

3.8 Edge based Methods

Some of the early DFD algorithms were based on the assumption that
the underlying focused image is a sharp step edge. Pentland [90] modeled a
blurred step edge as a result of convolving a focused image with a Gaussian
PSF. He showed that if C(z,y) is the Laplacian of the observed image, then

the spread o of the Gaussian is related to C(z,y) by

b x? C(z,y)

where b is the magnitude (or height) of the step edge and z,y the image

coordinate system with its origin on the edge and x - axis perpendicular to
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the edge. In the above equation b and o are the only unknowns. He solved
for these unknowns by formulating the above equation as a linear regression
in 22. The depth was then computed from ¢. Pentland applied his method to
an image of a natural scene and showed that depth of edges could be classified
as being small, medium or large.

Grossman [48] showed experimentally that useful depth information can
be obtained from blurred edges. In addition to step edges, he considered edges
of finite width, such as ramp edges. Grossman however provided no theoretical
justification for his method.

Subbarao and Gurumoorthy [107] presented a new approach for finding
the distance of step edges. In their approach, the image f(z,y) of a step edge
is expressed as

flz,y) = a+bu(z) (3.12)

where u(z) is a unit step function. The blurred image g(z, y) of the step edge

f(z,y) is expressed as

9(z,y) = h(z,y) * f(z,y) (3.13)

The line spread function (LSF) of the system is then shown to be
Og
(z) = —92 (3.14)

% g
e awd:v

The spread parameter o; of the LSF is defined as
o = / (z — 7)%0(z)dz (3.15)
where T is the center of mass of the distribution defined by

T = /oo zf(z)dx (3.16)

—0o0
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Subbarao and Gurumoorthy showed that the spread parameter o; is related

to the distance of the object u by
op=mu ' +ec (3.17)

The computational method of this approach is much simpler than that of
Pentland. Also, the solution for the edge height b and the spread o; are given
in closed form. More importantly, the method just assumes that the PSF
is circularly symmetric and is not restricted to the Gaussian or cylindrical
models. Subbarao [109] later extended his algorithm to include simple objects

such as blobs, stripes and smooth edges (in contrast to sharp step edges).

Lai, Fu and Chang [75] generalized the edge based method of Pentland
[90] to include edges with any arbitrary orientation. It is an optimization
method and is claimed to be less sensitive to noise as it does not involve any

differentiation.

3.9 Algorithms for Arbitrary Scenes

The methods discussed in the previous section are all edge based methods.
They are based on the assumption that the scene consists of sharp step edges.
A natural scene, on the other hand, consists of many arbitrary intensity pat-
terns. Recently a few researchers have attempted to develop DFD algorithms,

which work for arbitrary scenes.

Pentland [92, 93] proposed an algorithm where he used two images of the

same scene, one obtained with a pin-hole camera and the other with a wide
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aperture camera. The image obtained with a pin-hole camera is focused ev-
erywhere, while the other image is blurred by different amounts in different
regions, depending on the distance of the corresponding points from the cam-
era. Pentland was able to compare corresponding points in the two images
and measure the change in focus, which is related to depth.

He considered the first image f;(r, 6) as a result of convolving the focused

image fo(r,6) with a Gaussian G(r,07). Thus

fi(r,0) = fo(r,8) x G(r,01) (3.18)
Similarly, a second blurred image could be expressed as

fa(r,0) = fo(r,8) x G(r,02) (3.19)

Taking the Fourier Transforms and natural logarithm, it was shown that
o5 20, 2( 2 2
In 0—% + p*27° (05 — 0{) = In Fi(p) — In F3(p) (3.20)

where Fi(p,0) and Fy(p,8) are Fourier Transforms of fi(r,6) and fy(r, ) re-

spectively and

Fi(p) = /7; Fi(p, 0)do (3.21)

and

Fy(p) = / 7; Fy(p, 6)do. (3.22)

Since the first image is obtained with a pin-hole camera (o, = € for some value

€), the above equation becomes

kios + ko Inog + k3 = In Fi(p) — In Fy(p) (3.23)
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Thus the difference in Fourier power is a monotonic increasing function of the
blur in the second image.

In Pentland’s implementation the image was first filtered with a bandpass
filter. Parseval’s theorem was then used to obtain the Fourier power in a
narrowband by computing the energy in the spatial domain. In experiments
over a l-cubic meter work space, he reported a standard error of 2.5 percent.

The main disadvantage of Pentland’s algorithm is that it assumes that the
focused image is known. In his experiments the focused image was obtained
with a pin-hole camera. A pin-hole camera has a very long exposure time, and
the scene has to remain stationary during the entire period. Also the PSF of a
pin-hole camera will be dominated by diffraction effects which have to be taken
into account. An image detector such as a CCD array, is more susceptible to
noise, at the low intensity levels at which a pin-hole camera operates.

Subbarao and Wei [114, 115] proposed a Fourier domain approach, called
DFDI1F, for determining depth using defocus information. Their method re-
quires two images taken with two different sets of camera parameters. If
g1(z,y) is the first blurred image, then the corresponding Fourier Transform

G1(w,v) can be expressed as
Gi(w,v) = F(w,v)H(w,v) (3.24)

where F'(w,v) is the Fourier Transform of the focused image and H;(w,v) is
the Fourier Transform of the PSF corresponding to the first set of camera

parameters. For a second blurred image, a similar relation is obtained,

Ga(w,v) = F(w,v)Hs(w,v) (3.25)
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To illustrate the idea of DFD1F let the PSF be a 2-D Gaussian,
H(w,v) = e 77 @ +7) (3.26)

Dividing equations (3.24) and (3.25) and simplifying using equation (3.26),

2 |G (w, v)|

2 _o02=— 1 i 3.27
1T %2 w? + 1?2 . |G (w, v)| (3-27)

o1 and o5 are related to the camera constants « and 5 as
01 = oy + ,62 (328)

The final equation for o, is of the form
2 |G (w, v)|

2 _1)o2+42 2= 1 ’ 3.29
(CV )O2+ a/B0-2+/6 w2 + 12 n |G2(w,1/)| ( )

In the above quadratic equation o5 is the only unknown. In general, two solu-
tions for o, will be obtained and methods for resolving the two-fold ambiguity
are discussed in [115]. The distance u is directly obtained from oy. Repeating
the above procedure in all image neighborhoods a rough depth map of the

scene could be obtained.

Subbarao and Wei implemented their method on an actual camera system
and reported an RMS error of 3.5 percent in lens position, over a large number
of experiments. The advantages of DFD1F are that it requires only two images,
both of which can be arbitrarily blurred. Also, DFDI1F is not restricted to any
particular form of the PSF. The only drawback of DFDIF is that it requires

a relatively large window size of about 128 x 128 pixels for computation.
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3.9.1 Matrix Based Regularization

Ens [35, 36] proposed a matrix based regularization method for estimating
depth using defocus information. He enumerated many problems with the
inverse filtering approach used by other algorithms and proposed a new method
based on regularization theory.

In his method two images i1(x,y) and is(z,y) are acquired with two dif-
ferent defocus operators (PSFs). If hy(z,y) and ha(z,y) are the corresponding
PSFs, then

i(z,y) = s(z,y) * hi(z,y) + m(z,y) (3.30)

and

ia(2,y) = s(z,y) * ha(z,y) + na(z,y) (3.31)

where n(z,y) and na(z,y) are noise in the image acquisition process. The

goal of the algorithm is to find a new PSF hs(z,y) such that

iz, y) * hs(z,y) = ia2(z,y) (3.32)

It was shown that for geometric optics hz(z,y) is a unique indicator of depth.
However in the general case, uniqueness of h3(x,y) could not be proved. Ens
argued that hs(z,y) must belong to a family of patterns, which can be known

a priori. The problem was formulated as minimization of the functional
| [i17] -hs — 32| + A|| [C] -hs]|? = minimum (3.33)

where  [i17] is a Toeplitz matrix formed from i, (z,y)

A is a scalar parameter
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and  [C] is a matrix which minimizes the magnitude of the second term
if hs belongs to the expected family of patterns.

The Euler equation for hs was solved as

-1

hs = ([ixr]” [inr] + M[CIT[C]) [iar] " 2 (3.34)
Solving equation (3.34) was found to be extremely computation intensive.
Additionally, finding [C] is difficult for anything other than simple parametric

families. Hence an iterative method was proposed, which iteratively minimizes

2_: 2_: [11 (z,y) [x] hs(z,y) — ia(z, y)]2 = minimum (3.35)

A table of h3(z,y) values corresponding to different distances of the object
was obtained by calibration. The table was searched for the best value of
hs(z,y) that minimizes equation (3.35). In Ens’ experiments object distance
was varied from 0.80 to 0.95 meters and an RMS error of 2.8 percent in terms
of the expected range was reported.

The important disadvantages of this method are that it is computationally
too expensive and it requires calibration by experimental determination of PSF

for different distances.

3.9.2 Differential Methods

Subbarao [105] proposed some depth estimation algorithms for arbitrary
objects by considering the effect of differential changes in camera parameters
on the amount of blur in an image. The camera parameters could be position of

the image detector plane, camera aperture diameter or focal length. In all the

42



43

cases, the algorithms involved the computation of the change in power spectral
density across two blurred images. The implementation of these algorithms
is not feasible as a differential change in camera parameters produces only a

differential change in blur, which is difficult to measure.



Chapter 4

Depth-from-Defocus: A Spatial Domain

Approach

4.1 Introduction

In this chapter we provide the theoretical basis and implementation details
of a new method for determining distance based on image defocus. The method
is based on a new Spatial Domain Convolution/ Deconvolution Transform or
S-Transform, introduced recently [113]. This method is called the S-Transform
Method or STM. STM requires only two images taken with different camera
parameters such as lens position, focal length and aperture diameter. Both
images can be arbitrarily blurred and neither of them needs to be a focused
image. STM therefore, is very fast in comparison with the Depth-from-Focus
(DFF) methods, which search for the lens position or focal length of best
focus. Also, STM involves only simple local operations and can easily be
implemented in parallel to obtain the depth-map of a scene. It has been

implemented on an actual camera system named SPARCS. Experiments on
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the performance of STM and their results on real-world objects are described
in this chapter. The results indicate that the accuracy of STM compares well
with DFF methods and is useful in practical applications. The utility of the

method is demonstrated for rapid autofocusing of electronic cameras.

4.2 S Transform

A new Spatial-Domain Convolution/ Deconvolution Transform (S Trans-
form) has been developed for images and n-dimensional signals [113] for the
case of arbitrary order polynomials. The transform has been defined for both
continuous signals and discrete signals. Here we summarize briefly only those

results relevant to STM. Details may be found in [113].

4.2.1 Forward S-Transform

Let f(z,y) be an image which is a two variable cubic polynomial defined

by
3 3—-m
= Z Z A" Y" (4.1)
m=0 n=0

where a,, are the polynomial coefficients. (This restriction on the form of
f will be relaxed later.) Let h(z,y) be a rotationally symmetric point spread

function. The moments of the point spread function are defined by

/ / ™y"h(z,y) dedy (4.2)



Now consider the convolution of the image f(z,y) and the point spread func-

tion h(z,y)
o) = [ [~ sla—cy—mh(c,n) dcdn (43)

Since f is a cubic polynomial, it can be expressed in a Taylor series as

fa=Cy-m) = > (_C)mﬂf’”’"(m,y) (4.4)

|
0<m+n<3 T n:
om o

where f™™z,y) = A A (z,v)
ox™ Oy

(4.5)
Using equation (4.4) in equation (4.3) we obtain

g(rﬂ,y):/_o;/_oo > ﬂf’”’"(m,y)émn"h(é,n)dwn (4.6)

In!
0 0<m+n<3 m.n.

Interchanging the order of summation and integration,

—_1ym+n oo 00
g(z,y) = %J‘m’"(fv,y)/_ / ¢"™n"™h(¢,m) d¢dn (4.7)
0<mn<3 T oo J—00
(_1)m+n m,n
= 0<7§n<3 Wf (2, Y) hann (4.8)

Equation (4.8) expresses the convolution of a function f(z,y) with another
function h(z,y), as a summation involving the derivatives of f(z,y) and mo-
ments of h(z,y). This corresponds to the forward S-Transform.

To illustrate in more detail, the effect of blur on a cubic polynomial,

equation (4.1) can be expanded and written as

flz,y) = aoo+aior+ a0y + Cl2,01152 + a1y

+a0,2y2 + a3,0$3 + a2,1x2y + a1,2:vy2 + a0,3y3 (4.9)

There are 10 terms in the above equation. When f(z,y) is blurred with a

circularly symmetric PSF h(z,y), then all the odd moments of A(x,y) vanish.
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Therefore,
hop = hip=hi1 =hoz =hso=ho1 =hio=0and hyy = hyp. (4.10)

Using this in equation (4.8) and writing out all the terms in the summation

we get,
g(IE, y) = f(IE, y)h0,0 + f2’0($, y)h2,0 + f0’2(IE, y)h0,2 (411)

Differentiating equation (4.9) twice with respect to z, we get
2 (z,y) = 2a29 + 6a3 9z + 2a5,y and (4.12)

% (z,y) = 2ap2 + 6ag 3y + 2a; 27 (4.13)

Using these results in equation (4.11), g(x,y) can be expressed as

g(z,y) = (aop +2a20 +2ap2) + (@10 + 6asphep + 2a1 2ho0)T
+ (ao1 + 6ag 3hag + 2a21ho0)y + a202” + a1,y + ag2y”

+a3,0:v3 + a2,1x2y + a1,2:vy2 + a0,3y3 (4.14)

It can be seen that the quadratic and higher order terms are unaffected by the
process of blurring and only the constant and linear terms are affected. But
the constant and linear terms are affected by the higher order terms. If an
image region does not have too much variation in intensity, then the higher
order terms will be relatively very small in magnitude and hence the process
of blurring will not affect such an image region. As we will see later, we
cannot determine the distances of such objects which are smoothly varying in

intensity.
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4.2.2 Inverse S-Transform

To derive a deconvolution formula, a similar approach is followed. From
the definition of a point spread function, the volume enclosed by it is unity.
Therefore,

h0,0 == 1 (415)

Using this result and equation (4.10) in equation (4.8) we find that most of

the terms vanish and hence

o(2,9) = F(z,0) + 22 {19(a,) + 1%(z,1)) (4.16)

From equation (4.16) it is possible to express f(z,y) as

Fla.) = 9(z,u) = 20 {1 (a,0) + 1 (a,1)) (4.17)

Applying % to the above expression on either side and noting that deriva-

tives of order higher than 3 are zero (because f is cubic), we obtain
2z, y) = ¢*°(z,y) (4.18)
Similarly applying 83—; we get
¥ (z,y) = "*(z,y) (4.19)

Therefore using equations (4.18) and (4.19) in equation (4.17) we obtain

Flay) = o(e,9) ~ "2 72 gla,) (4.20)

where /2 is the Laplacian operator. Equation (4.20) is a deconvolution for-

mula. It expresses the original function f(z,y) in terms of the convolved
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function g(z,y), its derivatives and the moments of the point spread function.

In the general case this corresponds to the Inverse S-Transform [113].

Using the definitions of the moments of A and the definition of the spread

parameter oy, of h, it can easily be shown that

T
hao = hos = 5 (4.21)

The above deconvolution formula can then be written as

o,

f(@,y) = g(z,y) — v g(z,y) (4.22)

Equation (4.22) is a very useful deconvolution formula and in the next sec-
tion we describe the application of this formula to the problem of distance

estimation from blurred images.

4.3 Determining Distance

In this section we develop a theoretical basis for determining distance.
Let f(z,y) be the focused image of a planar object at distance u. The focused
image f(z,y) at a point (z,y) of a scene is defined as the total light energy
incident on the camera aperture (entrance pupil) during one exposure period

from the object point along the direction corresponding to (z,y) [112].

Let ¢1(z,y) and go(z,y) be two images of the object recorded for two

different camera parameter settings €; and e, where

€ = (817f17-D1) and € = (827f27-D2)- (423)
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Let us assume that the images ¢g; and g, are normalized with respect to mag-

nification, brightness, and other factors such as sensor response and vignetting

as necessary [110].

For a planar object perpendicular to the optical axis, the blur circle radius

R’ is a constant over the image of the object. In this case the camera acts as

a linear shift invariant system. Therefore g; will be equal to the convolution

of the focused image f(z,y) with the corresponding point spread function

hi(z,y). In brief this can be expressed by

91(z,y) = hi(z,y) * f(z,y) and

92(2,y) = ho(z,y) * f(z,9)

Let the spread parameter o, for h; be o1 and for hy be o5.

