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ABSTRACT

A Depth-from-Defocus method named STM!! 12 was presented recently for stationary objects. Here we extend
STM for continuous focusing of moving objects. The method is named Continuous STM or CSTM. Focusing is
done by moving the lens with respect to the image detector. Two variations of CSTM - CSTM1 and CSTM2 - are
presented. CSTM1 is a straight forward extension of STM described in.'? It involves calibration of the camera
for a number (about 6 in our implementation) of discrete lens positions. In CSTM2 the camera is calibrated only
for one lens position. The calibration data corresponding to other lens positions are obtained by transforming
the data of the one lens position for which the camera is calibrated. In the experimental results presented here,
the focusing error in lens position was about 2.25% for CSTM1 and about 3% for CSTM2.

1 Introduction

We recently proposed a Depth-from-Defocus algorithm!' 12 using a new Spatial Domain Convolution/ Decon-

volution Transform (S-Transform).!® This method, named S-Transform Method or STM, uses only two images
taken with different camera parameters to estimate the distance of an object. All computations are done in the
spatial domain and are local in nature. Hence this method can yield the scene depth map and can be implemented
in parallel. STM has been implemented on a prototype camera system named Stonybrook Passive Autofocusing
and Ranging Camera System or SPARCS. A large number of experiments (about 600) have yielded an RMS error
of about 2.3% in autofocusing application. Two variations of STM are described in,'? one where the lens position
and focal length are changed and another where the diameter of camera aperture is changed.

In this paper, we address the problem of continuously focusing the camera on a moving object by changing the
lens position. Such a situation may arise in an autofocusing video camera and in robotic vision, where the objects
in the scene may be slowly moving. Wei and Subbarao'# have recently proposed a Fourier domain approach for
focusing on moving objects. They reported a focusing accuracy of about 4.3%. Here, we describe a spatial domain
method based on STM. The method is named Continuous STM or CSTM. The focusing accuracy of CSTM is
about 2.3 - 3%. Using CSTM it is also possible to obtain denser depth maps of the scene, than what can be
obtained by using Fourier domain methods such as.'*

Two variations of CSTM - CSTM1 and CSTM2 - are presented. CSTML1 is a straight forward extension of
the STM described in.!? It involves calibration of the camera for a number (about 6 in our implementation) of
discrete lens positions. In CSTM2 the camera is calibrated just once corresponding to one lens position. The



calibration data corresponding to other positions are obtained by transforming the data of the one lens position
for which the camera is calibrated. Experiments show that the difference in performance between CSTM1 and
CSTM2 is marginal.

2 Camera model

A schematic diagram of a camera system with variable camera parameters is shown in Figure 1. It consists
of an optical system with two lenses L1 and L2. The effective focal length f is varied by moving one lens with
respect to the other. O.A. is the optical axis, P1 and P2 are the principal planes, Q1 and Q2 are the principal
points, ID is the image detector, D is the aperture diameter, s is the distance between the second principal plane
and the image detector, u is the distance of the object from the first principal plane, and v is the distance of the
focused image from the second principal plane.

The distance s, focal length f, and the aperture diameter D, will be referred together as camera parameters
and denoted by e, i.e.,
e=(s,f,D). (1)

In order to illustrate the theoretical basis of CSTM we take the optical system to be circularly symmetric around
the optical axis, and use a paraxial geometric optics model for image formation. This is a good approximation in
practice to actual image formation process modeled by physical optics.! However, CSTM itself is applicable to
physical optics model also.

In Figure 1, u denotes the object distance and v denotes the distance of the focused image. These quantities
are related to the focal length f by the well-known lens formula,
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In Figure 1, if the object point p is not in focus, then it gives rise to a blurred image p” on the image detector
ID. According to geometric optics, the blurred image of p has the same shape as the lens aperture but scaled by
a factor. This holds irrespective of the position of p on the object plane. Since we have taken the aperture to be
circular, the blurred image of p is also a circle with uniform brightness inside the circle and zero outside. This is
called a blur circle.

Let the light energy incident on the lens from the point p during one exposure period of the camera be one
unit. Then, the blurred image of p is the response of the camera to a unit point source and hence it is the Point
Spread Function (PSF) of the camera system. This PSF will be denoted by h(z,y).

Let R