Now from equation (2.25) we can write
o1 = mlu_1 +c

where

D, s Dy s [ 1 1 ]

T2 A s

Similarly we obtain

where

Therefore,

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)



o1 can then be expressed in terms of o as

o1 = aoy + B. (4.31)
where
o= m and,@zcl—@@. (4.32)
mo mo

We assume that in a small image neighborhood the focused image f(z,y)
can be adequately approximated by a cubic polynomial in (z,y) as in equa-
tion (4.1). This assumption will be relaxed in the next section. In our appli-
cation, the image neighborhood is of size 9 x 9 pixels. Now we can apply the
results from the previous section, particularly the deconvolution expression

(4.22) and obtain the following relations:

1 2

f=0- 1 ot Vo (4.33)
1 2 2
f=9-710 Vg (4.34)

In the above two relations, the dependence of all functions on (z,y) is under-
stood but has been dropped from notation only for convenience. These two
relations express the focused image f in terms of the blurred (observed) images
g1, 92, and the spread parameters o, and o3. Equating the right hand sides of
equations (4.33) and (4.34) we obtain

1 1
9= 02 Pgi=¢o— 103 v’ g2 - (4.35)

It can be easily verified for a third degree polynomial f that

Vi = Vg (4.36)
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Therefore, in equation (4.35) y72g; and 7%g, can be replaced by

2 _ (Vg1 + V)

Vg 5 (4.37)
Further, using relations (4.31) and (4.35) we obtain
aoy +boy +¢c =0 (4.38)
where
Lo o 2
a = Z(a -1)viyg (4.39)
1
b = 504,6 v’g (4.40)
1
c = (92 - gl) + Z ,62 v2 g (441)

The values of o and § are determined using the camera parameter values
in relations (4.27), (4.29) and (4.32). The Laplacians yv2g; and g, are
computed from the two observed images ¢g; and go. Therefore, the coefficients
a, b and ¢ can be computed from a knowledge of the camera parameters and the
observed images using relations (4.39), (4.40) and (4.41). Having computed
the coefficients a, b and ¢, we can solve for o3 by solving the quadratic equation
(4.38). The distance u of the object is then obtained from equation (4.28).
The fact that the quadratic equation results in two solutions for o, does pose
a problem. The easiest way to overcome this two-fold ambiguity is to reduce
the equation to a linear equation by forcing the coefficient a to be zero. This
approach is followed in one version of our implementation. As an alternative,
one may record a third image g5 and solve for o, again using g5 in place of g;.
The common root for g5 in the two cases gives the correct root. However, the

ambiguity persists if the two roots for the second pair of images are the same
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as that for the first pair of images. (This condition arises very rarely). This is
the basic principle of STM.

We now describe the modifications necessary to make STM applicable in
practice. Due to noise, the two focused images derived from the two blurred
images may not be the same and equation (4.35) may not be valid. Another
reason why equation (4.35) may not hold exactly is due to the influence of the
neighboring windows on the current window being processed. This problem is
known as the image overlap problem. In order to minimize these effects and
make the method robust in the presence of noise, the following modifications

are made. From equations (4.35) and (4.37) we get

1
g1 — go = 1 (02 —02) Vig (4.42)

Squaring first and then integrating over a small region around the point (z, y)

we get
1
//(91 — g2)? dxdy = E(af —03)? //(v2g)2 dzdy (4.43)
which can be expressed as

(07 —03)’ =G* (4.44)

where

— go)%dzdy

@ =1 T (v dedy (4-45)

Thus,
(07 —03) =G (4.46)

where G' = +G.
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The sign of G’ is ambiguous, but this ambiguity is not inherent. It was
introduced by the squaring of equation (4.42). The ambiguity can be resolved
from the given images ¢, and g in one of several ways. As one example, if g; is
more blurred than g, then 62 > o2 and therefore the sign is positive, otherwise
the sign is negative. It is easy to determine which of g; and g5 is more blurred.
From the theory of Depth-from-Focus methods [119] it is well-known that the
gray-level variance of an image is a good measure of the degree of focus of the
image. Therefore, if v; , vo are the gray-level variances of ¢;, g2 respectively,
then the sign is positive if v; < vy and negative otherwise. Therefore

(

+G if vy < va
G' =4

—G  otherwise

Now substituting for o; in terms of oy using equation (4.31) into equa-

tion (4.46) yields

oa(c® — 1)+ 2080, + B2 =G' (4.47)

The above equation can be solved as a quadratic in o,.

In our experiments, two variations of STM, named STM1 and STM2,
were implemented. In STM1 the lens position was changed in acquiring the
two images g; and go. This resulted in changing the parameters s and f of
the camera but the aperture diameter remained the same (i.e. f; # fo and
81 # s but D; = Dy). In this case we get @ = 1.0 and therefore the above

quadratic equation in o9 reduces to a linear equation. Therefore we get the
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unique solution:

GI _ ,62
26

(4.48)

O9 =

In STM2, only the diameter of camera aperture was changed in acquiring
the two images g; and g,. All other camera parameters remained constant
(i.e. s1 = sp and fi = fo but Dy # Dy). In this case we get f = 0.0 and

«a = D;/D,. Therefore the quadratic equation in oy reduces to

(4.49)

In this case we get two solutions for o5. One way to obtain a unique solution
is to set s = fo. In this case the sign of the right hand side above is negative.

This is the approach used in our implementation.

Ideally it should be possible to compute the value of oo at one pixel
(z,y) in the image and obtain an estimate of the distance. But because of
noise and digitization, it is necessary to combine information from many pixels
in an image region. In our implementation several alternatives were tried.
Finally the following scheme worked well: g, was computed at each pixel in
a neighborhood of size 48 x 48 and a histogram of the values was obtained.
The histogram was smoothed by a Parzen window [32] and the mode of the
resulting distribution was taken to be the best estimate of g5. Once oy is
determined the object distance v can be obtained using a look-up table or

calculated from equation (4.28).
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4.4 Smoothed Differentiation Filters

In the previous section we assumed a local cubic polynomial model for
the focused image f(z,y) in deriving STM. This assumption can be removed
by using a set of smoothing filters proposed by Meer and Weiss [85] so that
STM can be applied to arbitrary focused images. Meer and Weiss [85] have
proposed a set of discrete filters for smoothing images and estimating their
derivatives. These filters essentially provide an efficient way for fitting poly-
nomials to image brightness in small neighborhoods through simple separable
convolution operation. The polynomial fitting is implicit and it is done subject
to least-square error minimization. In our implementation we used one version
of the filters where all data points have equal weight. The filters are based on
Chebyshev polynomials as described in Appendix A in [85].

The filter for image smoothing by fitting a quadratic or cubic polynomial
is

3[5n% — (3N? + 3N — 1)]
(2N —1)(2N +1)(2N + 3)

where the support of the filter isn = - N, —(N-1),---,-1,0,1,---,N—1, N.

Lo(n) = — (4.50)

This filter is separable and therefore can be first applied along rows and then
along columns. The effective smoothing convolution kernel in this case is
L = Ly * LT where L] is the transpose of Ly. The filter for estimating the

second order image derivatives is

30[3n2 — N(N +1)]

Ly(n) = _N(N-l— 1)(2N —1)(2N +1)(2N + 3)

(4.51)

In the implementation of STM, the result of applying the above filter along

rows and columns were summed to get an estimate of the Laplacian of the
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Fxy)

Figure 4-1: Least square filters

image. In our implementation N was chosen to be 4 so that the window size

becomes 9 x 9 pixels.

Let the underlying focused image of an object be f'(x,y) which is not a
cubic polynomial, and let the two blurred images of f' corresponding to two
point spread functions h; and hy be ¢} and ¢} respectively (Figure 4.1). Then
we have g] = hy x f and g = hax f’. Now consider the effect of smoothing the
blurred images g} and g} using a filter such as L = Ly x LY which fits a cubic
polynomial. If g; and g, are the smoothed images corresponding to ¢} and ¢}
respectively, then we have g; = L (hy * f') and go = L * (ha % f') (Figure 4.1,
(a) and (b)). Using commutative and associative properties of the convolution
operation, we can write g; = hy * (L * f') and go = hg * (L % f'). Therefore,

the smoothed images g; and g can be thought of as the blurred images of
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the focused image f where f = L * f' (Figure 4.1, (c) and (d)). However, f
is the result of fitting a cubic polynomial to the underlying focused image f'.
Therefore g; and g are the blurred images of a hypothetical focused image f
which can be modeled by a cubic polynomial. For this reason, STM can be

applied to ¢, and g, to estimate o,.

4.5 Implementation

4.5.1 SPARCS

STM described above was implemented on a camera system named Stony-
brook Passive Autofocusing and Ranging Camera System (SPARCS). SPARCS
was built over the last three years in our laboratory. A block diagram of the
system is shown in Figure 4.2 (a). SPARCS consists of a SONY XC-77 CCD
camera and an Olympus 35-70 mm motorized lens. Images from the camera
are captured by a frame grabber board (Quickcapture DT2953 of Data Trans-
lation). The frame grabber board resides in an IBM PS/2 (model 70) personal
computer. The captured images are processed in the PS/2 computer. The
experimental setup is also shown in Figure 4.2 (b) and (c).

The lens system consists of multiple lenses and focusing is done by moving
the front lens forward and backward. The lens can be moved either manually
or under computer control. To facilitate computer control of the lens move-
ment there is a stepper motor with 97 steps, numbered 0 to 96. Step number
0 corresponds to focusing an object at distance infinity and step number 96

corresponds to focusing a nearby object, at a distance of about 55cm from



SUN
SPARC
Station 1+

Contec mP1024/24
Digital I/O Board

Quick Capture
DT2953-60Hz
Frame Grabber

Board

Motor-
cable Il Computer cable |
Interface
N R
c SONY
B PVM-1342Q
Color
EXT ] Olympus
SYNC [Monitor 35-70mm
Motorized
Lens
PS-12SU
Power
Supply

IBM PS/2 model 70
Computer

SONY XC-77 CCD
Camera Module

Stonybrook Passive Autofocusing and Ranging Camera System-
SPARCS - is a prototype camera system developed at the
Computer Vision Laboratory for experimental research in robotic
vision, State University of New Y ork at Stony Brook.

Figure 4-2: (a) Block diagram of SPARCS
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the lens. The motor is controlled by a microprocessor, which can communi-
cate with the IBM PS/2 through a digital I/O board (Contec mPI024/24).
Pictures taken by the camera can be displayed in real-time on a color moni-
tor (SONY PVM-1342 Q). The images acquired and stored in the IBM PS/2
can be transferred to a SUN workstation. In effect, the system is set up such
that, a C program running on the PS/2 can move the lens to any desired step

number and take pictures and process them.

Table 4.1 shows some important data of the lens used in SPARCS. In
this table, the first column specifies lens position in terms of step number of
the stepper motor. The second column is the focal length f, third column
is the parameter s which specifies the distance between the image detector
and the second principal plane of the lens, and the last column specifies the
distance Dy of an object which will be in best focus when the lens position is
as specified in the first column. This data was obtained by the manufacturer
of the lens by computer simulation and provided to us. This data is for the
case when the zoom setting on the lens is 35 mm focal length. It is clear from
this data that when the lens step number is changed, not only the parameter
s but also the focal length changes by a small amount. Figure 4.3 shows a plot
of the lens step number (the first column) along the z-axis and the reciprocal
of best focused distance 1/Dy along the y-axis. This plot indicates that the
lens step number and the reciprocal of best focused distance have an almost
linear relationship. This is in fact predicted by the lens formula (3.1). Based
on this relationship, we often find it convenient to specify distances of objects

in terms of lens step number rather than in units of length such as meter. For
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Figure 4-3: Lens step Vs best focused distance

example, when the “distance” of an object is specified as step number n, it
means that the object is at such a distance D, that it would be in best focus
when the lens is moved to step number n. The precise relationship between
n and Dy is given in Figure 4.3. In SPARCS, some experiments based on
DFF methods indicated that the data of Table 4.1 should be shifted by 12
lens steps, i.e. a value of 12 should be added to each of the entries in the first
column. We believe that this is due to mechanical assembly error between the
lens and the CCD camera. We have taken this fact into account in reporting

the results of our experiments in the following discussion.

A missing piece of information in Table 4.1 is the dependence of the

diameter of camera aperture on lens position. We believe that the diameter
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also changes by a small percentage when the lens moves from one end to
the other, but this data is not available to us. Therefore we have taken the
diameter to be constant. The diameter was calculated from the F-number and
the zoom focal length.

As mentioned before, two versions of STM were implemented. In the
first version named STM1, only the lens position was changed in obtaining
two images g; and go, but the diameter of the lens aperture was not changed.
Changing the lens position changes the parameters s and f as shown in Table
4.1. In the second version of STM named STM2, only the diameter of the lens
aperture was changed but the other camera parameters s, f were unchanged
in obtaining the two images. First we present the results for STM1 and then

for STM2.

4.5.2 STM1

The overall operation of SPARCS for finding distance and autofocusing of
an object is summarized as a flow chart in Figure 4.4. The stepwise operation
is also explained briefly with comments below. In the experiments, initially,
the zoom setting of the lens was set to be 35 mm focal length and the F-number
was set to be 4. The camera gain was set to +6db.

The lens is first moved to step 10 and a first image ¢;(z,y) is obtained.
Optionally we can specify the number of image frames (typically 4) to be
recorded which are then averaged to reduce noise. Such frame averaging is
particularly needed under low illuminations, and in the presence of flickering

illumination such as fluorescent lamps. This was clearly evident from a number
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Figure 4-4: Flow chart of STM
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of tests on SPARCS.

The lens is then moved to step 40 and a second image go(z, y) is recorded.
Again several frames may be recorded and averaged. The object to be ranged/
focused can be selected by specifying a region in the image. The default region
is the center of the image. The size of the region is also an option and the
default size is 72 x 72. The two images are then normalized with respect to
brightness. This is done by dividing the grey level of each pixel by the mean
grey level of the entire image. Our implementation does not normalize the
images with respect to other types of distortions such as vignetting and sensor
response characteristics, as their effects are not significant for our camera. As
mentioned earlier we have also ignored the magnification normalization, as
the change in magnification due to change in lens position was found to be

negligible (about 2%).

The images are then smoothed using the least-squares polynomial fit filters
proposed by Meer and Weiss [85]. The filter coefficients are derived from
equation (4.50) and the filter size is 9 x 9. The Laplacian of the two smoothed
images are then obtained using the differentiation filters of Meer and Weiss

[85] given by equation (4.51).

The sign of G’ is found by computing the gray-level variances of the orig-
inal (unsmoothed) images g; and g,. G? is calculated at every pixel by inte-
grating over a 9 X 9 window centered at the pixel. G’ is then calculated at
every pixel. The value of the camera constants o and § are calculated from
a knowledge of the camera parameters (see Table 4.1). An estimate of o5 is

then obtained at every pixel using equation (4.48). Due to border effects of
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smoothing filter and integration, the estimates of oy is limited to the interior
48 x 48 region of the original 72 x 72 images. A histogram of the estimated
oy is computed. The bin size of the histogram was 0.1 (the expected range
of oy was from about -10.0 to +10.0). The histogram was smoothed using a
Parzen Window of size 5. The mode of the histogram was taken to be the best
estimate of g5. This value is used to estimate the distance of the object. In
autofocusing application, from o5, the lens step number which will bring the
object to focus is determined. The lens is then moved to this step number to

accomplish autofocusing.

Once the value of o9 is estimated, equation (4.28) can be used to determine
the distance of the object. However, in our implementation, for obtaining the
object distance or lens step number for focusing from the computed value
of 0,2, a look-up table is used. The look-up table itself is obtained through
calibration and this method was found to be more accurate than the direct
method of using equation (4.28). The calibration procedure used by us is as
follows. First an object is placed at a known distance and then o5 is obtained
exactly as described above. This procedure is repeated for several different
objects at the same distance and the average o5 and the distance are recorded.
This gives one entry of the look-up table. All other entries are obtained by
repeating the above procedure for all possible distances of the objects. As
for autofocusing, the relation between object distance and the best focused
lens position was obtained by using a DFF algorithm which is based on the
maximization of the energy of smoothed image gradient magnitude [119]. For

every possible distance, the best focused lens step number was determined for
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Focused 10 40 70

Figure 4-5: Focused and blurred images with object at step 10

several different objects and the mean was recorded in the look-up table.

In our experiments, it was found that if the object is very close to the
camera, then the image ¢; is very highly blurred. In this case the results
of ranging were unreliable. In such a case, a third image gs was taken after
moving the lens to step number 70 and the image pair g and g3 were used
in the estimation of distance. The use of this third image is due to practical
reasons. Theoretically, only two images are necessary and sufficient. In our
implementation, whenever the use of the first two images g1, g (taken at steps
10 , 40 respectively) resulted in an object distance greater than step 45, the
third image g3 was taken (at step 70). Some of the blurred images taken
with lens steps 10, 40 and 70 along with the focused image are illustrated in
Figures 4.5 and 4.6. It can be seen from the figures that one of the images
can be highly blurred depending on the distance of the object, suggesting the
need for a third image occasionally. The results of calibration are shown in
Table 4.2. The calibration plots are shown in Figure 4.7. The first plot labeled
“sigma2 (10 - 40)” was obtained with lens step positions of 10 and 40 and the

second plot labeled “sigma2 (40 - 70)” was obtained with lens step positions
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Focused 10 40 70
Figure 4-6: Focused and blurred images with object at step 60

of 40 and 70. It can be observed that for step numbers greater than 70, there

are no proper values for sigma in the first plot.

Two typical histograms of g5 are shown in Figures 4.8 and 4.9. In these
figures, the histogram obtained with first pair of images (g1, g2) is indicated by
the plot “lens steps 10 - 40” and the histogram obtained with the second pair
of images (g2, g3) is indicated by the plot “lens steps 40 - 70”. In Figure 4.8,
the object is closer to step 10 and hence the plot has a sharper peak for the
first pair. In Figure 4.9, the object is closer to step 70 and hence the second
pair of images yields a sharper histogram. In general as the object moves
farther away from either of the two positions where the images are taken, the
histogram becomes more and more flat. The Q-factor (ratio of peak value to
width at half the peak value) of the histogram may be used as a goodness

measure of the results.

Experiments were performed on five objects at normal room illumination
(about 200 to 300 lux), five objects at 200 lux illumination, and 10 objects
at 400 lux illumination. For each object the distance was varied from step 5

(step 10 in some cases) to step 95. All these images have been saved in an
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Figure 4-10: Test images in the database
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image database named SPARCS.DB1. Some of the objects in the database
are shown in Figure 4.10. The total number of experiments is 355. The results
are tabulated in Tables 4.3, 4.4 and 4.5 along with the mean and standard
deviations. The mean results are also plotted in Figures 4.11 - 4.13. The
actual distance of the object measured in step numbers is along the z axis,
and the estimated distance (in step number) is along the y axis. Under ideal
conditions, the plots would have been diagonals running from bottom-left to
top-right, which is indicated on the plots by the “ideal” curve. Some of the
objects were very difficult ones such as thin lines and edges. The Root Mean
Square (RMS) error was calculated for each of the three cases. Out of 97 steps,
the RMS errors were 1.48 steps at room illumination, 2.26 steps error at 200
lux illumination, and 2.28 steps at 400 lux illumination. Since there are 97

steps, this error corresponds to about 2.5 percent error.

4.5.3 Error Analysis

We shall use the accuracy achieved by Depth-from-Focus methods as a
benchmark against which to compare the accuracy of STM. The DFF meth-
ods usually take a large number of images (about 10-12) and search for the
sharpest focus position by maximizing some focus measure. Many different
focus measures have been proposed and the performances of many of them
are nearly the same [119]. Since DFF methods involve exhaustive search for
the focused position, we believe that the accuracy that can be obtained by
any DFD method (which takes just 2-3 images) can at best be equal to a

DFF method. Hence we shall call the results obtained by the DFF method
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Step | FL 51 Do Stepno | 051 | 02,2 Dist. Estimated Distance
0 36.235 | 36.180 | 9034.0 05 -0.1 | -46 Step | Tiger | Face | GS | Line | Offcam | Mean | Std. Dev
5 36.086 | 36.132 | 5300.0 10 1.0 |-35 10 10 0 | 10 9 9 9.6 0.49
10 35.938 | 36.083 | 3750.0 15 1.3 |-27 15 15 14 | 15 | 16 14 14.8 0.75
15 35.72 | 36.035 | 2850.0 20 0.5 |-2.0 20 19 19 | 20 | 22 20 20.0 1.10
20 35.646 | 35.988 | 2500.0 25 -0.8|-1.5 25 24 25 |25 | 29 25 25.6 1.74
25 35.502 | 35.941 | 1930.0 30 -5 | -1.0 30 30 30 | 28 | 33 31 304 1.62
30 35.359 | 35.894 | 1720.0 35 -2.3]-02 35 33 37 | 32| 35 36 34.6 1.85
35 35.217 | 35.848 | 1465.0 40 -3.0| L0 40 39 42 | 37 | 40 40 39.6 1.62
40 35.076 | 35.802 | 1320.0 45 -39109 45 43 47 |42 | 43 44 43.8 1.72
45 34.937 | 35.757 | 1170.0 30 -5.4 | -0.1 50 30 49 | 50 | 50 48 49.4 0.80
30 34.798 | 35.712 | 1080.0 35 -6.6 | -1.2 35 35 54 | 35 | 56 33 54.6 1.02
35 34.661 | 35.667 | 965.0 60 -74]-18 60 60 39 | 60 | 63 39 60.2 1.47
60 34.524 | 35.622 | 900.0 65 -7.8|-258 65 65 63 | 66 | 67 65 653.2 1.33
65 34.389 | 35.578 | 822.0 70 -8.8|-3.1 70 68 68 | 71| 71 69 69.4 1.36
70 34.255 | 35.534 | 770.0 % -9.8 | -43 % 73 4 | 76| 76 74 4.6 1.20
% 34.121 | 35.491 | 715.0 80 -9.8|-54 80 78 79 | 82| 81 80 80.0 1.41
80 33.989 | 35.448 | 670.0 85 -9.8|-7.0 85 83 84 | 86 | 86 85 84.8 117
85 33.859 | 35.406 | 628.0 90 -9.8|-78 90 89 88 | 90 | 94 92 90.6 2.15
90 33.728 | 35.363 | 595.0 95 -9.8|-88
95 33.380 | 35.250 | 560.0
Table 4.1. Lens Data Table 4.2. Table 4.3. Results at room illumination
Distance Vs Sigma
Dist. Estimated Distance Dist. Estimated Distance
Step | Tgr | Face | Tbr | Edge | GS | Mean | Std. Dev Step |c1 |c2 |sb |fa | ft | gl | gs | mk | mn | tg | Mean | Std. Dev
5 5 3 5 8 3 4.8 1.83 10 919 (9|7 |10[11|10| 10| 9 |11| 935 1.12
10 8 9 9 12 11 9.8 147 15 1012 |13 |15 (12|13 |16| 14 | 13 | 13| 13.1 1.22
15 13 15 14 18 15 15.0 1.67 20 12|16 |18 (18|18 |19 (19| 20 | 20 |19 | 179 2.26
20 19 18 20 22 19 19.6 1.36 25 20120 |22 | 24|25 (23|26 24 | 25 |24| 233 1.95
25 24 25 25 25 26 | 25.0 0.63 30 |30 31|31 (31|31 3031|3030 |29 304 0.66
30 29 30 29 29 32 | 298 117 35 | 37|36 |37|35(33 34|35 34 | 33 |35 349 1.37
35 34 34 34 35 35 | 344 0.49 40 |41 |41 (40 |41 |36 |40 |41 | 41 | 37 |40 | 378 1.72
40 40 40 42 38 39 39.8 1.33 45 46 | 45 | 45 | 45 | 44 |45 | 44 | 44 | 46 | 44 | 44.8 0.75
45 45 43 45 48 | 43 | 48 1.83 50 |48 |49 | 48 |50 | 47 |49 |48 | 48 | 50 |49 | 48.6 0.92
30 49 47 35 52 | 49 | 504 2.80 55 | 54 |52 |53 |54|53 53|53 53 | 54 |53 | 53.2 0.60
35 54 35 54 60 54 | 554 2.33 60 |60 |59 |60 (59|59 59|59 58 | 58 |59 | 59.0 0.63
60 58 60 60 61 39 | 59.6 1.02 65 |68 | 65|66 |66|64 62| 66| 65 | 63 |64 649 1.64
65 63 65 68 39 65 | 64.0 2.97 70 | 72|71 70| 71|70 7L |70 | 7L | 70 | 70| 70.6 0.66
70 69 68 2 65 71| 69.0 245 |76 |76 | TT | TS| TA|TH | T4 | T5 | 75 | T | 752 0.87
% 4 % 4 70 | 736 1.85 80 |83 |81|82|82|80 8 85| 8L | 81 |82 8L7 1.42
80 79 80 82 3 80 | 794 1.96 8 |92 88|85 |87 (83|84 86| 83 | 85 |89 86.5 2.73
85 83 87 93 80 85 | 85.6 4.26 90 |95 95|92 |91 |91 |84 85| 93 | 92 | 94| 912 3.63
90 88 95 91 84 89 | 894 3.61 95 |95 95|92 |91 (9492 81| 95| 95 |95 925 4.10

Table 4.4. Results at 200 lux

Table 4.5. Results at 400 lux
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Figure 4-11: Mean results at 200 Lux illumination
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Figure 4-12: Mean results at room illumination
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Figure 4-13: Mean results at 400 Lux illumination

as DFF.BST. A number of experiments were performed with a DFF method
using the same objects used for the STM experiments. These experiments
yielded an RMS error of 1.52 steps out of 97 steps. The RMS error of about
2.25 steps for STM compares well with this, considering the fact that only 2-3
blurred images are used.

The relationship between the reciprocal of the object distance 1/u versus

the lens step number is almost linear (see Figure 4.3) and can be expressed as
l/u=azx+b (4.52)

where z specifies lens position. For our camera, the lens position is specified in
terms of a motor step number where each step corresponds to a displacement
of about 0.03mm. The RMS errors mentioned above are for the lens position

and it gives a good indication of the performance of the method for application
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Figure 4-14: Relative error

in rapid autofocusing of cameras. In order to compute the error in terms of

object distance, we have to consider the error differentials in equation (4.52):

16(1/u)| = aldz]| (4.53)
= |%| = aldz|u (4.54)
= [du| = a|dz|u? (4.55)

From the above relations we see that the relative (percentage) error || in
actual distance u increases linearly with distance, and the absolute error |du|
in actual distance increases quadratically with distance. For our camera, using
a Depth-from-Focus method [119] the constants were found to be a = 0.0172

and b= —0.1143.
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Setting |dz| to be the RMS error of 1.52 steps for DFF and 2.25 steps
for STM1 respectively, a plot of relative error |%“| is shown in Figure 4.14
and a plot of the absolute error is shown in Figure 4.15. In Figure 4.14 we
see that for STM the percentage error in distance at 0.6 meter is about 2.3%
and increases linearly to about 20% at 5 meter distance. This compares well
with the error obtained by the DFF approach of about 1.6% at 0.6 meter and
increasing linearly to about 12.5% at 5 meter distance. Figure 4.15 shows that
for STM, absolute error increases quadratically from 1.3 cms at 0.6 meter to
about 1.0 meter at 5 meters distance. The corresponding numbers for the DFF
method are 1 cm at 0.6 meter and about 0.6 meter at 5 meters distance.

A comparison between the actual radius of blur circle R’ obtained from an
experiment (using equation (2.23)) and that predicted by the geometric optics
model (equation (2.9)) is shown in Figure 4.16. It can be seen that the error

in terms of the radius of blur circle is less than 1 pixel for most distances.

4.5.4 Error in Stereo

Considering a simple stereo configuration, with the optical axes of the two

cameras in parallel, the disparity [ can be expressed as

_b

U

l (4.56)

where b is the distance between the two optical axes (the baseline width), f is
the focal length of the two cameras and u is the object distance. Considering

error differentials as before we get

3l = ——0u (4.57)
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The relative error can then be obtained as

ou ol.u
w =T (4.58)
As in the case of DFF or DFD, the relative error in stereo is linearly increasing
with object distance. A typical value for &l is about 1 pixel (0.013 mm), f is
about 35 mm and b is about 10 times f. Using these values at a distance u of
0.6 meter, in equation (4.58) we obtain a relative error of about 0.064 percent.
The corresponding figure for DFF is about 1.6 percent. Thus, for this typical
configuration stereo is about 25 times more accurate than focus.

This analysis suggests that by combining stereo and focus, the accuracy

of DFF can be improved.

4.5.5 STM2

The procedure for calibration and experiments for STM2 is similar to
STM1. The calibration results are shown in Tables 4.6 and 4.7. The average
sigma values are plotted in Figure 4.17. The experiment is first tried with two
pictures ¢g; and g, taken at lens position fixed at 0 but F-numbers 4 and 8
respectively. Fixing the lens position at step 0 assures that the focused image
is always behind the image detector (because objects at infinity are focused at
step 0 and all other objects come to focus at higher step numbers). Therefore
a unique solution is obtained for g,. If the estimated distance is greater than
step 60, then the object is assumed to be too close to the camera and two
more pictures are taken at step 60. These two are then used in estimating the

distance.
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Experiments on STM2 were conducted on four different objects at room
illumination (about 200 - 300 Lux) and ten different objects at 400 Lux illu-
mination. These objects were the same ones used in STM1 experiments and
all the images are available as a database. For each object the experiment was
repeated by moving the object to different distances from step 10 to step 95
in steps of 5. Thus the total number of experiments is 18 x 14 = 252. The
results are tabulated in Tables 4.8 and 4.9. The mean values of the results and
the standard deviations are also shown in these tables. The mean values of the
results are plotted in Figures 4.18 and 4.19. The overall RMS error is about

2.25 steps out of 97 steps. This accuracy is very similar to that of STM1.

4.5.6 3 - Dimensional Objects

In the previous section, planar objects were used so that a rigorous per-
formance and error analysis could be done. Here we give the results of de-
termining distance of some 3D objects. In figure 4.20, (a) and (b) are two
images of a cone taken with lens positions 40 and 70. The cone is about 1.5
meters long with black and white stripes on it. The axis of the cone is placed
roughly along the optical axis of the camera and the tip is about 0.7 meter
from the camera. The images were divided into overlapping regions of 32 x
32 pixels and STM1 algorithm was used to get one depth estimate at every
4 pixel intervals. The resulting depth- map is shown in Figure 4.20 (c). The

depth-map is roughly in agreement with the ground truth.

Figure 4.21 shows a 3-D object (Teddy Bear), which has a depth variation

of about 10 cm. The result of running STM1 on it is shown in Figure 4.22.
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Sigma with lens step 0

Dist. | Sigma Values

Step | tg | fa | gs | mean
10 |2.2|23|21 2.2
15 [2.5/26 |25 | 2.53
20 |2.8|29|28| 2.83
25 | 333433 3.33
30 |3.8|38)|37| 3.77
35 | 42|42 42 4.2
40 | 4.8|4.7| 4.5 | 4.67
45 |5.149|5.0 5.0
50 |5.5|55|5.2 5.4
55 |5.9|57|54 | 5.67
60 |6.2|6.1|5.7 6.0
65 |6.5|6.4 5.7 6.2
T0 |6.7|6.6| 63| 6.53
75 |7.0|7.0| 62| 6.73
80 |7.3|7.2|86.7 | T.07
85 |7.6|7.1|66 | T.10
90 |8.2|T7.1|64| T.23
95 |8.4|7.9)|6.2 7.5

Table 4.6

Dist. | Sigma Values

Step | tg | fa | gs | mean
10 | 3.6 3.7 |35 3.6
15 [3.3/3.4|3.3| 3.33
20 |3.0(3.1|3.0| 3.03
25 | 262626 2.6
30 |22|22)|22 2.2
35 1.8/1.8 |18 1.8
40 |14 14|14 1.4
45 1113 |10 1.13
50 |1.0|1.0| 0.8 | 0.93
55 1.3|1.5| 1.0 | 1.27
60 | 15|18 1.4 | 1.57
85 1.9(1.8| 19| 1.87
T0 |2.2|22|23| 223
75 | 27|26 |28 2.7
80 |3.3(3.1|32 3.2
85 | 36|35 36| 3.57
90 |4.1|4.0| 4.1 | 4.07
95 |45 44| 44| 4.43

Table 4.7.

Sigma with lens step 60

Actual Dist. | Estimated Dist. (step)

Step | meters | Tgr | Face | GS | Edge | mean | std. dev.
10 3.750 10 11 10 13 11.00 1.22
15 2.850 14 16 14 17 15.25 1.30
20 2.500 19 20 19 21 19.75 0.83
25 1.930 | 24 25 24 24 24.25 0.43
30 1.720 | 30 30 |29 31 30.00 0.71
35 1.465 35 35 35 a7 35.50 0.87
40 1.320 | 41 40 | 38 40 39.75 1.09
45 1.170 | 46 43 | 45 47 45.25 1.48
50 1.080 | 51 51 47 50 49.75 1.64
55 0.965 55 58 | 51 63 56.75 4.38
60 0.900 | 58 63 | 57 65 60.75 3.34
65 0.822 65 63 | 65 70 65.75 2.59
70 0.770 | 69 69 | T0 k3 70.75 2.49
5 0.715 5 73 | T4 80 75.50 2.69
80 0.670 | 81 79 | 80 84 81.00 1.87
85 0.628 | 85 84 | 85 88 85.50 1.50
920 0.595 920 89 | 90 94 90.75 1.92
95 0.560 | 95 94 | 94 96 94.75 0.83

Table 4.8. Results at normal illumination

Actual Dist.

Estimated Distance (step)

Step | meters | cl1 [ c2 | fa | ft | gl | gs | mk | mn | sb | tg | mean | std. dev.
10 3.750 (10 |10 |11 |11 (11|10 | 10 | 10 | 10 | 10 | 10.3 0.46
15 2.850 |17 |11 |15 |17 (15|14 | 14 | 13 | 14 |14 | 14.4 1.68
20 2.500 |17 |17 |20 |20 (20|19 | 19 | 20 | 19 |19 | 19.0 1.09
25 1.930 |23 23|25 (25|25 |25 | 24 | 23 | 25 |24 | 24.2 0.87
30 1.720 |28 |27 |30 |30 |29 |30 | 30 | 28 | 31 |29 | 29.2 1.17
35 1.465 |35 (32|36 |35 |35 (37| 32| 33 |36 |36| 347 1.68
40 1.320 |51 |38 |42 |42 |40 |40 | 38 | 39 | 40 | 39 | 40.9 3.62
45 1.170 | 46 |44 | 46 | 45 |45 | 45 | 43 | 45 | 45 | 44 | 44.8 0.87
50 1.080 |51 |50 |50 |46 |50 | 44 | 49 | 51 | 50 | 50 | 49.1 2.16
55 0.965 | 55 |54 | 55|54 |55 | 55| 55 | 56 | 56 | 54 | 54.9 0.70
60 0.900 |63 |59 |60 |60 62|60 | 60 | 56 | 58 | 59 | 59.7 1.85
85 0.822 |64 |68 | 65|68 63|56 | 63 | 62 | 64 | 62 | 63.5 3.23
T0 0.770 |64 |67 |TO |72 71|64 | 7O | T2 | 67 | TO | 68.7 2.86
75 0.715 |74 |73 |75 |75 (75|72 |73 |74 |73 |75|73.9 1.04
80 0.670 |78 |78 |80 |82 (95|80 | T8 | 80 | 80 | 81 | 81.2 4.78
85 0.628 |83 |82 |85 |85 84 |84 | 84 | 84 | 84 |84 | 83.9 0.83
90 0.595 |89 |88 90|92 |92 92| 88 | 89 | 89 |90 | 89.9 1.51
95 0.560 |95 |95 | 88|95 95 95| 95 | 95 | 95 | 95 | 94.3 2.10
Table 4.9. Results at 400 Lux
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Figure 4-18: STM2 results at normal illumination
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) 190 Results at 400 Lux
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Figure 4-19: STM2 results at 400 Lux illumination

The face of the Teddy Bear was the region chosen for processing. We get an
approximate depth estimate in such cases where the depth discontinuities are

not too large.

In the case of 3-D objects, blurred images cannot be modeled as the result
of convolving the focused image with the PSF of the camera. Therefore the
distance estimated by STM will be in error. The error depends on the shape
and appearance of objects. For objects with small depth variations, STM gives
an estimate of “average” distance of the objects in the image window being

processed.
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Figure 4-20: Results for a cone object
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Figure 4-21: Teddy bear object
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Figure 4-22: Results on teddy bear



4.6 Conclusions

In this chapter we have presented the theory and implementation of a
new DFD method named STM. It has been successfully demonstrated on an
actual camera system built by us. Experimental results indicate that STM is
useful for passive ranging and rapid autofocusing. The ranging accuracy of
STM is high for nearby objects and decreases with increasing distance. The
ranging accuracy of this method can be improved somewhat by using a DFF
method which searches for the best focused position in a small interval near
the distance estimated by STM.

If we want to find the distance of only one object, then one could use
binary or Fibonacci search in a DFF method. The order of complexity is
about the same for both binary and Fibonacci search. However if one wants
to obtain a coarse depth-map of a scene (e.g. the cone object in the previous
section), DFF requires a large uniformly spaced sequence of images whereas
STM needs only two to three images. In the case of search methods there is no
closed form solution for the distance of objects and that is what distinguishes
Depth-from-Focus and Depth-from-Defocus.

The distance of “plain” objects such as white walls which do not ex-
hibit reflectance variation under uniform illumination cannot be determined
by STM. However a random illumination pattern can be projected onto such
objects to make them “textured”. STM can then be used.

The wavelength of light A can be considered as another camera parameter
because focal length changes with wavelength [14]. STM can be implemented

by taking two pictures using two different colors. Color filters may be placed
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in front of the lens for the purpose.

Most existing camera systems (including our camera) are designed to
maximize the depth-of-field since the goal is to obtain a “good” image of the
scene for viewing by humans. However this minimizes the accuracy when
ranging is concerned, since maximizing depth of field reduces the difference
in blur between objects at different distances. Therefore, STM can be made
much more accurate by designing cameras with small depth of field for the

purpose of ranging.
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Chapter 5

Continuous Focusing of Moving Objects

5.1 Introduction

In the previous chapter we described a Depth-from-Defocus algorithm,
known as the S-Transform Method or STM, for determining distances of ob-
jects. STM is a spatial domain method and uses only two images taken with
different camera parameters to estimate the distance of an object. Two varia-
tions of STM were described, one where the lens position and focal length are

changed and another where the diameter of camera aperture is changed.

In this chapter, we address the problem of continuously focusing the cam-
era on a moving object by changing the lens position. Such a situation may
arise in an autofocusing video camera and in robotic vision, where the objects
in the scene may be slowly moving. Wei and Subbarao [125] have recently
proposed a Fourier domain approach for focusing on moving objects. They re-
ported a focusing accuracy of about 4.3%. Here, we describe a spatial domain

method based on STM. The method is named Continuous STM or CSTM.
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The focusing accuracy of CSTM is about 2.3 - 3%. Using CSTM it is also
possible to obtain denser depth-maps of the scene, than what can be obtained
by using Fourier domain methods, such as [125].

Two variations of CSTM - CSTM1 and CSTM2 - are described. CSTM1
is a straightforward extension of the STM described in Chapter 4. It involves
calibration of the camera for a number (about 6 in our implementation) of
discrete lens positions. In CSTM2 the camera is calibrated just once corre-
sponding to one lens position. The calibration data corresponding to other
positions are obtained by transforming the data of the one lens position for
which the camera is calibrated. Experiments show that the difference in per-
formance between CSTM1 and CSTM2 is marginal. We describe experiments
on the SPARCS system and also propose a fast and inexpensive camera system

for implementing CSTM.

5.2 Distance of Moving Objects (CSTM)

Let ¢1(z,y) and go(z,y) be two images of the object recorded for two

different camera parameter settings €; and e; where

€ = (817f17-D1) and € = (827f27-D2)- (51)

The images ¢, and g, are normalized with respect to magnification, brightness,
and other factors such as sensor response and vignetting as necessary [110].
In the previous chapter, we have seen that the spread parameter o; of the

PSF of the image go(z,y) can be found from

oa(c® — 1) + 2080, + B2 = G (5.2)
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J f(gl - g2)2d:vdy
J [(V29)? dzdy

The above equation can be solved as a quadratic in o,.

where G = 16

(5.3)

In our experiments, D; = Dy and therefore o = 1.0. In this case the
above quadratic equation in oy reduces to a linear equation. Therefore we get

the unique solution:
GI _ ,62
2

Ideally it should be possible to compute the value of o at one pixel (z,y)

(5.4)

O9 =

in the image and obtain an estimate of the distance. But because of noise
and digitization, it is necessary to combine information from many pixels in
an image region. o, is computed at each pixel in a neighborhood of size about
48 x 48 pixels and a histogram of the values is obtained. The histogram is
smoothed by a Parzen window and the mode of the resulting distribution is
taken to be the best estimate of 5. Once o9 is determined the object distance u
can be obtained using a look-up table or calculated from equation (4.28). The
distance u can then be substituted into the lens formula to obtain v. Moving
the lens such that s = v in Figure 2.1 results in autofocusing the object. In
our experiments, the lens position v for focusing the object was determined
using a look-up table with o5 as the index to the table. The look-up table
itself was created by a calibration process. This approach was found to be
more accurate than using equation (4.28) and the lens formula.

In the case of STM, the two images ¢g; and g, are recorded at lens positions
S; and S7 + AS. However, in the case of a moving object, the two images ¢;
and g, will have to be recorded at the same instant. They cannot be recorded

in sequence one after the other because the object would have moved during

90



LEN HALF SILVERED MIRROR

AN
N

I |
STEP 40
STEP 70 ! ~ -
ID 2

Figure 5-1: Beam splitter implementation

the time it takes to move the lens from one position to the other. Figure 5.1
shows a scheme for recording ¢g; and g, simultaneously using a beam splitter
and two image detectors ID1 and ID2. The effective distance of ID1 and ID2

from the lens are set to be S; and S, = 5] + AS.

Let ID1 be the image detector in Figure 5.1 on which we want to contin-
uously record the focused image of a moving object. When the lens is moved
along the optical axis to focus the moving object, both S; and S; change but
So — S; = AS remains the same. CSTMI1 is based on this camera architec-
ture. CSTM1 is a direct extension of STM applied to moving objects using
a camera system which is similar to the one shown in Figure 5.1. In general,
look-up tables have to be used for better accuracy in focusing. In the case

of CSTM1, look-up tables have to be obtained for a number of discrete val-
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Figure 5-2: Calibration for several lens positions

ues of S;. The data at other values of S; are obtained through interpolation.
Therefore, CSTM1 involves camera calibration for a number of lens positions.

CSTM2 is based on the following observation. It can be shown that if we
take two images g, and go keeping the aperture diameter constant (D, = Dy),

then @ = 1.0 and 8 = ¢; — ¢3. So equation (4.31) becomes
01 = 09 + C1 — Co. (55)

Therefore, if we know o = o, for a lens position Sy, then we can compute
o = oy for any other lens position S, by adding a known constant ¢; — c¢s.
Consequently, if a look-up table is available to find the lens focused position
using oy, then the same look-up table can be transformed to obtain the lens

focused position using o,. The validity of equation (5.5) can be verified ex-



perimentally. Figure 5.2 shows calibration data for several lens positions. The
X-axis denotes object distances specified in lens step number and Y-axis is
the blur parameter o (see next section for more details). It is found that the
data for different lens positions are roughly shifted versions of the same curve.
Equation (5.5) however is not exact, but only a good approximation for actual

camera systems because our PSF model is not exact.

A very similar situation arises whenever the lens is removed and put back.
The new image detector position will be slightly shifted with respect to the
previous one. However, since oy is always estimated relative to step 70 of
the image detector position, the estimation of g2 will not be affected by the
assembly error. Also, since the calibration plots in Figure 5.2 appear almost
as shifted versions of each other, the focusing results also will be unaffected
by the assembly error. However, in obtaining the distance of the object from
09, a look-up table is used, which is a table of o, versus object distance. This
table will be affected by the assembly error. Hence the relative displacement of
the image detector should be determined through calibration and the look-up

table should be corrected.

5.3 Implementation

The overall operation of SPARCS for finding distance and autofocusing
of a moving object is summarized as a flow-chart in Figure 5.3. The stepwise
operation is also explained briefly with comments below. In the experiments,

initially, the zoom setting of the lens was set to be 35 mm focal length and
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the F-number was set to be 4. The camera gain was set to +6db.

The lens is first moved to S; and a first image g(z,y) is obtained. Op-
tionally we can specify the number of image frames (typically 4) to be recorded
which are then averaged to reduce noise. Such frame averaging is particularly
needed under low illuminations, and in the presence of flickering illumination
such as fluorescent lamps. This was clearly evident from a number of tests on

SPARCS.

The lens is then moved to S; and a second image go(z,y) is recorded.
Again several frames may be recorded and averaged. The object to be ranged/
focused can be selected by specifying a region in the image. The default region
is the center of the image. The size of the region is also an option and the
default size is 72 X 72. The two images are then normalized with respect to

brightness.

An estimate of o, is then obtained at every pixel using equation (5.4).
Due to border effects of smoothing filter and integration, the estimates of o9
is limited to the interior 48 x 48 region of the original 72 x 72 images. A
histogram of the estimated o9 is computed. The bin size of the histogram
was 0.1 (the expected range of g, was from about -10.0 to +10.0 pixels). The
histogram was smoothed using a Parzen window of size 5 bins. The mode of
the histogram was taken to be the best estimate of oo. This value is used to
estimate the distance of the object. In autofocusing application, from o5, the
lens step number which will bring the object to focus is determined. The lens

is then moved to this step number to accomplish autofocusing.

In obtaining the object distance or lens step number for focusing from
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Figure 5-3: Flow chart of CSTM



the computed value of oy, a look-up table is used. The look-up table itself is

obtained through calibration as described in Chapter 4.

Suppose the result of the first trial is Sy (step number n). After the first
iteration, the lens is moved to Sy (step number n) to focus on the object.
Since the object would have moved in the mean time, we again take two
images at lens positions S; = Sy and S; = Sy + AS (steps n and n + 30 in
our implementation). In a camera system as shown in Figure 5.1, it is not
necessary to move the lens. Both the images can be obtained simultaneously.
Hence the time between two iterations can be very small. The entire procedure
is repeated with the two new images. Every time, a new focus position S; is
calculated using the appropriate calibration table (CSTM1) or by using the
same calibration table, but shifted versions of it (CSTM2). The amount by
which the calibration table has to be shifted depends on the previous focusing
position. Everytime a new result is obtained, two new images are taken and
the entire procedure is repeated in a loop. This ensures that the object is

always in focus (on ID1) whether the object is stationary or moving.

5.3.1 Experiments

We used five different planar objects in our experiments (Figure 5.4). A
center region of 72 x 72 pixels, that is usually used for computation is high-
lighted, in the Tiger image. After filtering, the useful region for computation
of ¢ will be only 48 x 48 pixels. We have tried our experiments with even
smaller regions upto 32 x 32 pixels and obtained satisfactory results, as long

as there is some contrast in that region.
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For CSTM1 we calibrated the system at 6 different lens positions, namely
steps 40, 50, 60, 70, 80 and 90. The calibration results are plotted in Figure
5.2, where the X-axis is the object distance in step number and Y-axis is
the value of sigma. In the Figure, the plot “call0.dat”, was obtained using
images recorded at lens steps of 10 and 40, the plot “cal20.dat” was obtained
corresponding to lens steps of 20 and 50 and so on. The plots can be seen to
be more or less shifted versions of each other. We assumed that the calibration
characteristics do not change much in a 10 step interval and hence the choice
of these 6 lens positions. Instead of calibrating at all the 96 lens positions we
just calibrated at these 6 almost uniformly spaced lens positions and for other
lens positions we obtained the calibration data by merely shifting the nearest

available calibration data.

The essence of CSTM is that we can take two images from any arbitrary
lens positions Sy and Sy + AS to compute distance. To demonstrate this fact,
we placed the objects at a known distance (say step 10) and the program was
run by specifying a different starting lens position (10, 20, 30, 40, 50 or 60),
everytime. It means that the first time the two images were taken at steps
10 and 10430 = 40 and the program was run without changing the object
position. The second time the object position was still the same as before but
the program was run with starting lens steps of S; = 20 and Sy = 20+ 30 = 50.
This procedure was repeated for other lens positions of S; = 30, 40, 50 and

60.

Suppose we placed an object at step 10 and specified step 60 as the starting

lens position. It is equivalent to the case when the object actually moved from
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step 60 to 10 (about 2 meters), a relatively high velocity, between two runs of
the program. With one single object and for one single object position we did 6
experiments, corresponding to the 6 different starting lens positions mentioned
above. The experiments were then repeated for 18 different object distances.
Thus, with one single object we performed 6 * 18 = 108 experiments. For five

different objects, the total number of experiments becomes 108 * 5 = 540.

During calibration, it was found that the estimated value of o5 (in Figure
5.2) was unreliable when both the images ¢; and go (on which the estimation
was based) were highly blurred. For this reason, calibration was limited to the
case when the lesser blurred image, say g;, was recorded at a position that was
at most 25 lens steps away (corresponding to a radius of blur circle of about
7 pixels) from the focused lens position and the higher blurred image, say g,
was recorded at a lens position that was at most 25430 = 55 lens steps away
(corresponding to a radius of blur circle of about 14 pixels) from the focused
lens position. It is for this reason that the plots in Figure 5.2 do not cover the
entire range (0 to 96) of lens positions. For example, “call0.dat” in Figure 5.2
covers the range from step 10 to step 65. The range 66 to 96 is not covered
because in that case the two images would be highly blurred. The range 0
to 10 steps is not covered by any plot because as shown in Table 5.1, lens
positions 0 and 5 correspond to placing objects at distances of 9.03 meters
and 5.30 meters from the camera. Due to space restrictions in our laboratory,
we were not able to place objects farther than 5 meters, and therefore the

calibration data for these two points were not obtained.

If both images g; and g2 are highly blurred, then reliable focusing can be
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Step 0 5 10 15 20 25 30 35 40 45
FL 36.235 | 36.086 | 35.938 | 35.72 | 35.646 | 35.502 | 35.359 | 35.217 | 35.076 | 34.937
SI 36.180 | 36.132 | 36.083 | 36.035 | 35.988 | 35.941 | 35.894 | 35.848 | 35.802 | 35.757

DO(mm) | 9034.0 | 5300.0 | 3750.0 | 2850.0 | 2500.0 | 1930.0 | 1720.0 | 1465.0 | 1320.0 | 1170.0

Step 50 55 60 65 70 75 80 85 90 95
FL 34.738 | 34.661 | 34.524 | 34.389 | 34.255 | 34.121 | 33.989 | 33.859 | 33.728 | 33.380
SI 35.712 | 35.667 | 35.622 | 35.578 | 35.534 | 35.491 | 35.448 | 35.406 | 35.363 | 35.250

DO(mm) | 1080.0 | 965.0 | 900.0 | 822.0 | 770.0 | 715.0 | 670.0 | 628.0 | 595.0 | 560.0

Table 5.1. Lens Data

achieved by iterating CSTM twice. The first iteration gives a rough estimation
of the focused lens position. The lens is moved to this position and CSTM
is applied again. In this case, the images will not be highly blurred as in the
first iteration. Therefore good focusing will be achieved. In the experiments,
the object was not moved between two iterations. However, modest movement

(less than 20 lens steps) will not significantly alter the performance of CSTM.

The mean values (of five objects) of the experimental results for CSTM1
are shown in Table 5.2. In the table, six different sets of results corresponding
to six different sets of lens positions (S1,52) are presented. Also the results
of both the first and second iterations are presented. It can be seen from the
table that most of the time we get good results in the first iteration itself.
But if we look at the row corresponding to object distance step 8, and S1,52

= 60,90, it can be seen from the table that the first iteration gives a result

100



Obj. Dist. Estimated Distance in Step No
Step No. | $1,82 = 10,40 | $1,82 = 20,50 | $1,82 = 30,60 | S$1,S2 = 40,70 | $1,82 = 50,80 | 1,82 = 60,90

Tter 1| Tter2 |Tterl | Tter2 |Iterl| Iter2 |Iterl | Iter2 |Iterl| Iter2 |Iterl | Iter2
8 7.8 7.8 7.8 7.8 7.8 7.8 9.0 7.8 17.8 7.8 24.8 74
13 12.2 12.2 12.0 12.2 12.0 12.2 12.8 12.2 19.0 12.0 244 12.2
17 16.6 16.4 16.8 174 16.6 174 15.6 174 19.4 16.8 24.0 16.6
23 24.0 22.2 22.2 22.2 21.8 22.2 24.0 22.2 23.8 22.2 26.0 21.8
29 29.0 28.8 30.0 28.2 28.2 28.2 28.0 28.2 28.0 28.2 29.4 28.2
34 34.2 33.8 34.8 33.8 33.8 33.8 33.2 33.8 33.6 33.8 33.6 33.8
40 40.6 42.2 40.0 40.0 46.4 40.2 40.0 42.2 39.0 38.0 394 41.0
45 43.0 43.0 42.2 40.8 48.2 41.6 41.0 43.0 41.6 41.0 42.8 40.8
51 49.4 48.6 50.0 48.6 50.0 48.6 49.0 48.6 48.6 48.6 49.8 48.6
56 54.8 55.0 55.2 55.0 56.0 55.2 55.0 55.2 55.0 55.0 55.2 55.2
62 60.8 59.6 61.8 59.6 61.8 59.6 62.2 59.6 62.4 59.6 59.6 59.6
68 67.2 67.2 67.8 67.2 67.2 67.2 67.8 67.2 67.0 67.2 67.2 67.2
73 67.8 73.0 72.6 73.0 72.8 73.0 73.0 73.0 72.8 73.0 73.0 73.0
79 69.2 71.0 744 71.0 78.8 71.0 8.4 71.0 79.0 71.0 71.0 71.0
85 70.8 84.0 75.4 84.0 84.6 84.0 83.8 84.0 85.0 84.0 84.0 84.0
90 73.8 89.8 714 89.8 85.4 89.8 89.8 89.8 89.8 89.8 89.8 89.8
96 744 94.4 784 94.4 86.4 94.4 94.6 94.4 95.0 94.4 94.4 94.4
102 77.0 100.4 814 100.4 87.2 100.4 98.0 100.4 | 100.6 | 100.4 | 100.4 | 100.4

Table 5.2. Results of CSTM1

of 24.8, which is not very close to the actual value. But the second iteration
gives a very close value of 7.4 steps. As explained earlier, this is because the
object distance of step 8 is far away from steps 60 and 90 at which the two

images are taken.

Some of the results of CSTM1 are also plotted in Figure 5.5. The X-
axis indicates the experiment number. Since there are five objects and six
lens positions, the number of experiments for each distance is 30. The Y -axis
indicates the estimated distance in step number. The plot “step 17” shows the
results when the objects are placed at step 17, and images are obtained with
different lens positions. The other two plots in Figure 5.5 show the results
when the objects are placed at step 56 and step 85 respectively. Ideally these

plots should have been straight lines parallel to the X-axis.

The first set of experiments included 440 trials of the case when the two
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Step No. | $1,82 = 10,40 | $1,82 = 20,50 | $1,82 = 30,60 | S$1,S2 = 40,70 | $1,82 = 50,80 | 1,82 = 60,90
Tter 1| Tter2 |Tterl | Tter2 |Iterl| Iter2 |Iterl | Iter2 |Iterl| Iter2 |Iterl | Iter2
8 6.0 6.0 7.8 6.0 9.2 6.0 9.0 6.0 16.0 74 24.8 7.8
13 13.0 13.0 11.2 13.0 13.0 13.0 12.8 13.0 16.8 11.6 244 11.6
17 15.8 144 14.2 15.8 16.2 14.8 15.6 14.8 174 14.2 24.0 14.2
23 20.2 24.0 24.0 24.0 20.8 24.0 24.0 24.0 21.6 24.0 26.0 22.2
29 26.0 26.4 274 26.2 26.2 27.0 28.0 26.2 29.4 26.2 29.6 26.2
34 31.2 344 32.0 344 344 33.8 33.2 34.4 35.8 34.2 35.0 33.8
40 36.2 38.8 38.2 40.0 39.2 40.0 40.0 39.0 40.2 40.0 42.6 40.0
45 38.6 41.0 39.8 41.0 39.8 41.0 41.0 40.2 41.8 41.0 44.2 40.2
51 45.2 484 474 48.4 48.4 48.4 49.0 48.4 48.4 48.4 50.0 48.4
56 51.4 58.0 53.2 58.0 55.0 57.4 55.0 56.8 58.0 56.0 56.0 56.6
62 57.4 66.2 58.0 66.2 61.0 66.2 62.2 66.2 63.4 66.2 66.2 66.2
68 62.6 71.0 64.6 71.0 65.8 71.0 67.8 71.0 68.8 71.0 71.0 71.0
73 64.2 75.8 69.2 75.8 70.0 75.8 73.0 75.8 73.8 75.8 75.8 75.8
79 65.8 79.2 74.2 79.2 714 79.2 8.4 79.2 80.0 79.2 79.2 79.2
85 67.6 87.6 75.6 87.6 83.2 87.6 83.8 87.6 86.8 87.6 87.6 87.6
90 704 92.0 716 92.4 86.2 924 89.8 924 90.8 924 924 92.4
96 71.2 98.4 8.4 98.4 87.6 98.4 94.6 98.4 97.2 98.4 98.4 98.4
102 73.0 104.4 81.2 104.4 88.6 104.4 98.0 104.4 | 103.8 | 1044 | 1044 | 1044

Table 5.3. Results of CSTM?2

Sone Results Using CSTML

5

10 15

Experi ment

20

Nunber

Figure 5-5: Some CSTM results

25

30

102



images were not highly blurred (corresponding to less than 25 steps of blur (7
pixel radius) for one image and less than 55 steps blur (14 pixel radius) for the
second image). For these trials, the RMS error in focusing for one iteration of
CSTM1 was 2.22 steps out of 97 steps, or about 2.3%. In terms of the radius
of blur circle the error is about 0.417 pixel. The second set of experiments
included the 440 trials of the first set and an additional 100 trials where both
images were highly blurred (according to the criteria explained earlier). In
order to perform trials for the highly blurred cases, when necessary, the cali-
bration data in Figure 5.2 was extended through simple linear extrapolation of
the plots. Two iterations of CSTM1 were performed for each of the 540 trials
in the second set of experiments. The RMS error in focusing for these trials
was 2.3 steps out of 97 steps or 2.4%. In terms of the radius of blur circle this

error corresponds to about 0.432 pixel.

For experiments on CSTM2, only one set of calibration data corresponding
to the plot “cal40.dat” in Figure 5.2 was used. This data set was shifted by
appropriate amounts to obtain other required calibration data such as the
plots labelled “call0.dat”,“cal20.dat” etc. in the figure. Experiments similar
to those described earlier for CSTM1 were repeated for CSTM2. The results
are tabulated in Table 5.3. The first set of experiments included 440 trials with
one iteration, for the case when the two images were not highly blurred. The
RMS error in focusing for these experiments was 2.9 steps out of 97 steps or
about 3.0%. The second set of experiments included 540 trials which included
the 100 trials where the two images were highly blurred. CSTM2 was run for

two iterations as before and the RMS error in focusing was 3.05 steps out of
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97 steps or about 3.1%.

A focusing error of 3% (corresponding to a radius of blur circle of about
0.56 pixel) is not perceptible by humans. Therefore, the results of CSTM are
quite satisfactory. However, further improvement can be obtained by using a
Depth-from-Focus (DFF) method and searching only in a small interval near

the estimated lens position.

5.4 Conclusions

In this chapter the DFD method based on STM has been extended to con-
tinuously focus on moving objects. It has been successfully demonstrated on
the SPARCS camera system. Two variations of continuous focusing - CSTM1
and CSTM2- have been investigated. CSTM1 involves straight forward ex-
tension of the STM described in the previous chapter and involves extensive
camera, calibration. The focusing accuracy was 2.3% by calibrating the cam-
era system at 6 different pairs of lens positions. In CSTM2, the camera is
calibrated just once corresponding to one lens position. The calibration data
corresponding to other positions are obtained by transforming the data ob-
tained for the one single position. A theoretical justification for this has been
provided. The focusing accuracy of CSTM2 was found to be about 3% in lens
position. The marginal improvement in accuracy of CSTM1 was achieved at

the cost of a more cumbersome calibration procedure.

A typical application for CSTM is in autofocusing of video cameras, where

it is necessary to quickly focus on objects which keep changing their positions.
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CSTM can also be used to continuously obtain a rough depth-map of a dynamic
scene. The resolution of the depth-map can then be improved by using stereo

vision techniques, if desired.



Chapter 6

Focused Image Recovery

6.1 Introduction

In the previous chapters we discussed methods for recovering the geomet-
ric information of a scene. In this chapter we investigate some methods for
recovering the focused image of a scene, which is a photometric information. In
machine vision, early processing tasks such as edge-detection, image segmen-
tation, stereo matching, etc. are easier for focused images than for defocused
images of three-dimensional (3-D) scenes. However, the image of a 3-D scene
recorded by a camera is in general defocused due to limited depth-of-field of
the camera. Autofocusing can be used to focus the camera onto a desired
target object. But, in the resulting image, only the target object and those
objects at the same distance as the target object will be focused. All other
objects at distances other than that of the target object will be blurred. The
objects will be blurred by different degrees depending on their distance from

the camera. The amount of blur also depends on camera parameters such as
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lens position with respect to the image detector, focal length of the lens, and
diameter of the camera aperture. In this chapter, we address the problem of

recovering the focused image of a scene from its defocused images.

Earlier we described STM, a spatial domain method of determining dis-
tance using defocus information. Also, Subbarao and Wei have proposed a
Fourier domain method, called DFD1F, for estimating the distance of objects
in a scene [114] using image defocus information. In these methods, two defo-
cused images of the scene are recorded simultaneously with different camera
parameter settings. The defocused images are then processed to obtain the
distance of objects in the scene in small image regions. In this process, first
a blur parameter ¢ which is a measure of the spread of the camera’s Point
Spread Function (PSF) is estimated as an intermediate step. In this chapter
we investigate two methods for using the same blur parameter ¢ for recovering

the focused images of objects in the scene from their blurred images.

The first method of focused image recovery is based on the Spatial Domain
Convolution/ Deconvolution Transform (S-Transform) proposed in [113]. This
method uses only the blur parameter ¢ which is a measure of the spread of
the camera’s PSF. In particular, the method does not require a knowledge of
the the exact form of the camera PSF. The second method, in contrast to
the first, requires complete information about the form of the camera PSF.
For most practical camera systems, the camera PSF cannot be characterized
with adequate accuracy using simple mathematical models such as Gaussian or
cylindrical functions. A better model is obtained by measuring experimentally

the actual PSF of the camera for different degrees of image blur and using the
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measured data. This however requires camera calibration. An alternative
but usually a more difficult solution is to derive and use a more accurate
mathematical model for the PSF based on diffraction, lens aberrations, and
characteristics of the various camera components such as the optical system,
image sensor elements, frame grabber, etc. As part of the second method,
we describe a camera calibration procedure for measuring the camera PSF for
various degrees of image blur. The calibration procedure is based on recording
and processing the images of blurred step edges. In the second method, the
focused image is obtained through a deconvolution operation in the Fourier

domain using the Wiener filter.

For both methods of recovering the focused image, results of experiments
on the SPARCS camera system are presented. The results of the first method
are compared with the results obtained using two commonly used PSF models—
cylindrical based on geometric optics, and a 2-D Gaussian. The results of the

second method are compared with simulation results.

6.2 Spatial Domain Approach

In this section we describe the spatial domain method for recovering the
focused image of a 3-D scene from a defocused image for which the blur pa-
rameter o has been estimated using either DFD1F or STM. The recovery is
done through deconvolution of the defocused image using the Spatial-Domain
Convolution/ Deconvolution Transform (S Transform) [113]. The transform

itself is general and applicable to n-dimensional continuous and discrete signals
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for the case of arbitrary order polynomials.

6.2.1 S - Transform

Let f(z,y) be an image which is a two variable cubic polynomial in a

small neighborhood, defined by

3 3—m

fl@y) =30 Y tmas™y" (6.1)

m=0 n=0
where a,, , are the polynomial coefficients. Let h(z,y) be the PSF of a camera.

The moment Ay, ,, of the PSF is defined by

/ / "y"h(z,y) dedy (6.2)

Let g(z,y) be the blurred image obtained by convolving the focused image
f(z,y) with the PSF h(z,y). The blur parameter ¢ is a measure of the spread
of the camera PSF. For a circularly symmetric PSF denoted by h(z,y) it is
defined as

o = /oo /oo(x2 +9%) h(z,y) dz dy (6.3)

oo SO

For a PSF model based on paraxial geometric optics, it can be shown that the
blur parameter o is proportional to the blur circle radius. If R is the blur circle
radius, then o0 = R/ V2. For a PSF model based on a 2D Gaussian function,
o is the standard deviation of the distribution of the 2D Gaussian function.

In Chapter 4 we saw that f(z,y) can be obtained as

- 2" g(z,y) (6.4)

fl@,y) = g(z,y) — =

Equation (6.4) is a deconvolution formula. It expresses the original function

(focused image) f(z,y) in terms of the convolved function (blurred image)
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g(z,y), its (i.e. ¢’s) derivatives, and the moments of the point spread function

h(z,y). In the general case this corresponds to Inverse S-Transform [113].
Using the definitions of the moments of A and the definition of the blur

parameter o of h, we have hyg = hgo = 02/2, and therefore the above decon-

volution formula can be written as
0.2

f(@,9) = 9(z,9) — 1 V" 9(z,9) (6.5)
The above equation suggests a method for recovering the focused image f(z, y)
from the blurred image g(x,y) and the blur parameter o. Note that the above
equation has been derived under the following assumptions (i) the focused
image f(z,y) is modeled by a cubic polynomial (as in Eq. 6.1) in a small (3 x 3
pixels in our implementation) image neighborhood, and (ii) the PSF h(z,y)
is circularly symmetric. These two assumptions are good approximations in
practical applications and yield useful results.

Equation (6.5) is similar in form to the previously known result that a
sharper image can be obtained from a blurred image by subtracting a constant
times the Laplacian of the blurred image from the original blurred image [99].
However that result is valid only for a diffusion model of blurring where the
PSF is restricted to be a Gaussian. In comparison, the deconvolution formula
of equation (6.5) is valid for all PSFs that are circularly symmetric including
a Gaussian. Therefore, the previously known result is a special case of our
deconvolution. Further, the restriction on the circular symmetry of the PSF
can be removed if desired using a more general version of the S-Transform
[113]. Also, the focused image can be generalized to be an arbitrarily high order

polynomial although such a generalization does not seem useful in practical
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applications.

The main advantages of this method are (i) the quality of the focused
image obtained (as we shall see in the discussion on experimental results), (ii)
computational complexity, and (iii) the locality of the computations. Simplic-
ity of the computational algorithm is another characteristic of this method.
Given the blur parameter o, at each pixel, estimation of the focused image
involves the following operations (a) estimation of the Laplacian which can be
implemented with a few integer addition operations (8 in our implementation),
(b) floating point multiplication of the estimated Laplacian with ¢2/4, and (c)
one integer operation corresponding to the subtraction in Eq. (6.5). For com-
parison purposes in the following sections, let us say that these computations
are roughly equivalent to 4 floating point operations. Therefore, for an N x N
image, about 4N? floating point operations are required. All operations are lo-
cal in that only a small image region is involved (3 X 3 in our implementation).
Therefore the method can be easily implemented on a parallel computation

hardware.

6.2.2 Experiments

A set of experiments is described later where the blur parameter o is first
estimated from two blurred images and then the focused image is recovered.
In this section we describe experiments where ¢ is assumed to be given.

A poster with printed characters was placed at a distance of step 70
(about 80 cms) from the camera. The focused image is shown in Figure 6.1.

The camera lens was moved to different positions (steps 70, 60, 50, 40, 30 and
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Figure 6-1: Focused character image

20) to obtain images with different degrees of blur. The images are shown
in figures 6.2(a) to 6.7(a). The corresponding blur parameters (os) for these
images were roughly 2.2, 2.8, 3.5, 4.7, 6.0 and 7.2 pixels. These images were
deblurred using equation (6.5). The results are shown in Figures 6.2(d) -
6.7(d). We see that the results are satisfactory for small to moderate levels of
blur corresponding to about o = 3.5 pixels. This corresponds to about 20 lens
steps or a blur circle radius of about 5 pixels.

In order to evaluate the above results through comparison, two standard
techniques were used to obtain focused images. The first technique was to use
a two-dimensional Gaussian model for the camera PSF. The spread parameter
of the Gaussian function was taken to be equal to the blur parameter o, and

therefore the PSF was:

hy(z,y) = 2 (6.6)

2ro?
The plots of the PSF for two values of o corresponding to about 3.75 pixels

and 7.5 pixels are shown in Figure 6.8.
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Figure 6-2: Restoration with 0 steps of blur
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Figure 6-3: Restoration with 10 steps of blur
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Figure 6-5: Restoration with 30 steps of blur
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Figure 6-7: Restoration with 50 steps of blur
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Figure 6-8: Cylindrical and Gaussian PSF models



The focused image was obtained using the Wiener filter [99] specified in

the Fourier domain by:

1 |H (w,v)[?
H(w,v) |H(w,v)[?+T

M(w,v) = (6.7)

where H(w,v) is the Fourier Transform of the PSF and I' is the noise-to-signal
power density ratio. In our experiments [' was approximated by a constant.
The constant was determined empirically through several trials so as to yield
best results. Let g(x,y) be the blurred image, and f(z,y) be the restored
focused image. Let their corresponding Fourier Transforms be G(w,v) and
F(w,v) respectively. Then the restored image, according to Wiener filtering
is

A

F(w,v) = G(w,v)M(w,v). (6.8)

By taking the inverse Fourier Transform of F'(w, ), we can obtain the restored
image f(z,v).

The results are shown in Figures 6.2(c)-6.7(c). We see that for small
values of o (about 3.5 pixels), the Gaussian model performs well, but not
as good as the previous method (Figs. 6.2(d)-6.7(d)). In addition to the
quality of the focused image that is obtained, this method has three important
disadvantages. The first is computational complexity. For a given o, first one
needs to compute the the OTF H(w,v), and then the Weiner filter M (w, v).
It is possible to precompute and store M(w,v) for later usage for different
values of 0. But this would require large storage space. After M(w,v) has
been obtained for a given ¢, we need to compute G(w,v) from g(z,y) using

FFT algorithm, multiply M (w,v) with G(w,v) to obtain F(w,v), and then
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compute the inverse Fourier Transform of F(w,v). The complexity of the
FFT algorithm is O(N2logN) for an N x N image. Roughly, at least (2N? +
2N%log,N) floating point operations are involved. For N = 128 used in our
experiments, the number of computations is at least 16 N2. In comparison,
the number of computations in the previous case was 4N2. Therefore, this
method is at least 4 times slower than the previous method. The second
disadvantage of this method is that the computations are not local because
of the computation of the Fourier Transform of the entire image. The third

disadvantage is the estimation of the noise parameter I'.

In the second standard technique of focused image recovery, the PSF was
modeled by a cylindrical function based on paraxial geometric optics. The
plots of the PSF for two values of ¢ of about 3.75 pixels and 7.5 pixels are
shown in Figure 6.8. With a knowledge of the blur parameter o, it is possible
to generate the entire cylindrical PSF. The focused image was again obtained
using the Wiener filter mentioned earlier, but this time using the cylindrical

PSF.

In computing the Wiener filter, computation of the discrete cylindrical
PSF at the border of the corresponding blur circle involves some approxima-
tions. The value of a pixel which lies only partially in the blur circle should
be proportional to the area of overlap between the pixel and the blur circle.
Violation of this rule leads to large errors in the restored image, especially for
small blur circles. In our implementation, the areas of partial overlap were
computed by resampling the ideal PSF at a higher rate (about 16 times),

calculating the PSF by ignoring the pixels whose center did not lie within
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the blur circle, and then downsampling by adding the pixel values in 16 x 16

non-overlapping regions.

The results of this case are shown in Figures 6.2(b)-6.7(b) for different
degrees of blur. The images exhibit “ripples” around the border between the
background and the characters. Once again we see that the results are not as
good as for the S Transform method. For low levels of blur (upto about R =5
pixels) Gaussian model gives better results than the cylindrical PSF, and for
higher levels of blur (R greater than about 5 pixels) the cylindrical PSF gives

better results than the Gaussian PSF.

In addition to the quality of the final result, the relative disadvantages of
this method in comparison with the S Transform method are same as those

for the Gaussian PSF model.

6.3 Second Method

In the second method of focused image recovery, the blur parameter o is
used to first determine the complete PSF. In practice, the PSF is determined
by using ¢ as an index into a prestored table that specifies the complete PSF
for different values of o. In theory, however, the PSF may be determined by
substituting ¢ into a mathematical expression that models the actual camera
PSF. Since it is difficult to obtain a sufficiently accurate mathematical model
for the PSF, we use a prestored table to determine the complete PSF. After
obtaining the complete PSF, Wiener filtering is used to compute the focused

image. First we describe a method of obtaining the prestored table through a
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calibration procedure.

6.3.1 Camera calibration for PSF

Theoretically, the PSF of a camera can be obtained from the image of a
point light source. However, in practice, it is difficult to create an ideal point
light source that is incoherent and polychromatic. Therefore the standard
practice in camera design is to estimate the PSF from the image of an edge.

Let f(z,y) be a step edge along the y-axis on the image plane. Let a be
the image intensity to the left of the y-axis and b be the height of the step.

The image can be expressed as
f(@,y) = a+bu(z) (6.9)

where u(z) is the standard unit step function. If g(z,y) is the observed image

and h(z,y) is the camera’s PSF then we have,

9(z,y) = h(z,y) * f(z,y) (6.10)

where * denotes the convolution operation.
Now consider the derivative of g along the gradient direction. Since dif-

ferentiation and convolution commute, we have

g_i = h(z,y) * ?)_i (6.11)
= h(z,y)*bd(x) (6.12)

where 0(z) is the dirac delta function along the z axis. The above expression

can be simplified to obtain
dg

= =b0() (6.13)
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where 6(z) is the line spread function of the camera defined by

oo

() =/ h(z,y)dy (6.14)

—00

For any PSF h(z,y) of a lossless camera, by definition, we have

/oo /oo h(z,y) de dy =1 (6.15)
Therefore we obtain
* dg(z,y)
—ar = 1
/_ iz = (6.16)

Therefore, given the observed image g(z,y) of a blurred step edge, we can
obtain the line spread function #(z) from the expression

/]

O(z) = —92 6.17
@) = =g, (6.17)

After obtaining the line spread function (z), the next step is to obtain
the PSF or its Fourier Transform, which is the Optical Transfer Function
(OTF). Here we outline two methods of obtaining the OTF, one assuming the

separability of the OTF and another using the Inverse Abel Transform.

Separable OTF

Let the Fourier Transforms of the PSF h(z,y) and LSF 0(z) be H(w,v)

and ®(w) respectively. Then we have [99]
®(w) = H(w,0) (6.18)

If the camera has a circular aperture then the PSF is circularly symmetric.

If the PSF is circularly symmetric (and real), then the OTF is also circularly
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symmetric (and real), i.e. H(w,v) is also circularly symmetric. Therefore we

get

H(w,v) = ®(Vw? + 1?) (6.19)

Once we have the Fourier Transform of the LSF, ®(w), we can calculate
H(w,v) for any values of w and v. However, in practice where digital im-
ages are involved, v/w? + v2 may have non integer values, and we may have
to interpolate ®(w) to obtain H(w,v). Due to the nature of ®(w), linear
interpolation did not yield good results in our experiments. Therefore inter-
polation was avoided by assuming the OTF to be separable, i.e. H(w,v) =
H(w,0)H(0,v) = ®(w)®(v). A more accurate method, however, is to use to

the Inverse Abel Transform.

Inverse Abel Transform

In the case of a circularly symmetric PSF h,(r), the PSF can be obtained

from its LSF 6(z) directly using the Inverse Abel Transform [55] :

hry =L [* 1@

where ¢'(z) is the derivative of LSF 6(z). Note that h(z,y) = hi(r) if r =
vz?2 + y2. In our implementation the above integral was evaluated using a

numerical integration technique.

After obtaining H(w,v), the final step in restoration is to use equa-

tions (6.7) and (6.8) and obtain the restored image.
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6.3.2 Calibration Experiments

All experiments were performed using the SPARCS camera system. Black
and white stripes of paper were pasted on a cardboard to create a step discon-
tinuity in reflectance along a straight line. The step edge was placed at such
a distance (about 80 cms) from the camera that it was in best focus when the
lens position was step 70. The lens was then moved to 20 different positions
corresponding to step numbers 0,5,10---90,95. At each lens position, the im-
age of the step edge was recorded, thus obtaining a sequence of blurred edges
with different degrees of blur. Twelve of these images are shown in Figure 6.9.
The difference between the actual lens position and the reference lens position
of 70 is a measure of image blur. Therefore, an image blur of 420 steps cor-
responds to an image recorded at lens position of step 50 and an image blur
of -20 steps corresponds to an image recorded at lens position of step 90. The

size of each image was 80 x 200 pixels.

In the experiments, the step edge was placed vertically and therefore
the image intensity was almost a constant along columns and the gradient
direction was along the rows. To reduce electronic noise, each image was cut
into 16 horizontal strips of size 5 X 200 and in each strip, the image intensity
was integrated (summed) along columns. Thus each strip was reduced to just
one image row. In each row, the first derivative was computed by simply
taking the difference of gray values of adjacent pixels. Then the approximate
location of the edge was computed in each row by finding the first moment of

the derivative, i.e., if ¢ is the column number where the edge is located, and

126



0 steps of blur

10 steps of blur

20 steps of blur

30 steps of blur

40 steps of blur

50 steps of blur

5 steps of blur

15 steps of blur

25 steps of blur

35 steps of blur

45 steps of blur

55 steps of blur

Figure 6-9: Images of blurred step edges
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g:(7) is the image derivative at column %, then

1220049, (4)
=200

1= ,
i=1 gw(Z)

(6.21)

The following step was included to reduce the effects of noise further. Each
row was traversed on either side of position ¢ until a pixel was reached where
either g,(i) was zero or its sign changed. All the pixels between this pixel
(where for the first time, g, became zero or its sign changed) and the pixel at
the row’s end were set to zero. We found this noise cleaning step to be very
important in our experiments. A small non-zero value of image derivative
caused by noise at pixels far away from the position of the edge affects the
estimation of the blur parameter ¢ considerably.

From the noise-cleaned g, (i), the LSF was computed as

0(i) = % (6.22)

Eight LSFs corresponding to different degrees of blur are plotted in Figure
6.10. It can be seen that, as the blur increases the LSF function becomes
more flat and spread out. The location of the edge ¢ was then recomputed
using equation (6.21). The spread or second central moment of the LSF, o

was computed from

o = J%@ —7)20(0) (6.23)

i=1
The computed values of o; for adjacent strips were found to differ by only
about 2 percent. The average &; was computed over all the strips. It can be

shown that o; is related to the blur parameter ¢ by ¢ = v/20;. The effective

blur circle radius R is related to ¢ by R = v/20. The values of R computed
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Figure 6-10: LSFs obtained from step edges

using the relation R = 20, for different step edges are shown in Figure 6.11.
Figure 6.11 also shows the value of R predicted by ideal paraxial geometric
optics. The values of R obtained for a horizontal step edge are also plotted
in the figure. The values for the vertical and horizontal edges are in close
agreement except for very low degrees of blur. This minor discrepancy may be
due to the asymmetric (rectangular) shape of the CCD pixels (13 x 11 microns

for our camera).

The PSF’s were obtained from the LSF's using the Inverse Abel Transform.
Cross sections of the PSFs thus obtained corresponding to the LSFs in Figure

6.10 are shown in Figure 6.12.
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6.3.3 Experimental Results

Using the calibration procedure described in the previous section, the
PSFs and the corresponding OTFs were precomputed for different values of
the blur parameter o. These results were prestored in a lookup table indexed
by 0. The OTF data H(w,v) in this table was used to restore blurred images
using the Wiener filter M(w,v). Figures 6.2(e)-6.7(e) show the results of
restoration using the separability assumption for the OTF and Figures 6.2(f)-
6.7(f) are the results for the case where the Inverse Abel Transform was used
to compute the PSF from the LSF. Both these results are better than the
other results in Figures 6.2 (b,c,d) - 6.7(b,c,d). The method using the Inverse
Abel Transform is better than all the other methods. We find that the results
in this case are good even for highly blurred images. For example, the images
in Figures 6.6(a) and 6.7(a) are severely blurred corresponding to 40 and 50
steps of blur or ¢ equal to about 6.0 and 7.2 pixels respectively. It is quite
difficult for humans to recognize the characters in these images. However, in
the restored images shown in Figures 6.6(f) and 6.7(f) respectively, many of

the characters are easily recognizable.

In order to compare the above results with the best obtainable results,
the restoration method which uses the Inverse Abel Transform was tested on
computer simulated image data. Two sets of blurred images were obtained
by convolving an original image with a cylindrical and a Gaussian function.
The only noise in the simulated images was quantization noise. The blurred
images were then restored using the Wiener filter. The results are shown in

Figures 6.13 and 6.14. We see that these results are only somewhat better but
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not much better than the results on actual data in Figures 6.2(f)-6.7(f). This
indicates that the method of camera calibration for the PSF is reliable.

The main advantage of this method is that the quality of the restored
image is the best in comparison with all other methods. It gives good results for
even highly blurred images. It has two main disadvantages. First, it requires
extensive calibration work as described earlier. Second, the computational
complexity is the same as that for the Wiener filter method discussed earlier.
For an N x N image, it requires at least 2N? + 2N?log,N floating point
operations as compared with 4N? floating point operations for the method
based on spatial domain deconvolution. Therefore, for an image of size 128 X
128, this method is at least 4 times slower than the method based on spatial
domain deconvolution. Another disadvantage is that it requires the estimation

of the noise parameter I' for the Wiener filter.

6.4 Experiments with unknown ¢ and 3-D
objects

In the experiments described earlier, the blur parameter ¢ of a blurred
image was taken to be known. We now present a set of experiments where o is
unknown. It is first estimated using STM. Then, of the two blurred images, the
one that is less blurred is deconvolved to recover the focused image. Results
are presented for both the first method based on spatial-domain deconvolution
and the second method which uses Inverse Abel Transform.

The results are shown in Figures 6.15(a-d). The first image in Fig. 6.15(a)
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Figure 6-13: (b) Simulation with geometric optics PSF
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is the focused image of an object recorded by the camera. The object was
placed at a distance of step 14 (about 2.5 meters) from the camera. Two
images of the object were recorded with two different lens positions-steps 40
and 70 (see Fig. 6.15(a)). The blur parameter ¢ was estimated using STM. It
was found to be about 5.5 pixels. Using this, the results of restoring the image
recorded at lens step 40 is shown in Fig. 6.15(a). Similar experiments were
done by placing the object at distances steps 36, 56, and 76 corresponding to
1.31, 0.9 and 0.66 meters from the camera. In each of these cases, the focused
image, the two recorded image at steps 40 and 70, and the restored images
are shown in Figs. 6.15 (b-d). The blur parameters in the three cases were
about 1.79, 1.24, and 2.35 pixels respectively. In the last two cases, the images
recorded at lens step 70 was less blurred than the the one recorded at step 40.

Therefore the image recorded at lens step 70 was used in the restoration.

In another experiment, a 3-D scene was created by placing three planar
objects at three different distances. Two images of the objects were recorded
at lens steps 40 and 70. These images are shown in Figure 6.16. It can be
seen that different image regions are blurred by different degrees. The image
was divided into 9 regions of size 128 x 128 pixels. In each region the blur
parameter o was estimated and the image in the region was restored. The nine
different estimated values of o are 3.84, 4.76, 4.76, 0.054, 0.15, 0.46 (for image
with lens step 40) and -2.65, -2.55 and -2.55 (for image with lens step 70)
respectively. The different restored regions were combined to yield an image,
where the entire image looks focused. Figure 6.16 shows the results using both

the first and second methods of restoration. Currently each region can be as
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Focused Image
(Focused at step 14)

Blurred Image Blurred Image
(Lens at step 40) (Lens at step 70)

Restored by Restored using Actual
S-Transform PSF (Abel Transform)

Fig. 6.15(a) Depth estimation with restoration for step 14
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Focused Image
(Focused at step 36)

Blurred Image Blurred Image
(Lens at step 40) (Lens at step 70)

Restored by Restored using Actual
S-Transform PSF (Abel Transform)

Fig. 6.15(b) Depth estimation with restoration for step 36
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Focused Image
(Focused at step 56)
Blurred Image Blurred Image
(Lens at step 40) (Lens at step 70)
Restored by Restored using Actual
S-Transform PSF (Abel Transform)

Fig. 6.15(c) Depth estimation with restoration for step 56



Focused Image
(Focused at step 76)

Blurred Image Blurred Image
(Lens at step 40) (Lens at step 70)
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Restored by Restored using Actual
S-Transform PSF (Abel Transform)

Figure 6-15: (d) Depth estimation with restoration for step 76
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small as 48 x 48 pixels, which is a small region in the entire field of view of

640 x 480 pixels.

In the next experiment, a planar object with posters was placed inclined
to the optical axis. The nearest end of the object was about 50 cms from the
camera and the farthest end was about 120 cms. The blurred images of the
object acquired with lens steps 40 and 70 are shown in Figure 6.17(a) and
(b). The images were divided into non-overlapping regions of 64 x 64 pixels
and a depth estimate was obtained for each region. The depth estimates
obtained in each region are shown in terms of step numbers in Table 6.1. The
different regions were then restored separately as before and combined to yield
the restored images as shown in Figure 6.17(c) and (d). The restored images
appear better than either of the blurred images. However there are some
blocking artifacts, which are due to the “wrap around” problem of the FFT

algorithm and the finite filter size in the case of the S-Transform method.

6.5 Conclusion

In this chapter we have shown that the focused image of an object can be
recovered using two defocused images recorded with different camera param-
eter settings. The same two images can be used to estimate the depth of the
object using STM. For a 3-D scene where the depth variation is small in image
regions of size about 64 x 64, each image region can be processed separately
and the results can be combined to obtain both a focused image of the entire

scene and a rough depth-map of the scene. If, in each image region, at least
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(a) Blurred Image
(Lens Step 40)

(b) Blurred Image
(Lens Step 70)

Fig 6.16 (a),(b) Depth estimation with restoration for 3-D object

143



(c) Restored by
S-Transform

(d) Restored using Actual
PSF (Abel Transform)

Figure 6-16: (c),(d) Depth estimation with restoration for 3-D object
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Table 6.1. Depth estimates in each region of slanted object

(Step Number)
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Figure 6.17 (a) Image of slanted object with lens step 40

Figure 6.17 (b) Image of slanted object with lens step 70
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Figure 6-17: (d) Restored using actual PSF (Inv. Abel Transform)



one of the two recorded defocused images is blurred only moderately or less
(0 < 3.5 pixels), then the focused image can be recovered very fast (com-
putational complexity of O(N?) for an N x N image) using the new spatial
domain deconvolution method described here. In most practical applications
of machine vision, the camera parameter setting can be arranged so that this
condition holds, i.e. in each image region at most only one of the two recorded
defocused images is severely blurred (o > 3.5 pixels). In those cases where this
condition does not hold, the second method which uses the Inverse Abel Trans-
form can be used to recover the focused image. This method requires camera
calibration for the PSF and is several times more computationally intensive
than the first method above. The methods described in this chapter can be
used as part of a 3-D machine vision system to obtain focused images from
blurred images for further processing such as edge detection, stereo matching,

and image segmentation.

148



Chapter 7

Experiments with an Off-the-Shelf Camera

7.1 Introduction

In this chapter we describe experiments with an off-the-shelf camera
(DELTIS 2000 of Olympus Optical Company). DELTIS is an off-the-shelf
camera and no lens data is available. It has a motorized lens which can be
controlled from a computer through a serial port. We first describe the imple-
mentation of STM and experimental results, on the DELTIS camera. Next we
describe the details of a 3-D shape recovery method using DFF. We analyse
a few commonly used focus measures and interpolation schemes and provide
experimental results. The results indicate that both STM and DFF algorithms

can easily be implemented with off-the-shelf cameras.

7.2 S-Transform Method

In Chapter 4, we described a method of calculating the spread parameter

09 using two blurred images ¢g; and go. The final expression was given by
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equation (4.48) as

1 P2
0_2:G /6
26

(7.1)

where G’ depends on ¢g; and ¢, and their laplacians. It can be seen that the
computed value of o, depends linearly on the camera constant 5. In the case
of DELTIS camera, the constants o and 3 are not known. However, if an arbi-
trary value of o and 3 are used, only the slope and intercept of the calibration
plot are changed and hence there is still a one-to-one correspondence between

the computed value of o5 and the object distance.

As described in Chapter 4, calibration of the camera was done with five
different objects. The objects were placed at a known distance and ¢ was
computed for each object. The relation between object distance and step
number is plotted in Table 1. The experiments were repeated by placing
the objects at different distances. Since there are five objects we obtain five
different o values for each distance. Three ¢ values around the mean were
averaged, to obtain one single calibration table. The calibration table is plotted

in Figure 7.1.

After obtaining the calibration plots the distance estimation experiments
were conducted on the five objects. The results are tabulated in Table 1, along
with the mean and standard deviation. The mean of the standard deviations
(overall RMS error) is about 2.07 steps out of about 90 steps. The mean values
of the results are also plotted in Figure 7.2. The RMS error seems satisfactory
for practical applications. As mentioned earlier, the accuracy can be slightly

improved by combining with a DFF method.
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Figure 7-1: Calibration Plot
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Figure 7-2: Experimental Results using STM
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Actual Dist.

Estimated Dist. (step)

Step | cm tg | fa |mk | ch | gs | mean | std. dev.
175 19.2 | 175|169 | 176 | 180 | 172 | 174.39 3.72
165 21.9 | 163 | 166 | 161 | 172 | 164 | 165.19 3.76
155 25.2 | 154|155 | 150 | 161 | 156 | 155.19 3.54
145 29.8 | 145 | 143 | 144 | 147 | 147 | 145.2 1.6
135 36.1 | 135 | 133|136 | 134 | 135 | 134.6 1.01
125 46.0 | 125 | 125|124 | 124 | 122 | 124.0 1.09
115 60.2 | 114|114 | 116 | 113 | 114 | 114.19 0.98
105 91.0 | 105|104 | 111 | 103 | 103 | 105.19 2.99
95 184.0 | 94 | 94 | 94 | 94 | 99 95.0 2.0
90 331.7 | 90 | 91 94 | 91 | 92 91.6 1.36
85 530.0 | 85 | 85 | 87 | 86 | 86 85.8 0.75

Table 1. Experimental Results
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7.3 Thresholds for Focus Measures

In Chapter 3, some of the commonly used focus measures were described.
The most important among them are the gradient magnitude squared, lapla-
cian squared and brightness variance. These focus measures have been proved
to be sound focus measures in [119]. Depth-from-Focus (DFF) methods re-
quire a sequence of images taken with different lens positions. A focus measure
is computed for each image and the maximum focus measure is obtained by
searching among all the images. The focus measure is computed in a small
window (typically 15 x 15 pixels). The computation can be repeated over
many image windows and a 3-D depth map of the scene could be obtained.
However, when a image window does not have enough contrast information,
the focus measures are susceptible to noise leading to erroneous results. In this
chapter, we investigate different focus measures and derive the corresponding

noise thresholds. We also describe experimental results.

7.3.1 Gradient Magnitude Squared

If g(i,7) is a discrete image, then a focus measure can be computed as

FMy = L (G +1) = gl )P + g+ 1,5) — g i) (72

N $,5=1
For the sake of analysis, let us consider the g(i,7)’s to be independent
and identically distributed (iid) gaussian random variables with zero mean

and standard deviation oy (i.e, N(0,0n)). Then the expected value of F'M; is

153



given by

1
E[FMi] =+

3 Lol +1) =0+ Eloi+1.9) = o6 (0

= 4do%. (7.4)

The variance of F'M; can be calculated as
Var [FMy] = E [FM}| — E[FM,]? (7.5)
After simplification, it can be shown that for N =1,
Var [FM,] = 200y, (7.6)

Since, we have defined the focus measure as a mean over an N x N region, the

actual variance of F'M; will be divided by a factor of N2. Hence,

20

Var [FM,] = NZON

(7.7)

In order to estimate the noise variance 0%, we placed objects of constant
brightness (white, black and gray posters) at different distances from the cam-
era. The standard deviation of the brightness values was computed in many 15
x 15 non overlapping regions. The mean value of all the standard deviations
was found to be 1.37. Hence we used oy = 1.37 in our experiments. Using

these values in equations (7.4) and (7.6) the expected value of F M is 7.5 and

70.455

the variance of F M, is 55

. Hence the standard deviation of F'M; is given
by orum1 = 2337, A threshold of mean + three times the standard deviation
can be chosen for reliable results. The threshold can thus be calculated to be

7.5 + 248 In our experiments we used a window size of 15 x 15 and hence
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Figure 7-3: Objects used for threshold calculations, pol15 and pal50

the threshold is 9.18. It can be seen that, by using a larger window size, the
threshold can be lowered resulting in more reliable depth estimates. However,
a larger window size will reduce the resolution of the depth-map. Hence there
is a trade off between window size for focus measure computation and the

resolution of the depth map.

Figure 7.3 shows two objects used in our experiments. The object “pol15”
has high contrast information all over, but the object “pal50” has some regions
with almost constant intensity. The size of each image is 150 x 150 pixels. The
objects were placed at some known distance from the camera and 20 images
were taken with different lens positions. The lens position was varied by 2
steps for every image. The focus measures (gradient magnitude squared) were
computed in 15 x 15 regions in the images. For every image there are 10 x

10 = 100 such regions. The focus measures corresponding to some regions are
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Figure 7-4: Focus Measures with Object poll5
plotted in Figures 7.4 and 7.5. It can be seen in Figure 7.4 that all the focus
measures are much above the calculated threshold of 9.18. However, in Figure
7.5 it is seen that some of the regions yield very low focus measures (almost
constant and less than the threshold). These regions correspond to the almost

constant intensity regions in the object “pald0”.

7.3.2 Laplacian Squared

The square of the laplacian is a commonly used focus measure. For a

discrete image g(i,7) it can be computed as

L a1 - .
FMy =<5 3 (9G+1,0) + 96— 1,7) + 90,5 +1) + (i, — 1) — 490, 5))’
,j=1

(7.8)

156



157

Grad. Mag. Squared

700 =
EETel
- 381¢ B —
w28Tes
600 "EQ e
%{.re S"
500 ,, B
3 /
& 400
Q
£
(2]
3 300
ks
/
200
100
0 b= e e [T S— -

0 2 4 6 8 10 12 14 16 18 20
rel step number

Figure 7-5: Focus Measures with Object pal50

The expected value of F'M, can be derived as

1 ¥ L o - - -
E(FMy) =5 2 E [(9(i+1,3) + 9G = 1,5) + 93,5 + 1) + 9 (i, 5 — 1) — 493, ))’]
ij=1
(7.9)
As before, if we consider the g(7, j)’s to be independent gaussian random vari-

ables (i.e., N(0,0n)), it can be shown that
E(FM,;) = 2005 (7.10)

Using a similar approach as in the previous case, it can be shown that for N

=1

?

Var [F M) = 8000y (7.11)
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Figure 7-6: Focus Measures with Object poll5

and in general for an N x N region,

800
Var [F M, = ﬁaj{,. (7.12)
The standard deviation orpro then becomes
28.28¢2
OFM2 = TN (713)

A threshold of mean -+ three times oo could be chosen as the threshold
for the focus measure. For a window size of 15 x 15, the threshold can be
calculated to be 37.53 + 10.62 = 48.15. The focus measures were again com-
puted for the objects shown in Figure 7.3. The focus measures corresponding
to some regions are plotted in Figures 7.6 and 7.7. It can be seen in Figure

7.6 that all the focus measures are much above the calculated threshold of
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Figure 7-7: Focus Measures with Object pal50

48.15. However, in Figure 7.7 it is seen that some of the regions yield very low
focus measures (almost constant and less than the threshold). These regions

correspond to the almost constant intensity regions in the object “palbd0”.

7.3.3 Brightness Variance

A focus measure based on brightness variance can be defined as

- LY #6d) (714

$,5=1

F M,

Assuming ¢(%,7)’s to be gaussian random variables as before, the expected

value of F'M3 can be shown to be

E[FM;) = o% (7.15)
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Figure 7-8: Focus Measures with Object poll5

and the variance of F' M3 can be shown to be

3 4

Var [FM;] = NzON-

(7.16)

Calculating the mean + three times the standard deviation, gives 2.5269 as the
threshold for a window size of 15 x 15. Some of the values of F'M3 computed
on the objects in Figure 7.3 are plotted in Figures 7.8 and 7.9. The plots look

identical to the ones obtained with the other two focus measures.

7.4 3-D Shape Recovery

In the previous section, three different focus measures were discussed and

their thresholds were derived. In this section we describe experiments where
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Figure 7-9: Focus Measures with Object pal50

the 3-D shape of an object is recovered using a thresholded focus measure.

7.4.1 Inclined Plane

A poster with characters was placed inclined to the optical axis. The
nearest end of the poster was about 20 cms from the camera and the farthest
end was about 45 cms. About 10 images of the object were taken with lens
position starting at step 175 and decrementing by 6 steps everytime. Two of
the images taken with lens steps 121 and 175 are shown in Figure 7.10 (a) and
(b).

It can be seen that the right side of Figure 7.10 (a) is focused and the left

side is blurred. In Figure 7.10 (b) the left side is focused and the right side is
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Figure 7-10: (a) and (b) Images of Character Poster at lens steps 121 and 175
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Figure 7-11: Depth Map of Inclined Plane without Thresholding

highly blurred. The images were divided into many non-overlapping regions of
size 15 x 15 pixels. The focus measure (laplacian squared) was computed over
all the 10 images and the maximum was found for each window. A quadratic
interpolation scheme was used with three points around the maximum to ob-
tain the location of the actual peak of the focus measure. The depth map
obtained without using any threshold on the focus measure is shown in Figure
7.11. As there are many regions with almost constant intensity in the poster,
the depth map looks quite noisy. By using a threshold on the focus measure,

most of the noise in the depth map could be eliminated as shown in Figure

7.12.

3-D Depth Map for a plane object
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3-D Depth Map for a plane object
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Figure 7-12: Depth Map of Inclined Plane with Thresholding

7.4.2 Cone Object

A cone object was made with a diameter of about 25 cms and height of
about 60 cms. A grid pattern was drawn all over the cone. The cone was
placed with its axis parallel to the optical axis of the camera and the tip of the
cone being about 20 cms from the camera. As in the previous case, 10 images
of the cone were obtained and processed. Two of the images corresponding
to lens steps 121 and 175 are shown in Figure 7.13 (a) and (b). It can be
seen that the center region of Figure 7.13 (a) is highly blurred and the borders
of the image are focused. The situation is reversed in Figure 7.13 (b). The
resulting depth map is shown in Figure 7.14 and the reconstructed (focused)

image is shown in Figure 7.15.
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(a) and (b) Images of a cone at lens steps 121 and 175

Figure 7-13:
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Figure 7-14: Depth Map of a Cone Object

Figure 7-15: Reconstructed Image of the cone
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7.4.3 Microscopic Objects

The Depth-from-Focus algorithm was also implemented on a Olympus
BH-2 Microscope to recover the shape and focused image of a microscopic
object. In the case of a microscope, the different images are obtained by
moving the object itself (stage), instead of moving the lens. Ten images of
a mustard seed were obtained by moving the object (stage) by 15 microns
everytime. Two of the images that were taken 105 microns apart are shown
in Figure 7.16 (a) and (b). It can be seen that in Figure 7.16 (a) the borders
of the image are focused and in Figure 7.16 (b) the center of the image is
focused. The depth map obtained with this object is shown in Figure 7.17 and

the reconstructed (focused) image is shown in Figure 7.18.

7.5 Conclusion

In this chapter we first described the implementation of STM on a DELTIS
camera, which is an off-the-shelf camera. No lens data was available for the
DELTIS camera. However, we successfully implemented STM on the camera
and in a large number of experiments we obtained an RMS error of about
2.5% in lens position. The accuracy of the method seems to be quite good for
practical applications such as autofocusing video cameras.

Next, we derived some thresholds for three commonly used focus mea-
sures. These thresholds were derived based on the assumption that the noise
at different pixels are independent and identically distributed gaussian random

variables. We have shown experimentals results to confirm our derivations. We
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Figure 7-16: (a) and (b) Images of a mustard seed taken 105 microns apart
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Figure 7-18: Reconstructed Image of the Mustard Seed
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have also implemented an algorithm to recover shapes of 3-D objects, using a
Depth-from-Focus (DFF) scheme with interpolation. In order to demonstrate
the utility of the algorithm, experimental results have been provided both for

a camera system and a microscope system.



Chapter 8

Conclusion

8.1 Summary

In this dissertation we have investigated focus as a cue for 3-D depth
recovery. Traditionally, Depth-from-Focus (DFF) has been a search method
requiring the acquisition of a large number of images with different camera
parameters. By searching for that set of camera parameters which gives rise
to the most focused image, depth information of a scene can be recovered.
DFF has the major advantages that it does not suffer from the correspondence
problem and the occlusion problem. Also, it involves much less computation
than stereo. However, DFF has the disadvantage that a long time is required
to acquire many images. This is due to the fact that the acquisition of each
image involves mechanical motion of the lens system and the scene has to

remain stationary during the entire process.

In order to circumvent these problems of DFF, we have investigated a

method of recovering depth directly by measuring the amount of blur in an

171



image. This approach is known as Depth-from-Defocus (DFD) and does not in-
volve any search. The method is based on a new Spatial Domain Convolution/
Deconvolution Transform and is known as the S-Transform Method (STM).
STM requires only two images acquired with two different camera parameters
to obtain the depth-map of the entire scene. It has been implemented on an
actual camera system known as SPARCS and a large number of experiments

have yielded an RMS error of 2.3 % in an autofocusing application.

STM is applicable to arbitrary scenes and does not make any assumptions
about the underlying focused images, such as the existence of step edges.
Since all the computations are done in the spatial domain and are local in
nature, STM can be implemented in parallel and the depth-map obtained can
be much denser than what can be obtained with Fourier domain methods.
We have investigated two variations of STM, one where the two images are
acquired with two different lens positions and another where the two images
are acquired with different camera apertures. The accuracies of both these

methods are about the same.

We have extended STM to continuously focus on moving objects. If the
objects in a scene are slowly moving, as in the case of a video camera, it is
not possible to acquire two images sequentially. Also it may not be feasible to
acquire the two images always from the same two fixed lens positions. With
these problems in view, we have extended STM to recover depth from two
images taken with any two lens positions. Also, we have suggested a simple
camera architecture for the simultaneous acquisition of two images. A large

number of experiments have demonstrated the utility of the method with an
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accuracy comparable to that obtained with stationary objects.

We have shown that the focused image of an object can be recovered using
two defocused images recorded with different camera parameter settings. The
same two images can be used to estimate the depth of the object using STM.
For a 3-D scene where the depth variation is small in image regions of size
about 64 x 64 pixels, each image region can be processed separately and the
results can be combined to obtain both a focused image of the entire scene

and a rough depth-map of the scene.

If, in each image region, at least one of the two recorded defocused images
is blurred only moderately or less (o < 3.5 pixels), then the focused image can
be recovered very fast (computational complexity of O(N?) for an N x N
image) using the spatial domain deconvolution method. In most practical
applications of machine vision, the camera parameter setting can be arranged
so that this condition holds, i.e. in each image region at most only one of
the two recorded defocused images is severely blurred (o > 3.5 pixels). In
those cases where this condition does not hold, the second method which
uses the Inverse Abel Transform can be used to recover the focused image.
This method requires camera calibration for the PSF and is several times
more computationally intensive than the first method above. The methods of
focused image recovery that we have investigated can be used as part of a 3-D
machine vision system to obtain focused images from blurred images for further

processing such as edge detection, stereo matching, and image segmentation.
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8.2 Future Research

The fact that DFF is more accurate than DFD while requiring more num-
ber of images to be acquired and processed suggests that by effectively combin-
ing the two techniques, we can gain the advantages of both speed and accuracy.
DFD can first be used to obtain a rough estimate of distance and by acquir-
ing a few more images and searching in the vicinity using DFF techniques, it
should be possible to obtain accurate depth estimates. The details of such a
scheme for the case of 3-D objects, however, needs further investigation.

Another avenue for future research is the active integration of focus and
stereo. We have shown that for a typical configuration, the accuracy of stereo
can be about one order higher than that of focus. Some preliminary work in
this direction has been done by Krotkov [67] and Abbott [1]. However, a more
systematic study of the relative strengths and weaknesses of the two schemes
needs to be carried out for the development of robust vision systems.

Parallel hardware and implementation of DFF and DFD algorithms needs
to be studied for real-time applications in machine vision, autonomous navi-
gation of vehicles etc. The image overlap problem which limits the accuracy
of STM at high levels of blur, if examined in more detail could perhaps lead
to the improvement in accuracy of STM. The theoretical properties of the

S-Transform may be studied in more detail.
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Appendix A

S Transform

In this appendix, we state the Forward and Inverse S Transform expres-
sions for one- and two-dimensional signals. The derivations may be found in

[113).

A.1 Forward S Transform

Let PN*! be the space of all real valued polynomial functions of degree
less than or equal to N for N = 0,1,2,---. Let f € PN*!. Then we can

write
N
F@) =3 axt® (A.1)
k=0

where q; are real valued coefficients and t is a real variable.

Let the n™® moment of a real valued function h(t) be denoted by A, for

n=20,1,2,---. We have

b= [ T h(t) dt. (A.2)

—Co0
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Let MY+ be the space of all real valued functions h(t) such that hy # 0,

and all positive integer moments of ~A upto order N are finite, i.e.,
|hp| < 00 for n=0,1,2,---N. (A.3)

Definition 1: The S Transform of a polynomial f(t) where f € PN*!
with respect to a kernel h(t) where h € MN*! is denoted by Sy{f}(r) or

Fy(7) and is defined by the integral

Sulf}(r) = Fu(r) = / h(t) f(r —1) dt, (A.4)

where 7 is the transform variable and 7 € R (i.e., 7 is real).

The integral in Eq. (A.4) above can be recognized as the convolution
integral. The S Transform of f(¢) where f € P *! with respect to a kernel
function h(t) where h € MM™*! denoted by Sg{f}(r) or F(7) can also be

expressed as

Su{f}(7) )= Z hkfk (7)- (A.5)

k=0 k'

A.2 Inverse S Transform

By repeated differentiation and some algebraic manupulations, it is pos-

sible to invert the above convolution process and obtain f(7) as

N
f(r) = > wnFy(r) (A-6)
k=0
where wy, = 1 and (A.7)
ho
p—l—k P hi

,—‘; (A.8)
g=1 g

Wy = Z Z h;l)-l-l

p=1|I,|=k

176



i € {1,2,3,--+,k} for¢g=1,2,3,-- -, k. (A.9)

The right hand side of Eq. (A.8) should be interpreted as summing over all
possible permutations of iy, 49, - -, i, (forp =1,2,3,---, k) such that they sum
to k (this condition is specified by |I,| = k). This corresponds to the different
ways in which the integer £ can be expressed as the summation of positive

integers 1,2,---, k.

A.3 Two-Dimensional Case

S Transform and Inverse S Transform can be extended to two-dimensional,
and in general n-dimensional case. Here we only summarize the results.

First we introduce some notation, and then present the results.
PN*1. Space of all real valued two-dimensional polynomial functions of degree
less than or equal to N for N =0,1,2,3,---.
z,y € R.

For any function f(z,y),

o om
mn — 29 . Al
f B Oy (z,v) (A.10)

Two-dimensional N-th order polynomial:

N N-m

flmy) = D D amaz™y" (A.11)
m=0 n=0

= 2 mad™yn (A.12)
0<m+n<N

If f € PN*! then

f™ =0 for m+n>N. (A.13)
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Two-dimensional moments:

P = /_o:o /_o:o z™ y" h(z,y) dz dy (A.14)

form,n = 0,1,2,3,---.
M+ the space of all real valued functions h(z,y) such that hg g # 0 and all

moments of h upto order N are finite, i.e.,
|hmp| <00 for m+n=0,1,2,---,N. (A.15)

Two-dimensional convolution:

(=1
= —— """ .- A7
OSWZ;LSN min! f ’ ( )

Two-dimensional deconvolution:
il k-1, i j
fo=2>wuly” =% Y w;F{ (Al8)
I= k=0 0<i+j<k

_1)p+i+j P hmq ng
where w;; = Y II e (A.19)

p+1 1 |
h mg!ng!

k N
0

byl
[=]

g=1
In the above equation, the summation is done over all possible mg, ng, p, for

q=1,2,3,---,p, subject to the conditions

m1+m2+---+mp=i

TL1+TL2+"'+TLp=j (A20)

mi+n2>21l,me+neg 21, ,mp+mn, >1




Appendix B

Lens Data and Image Database

This appendix describes the camera data and the image database related
to SPARCS (StonyBrook Passive Autofocusing and Ranging Camera System).
The image database (SPARCS.DB1) consists of many images taken with dif-
ferent lens positions at different illuminations. These are explained in the

following sections.

B.1 Lens Data

The following quantities are defined with respect to Figure B.1.
SI : Distance from Second Principle Plane to Image Detector

r0 : Distance from Object to First Principle Plane

1) SI = PK - HB where PK = 38.95 mm (fixed) HB is obtained from Table
B.1.
2) FL = FB - HB where FL, FB and HB are found from Table B.1.

3) Find r0 using lens rule: 1/FL = 1/SI 4 1/r0
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4) DO comes from lens data as best focus position.

B.2 Image Database

The image database has a number of images taken with many different
lens positions at many different illuminations. The image detector position
can be varied from step 0 to step 96 as shown in Figure B.2. The camera
constants for any step number are shown in Table B.1. Here we will give the
naming conventions used for different databases. All the images are stored
in binary row major format and are of size 128 x 128 bytes unless otherwise

indicated.

1) Directory: /local2/database/F4Lux200.£35

This image database contains images taken with illumination of 200 Lux.

The F Number is 4 and focal length is 35 mm.

There are 5 sub directories namely:

In each directory filenames indicate the object position in step number
and also the lens position in step number. For example, in the sub directory

“edge”, there are files like ed2510.img, ed2540.img and ed2570.img. These
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Focusing lens Film Pane
‘L End of lens
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Object DL PK
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PK : 38.950 mm
Figure B.1
Image Detector
Positions

A
Iy

step 1

step 0

Figure B.2
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Step dx FB HB FL SI r0 DO
0 0.0000 | 39.005 | 2.770 | 36.235 | 36.180 | -23835.9 | 9034.0
5 0.3140 | 38.905 | 2.819 | 36.086 | 36.132 | 28973.4 | 5300.0
10 0.6280 | 38.805 | 2.867 | 35.938 | 36.083 | 8943.1 | 3750.0
15 0.9420 | 38.707 | 2.914 | 35.792 | 36.035 | 5296.9 | 2850.0
20 1.2560 | 38.608 | 2.962 | 35.646 | 35.988 | 3751.0 | 2500.0
25 1.5700 | 38.511 | 3.009 | 35.502 | 35.941 | 2906.6 | 1930.0
30 1.8840 | 38.414 | 3.056 | 35.359 | 35.894 | 2372.3 | 1720.0
35 2.1980 | 38.319 | 3.102 | 35.217 | 35.848 | 2000.7 | 1464.0
40 2.5120 | 38.224 | 3.148 | 35.076 | 35.802 | 1729.7 | 1320.0
45 2.8260 | 38.130 | 3.193 | 34.937 | 35.757 | 1523.5 | 1170.0
50 3.1400 | 38.036 | 3.238 | 34.798 | 35.712 | 1359.6 | 1080.0
55 3.4540 | 37.944 | 3.283 | 34.661 | 35.667 | 1228.9 | 965.0
60 3.7680 | 37.852 | 3.328 | 34.524 | 35.622 | 1120.0 | 900.0
65 4.0820 | 37.761 | 3.372 | 34.389 | 35.578 | 1029.0 | 822.0
70 4.3960 | 37.670 | 3.416 | 34.255 | 35.534 | 951.7 770.0
75 4.7100 | 37.580 | 3.459 | 34.121 | 35.491 | 884.3 715.0
80 5.0240 | 37.491 | 3.502 | 33.989 | 35.448 | 825.8 670.0
85 5.3380 | 37.403 | 3.544 | 33.859 | 35.406 | 774.9 628.0
90 5.6520 | 37.315 | 3.587 | 33.728 | 35.363 | 729.5 595.0
95 5.9660 | 37.080 | 3.700 | 33.380 | 35.250 | 629.3 560.0

Table B.1. Lens Data
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three images were taken with an edge object placed at step 25. The 3 images
were taken with lens positions 10, 40 and 70 respectively. The object position

varies from step 10 to step 95, in steps of 5.

2) Directory: /local2/database/F4Lux400.£35

This image database contains images taken with illumination of 400 Lux.
The F Number is 4 and focal length is 35 mm.

There are 11 sub directories namely:
(1) ¢l (2) c2 (3) ev (4) fa (5) ft (6) gl (7) gs (8) mk (9) mn (10) sb (11) tg

In each directory filenames indicate the object position in step number
and also the lens losition in step number. For example, in the sub directory
“tg”, there are files like tg3510£4.400, tg3540f4.400, tg3570f4.400. These three
images were taken with a tiger object placed at step 35. The 3 images were
taken with lens positions 10, 40 and 70 respectively. The object position varies
from step 10 to step 95, in steps of 5. The objects used for this database are

shown in Figure 4.10.

3) Directory: /local2/database/F8Lux400.£35

This image database contains images taken with illumination of 400 Lux.
The F Number is 8 and focal length is 35 mm.

There are 11 sub directories namely:
(1) ¢l (2) c2 (3) ev (4) fa (5) ft (6) gl (7) gs (8) mk (9) mn (10) sb (11) tg

In each directory filenames indicate the object position in step number
and also the lens position in step number. For example, in the sub directory
“tg”, there are files like tg3510£8.400, tg3540£8.400, tg3570f8.400. These three

images were taken with a tiger object placed at step 35. The 3 images were
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taken with lens positions 10, 40 and 70 respectively. The object position varies

from step 10 to step 95, in steps of 5.

B.3 3-D Cone Object Database

A cone object was made by Mr. Tae Choi which is 2 metres long and has a
black and white stripe pattern all over it. It was placed in front of the camera
with the axis of the cone approximately coinciding with the optical axis of the
camera. The lens position was varied from step 0 to step 96 in steps of 1. The
images thus obtained have been saved as a database for research on 3-D shape
recovery. All the files are of size 360 x 360 and are stored in the binary row
major format.

Directory : /local2/database/cone360
The image filenames have the format “cone360s[stepno]” where stepno varies
from 0 to 96. For example, cone360s7 is the image obtained with lens at step

7 and cone360s35 is the image obtained with lens at step 35.
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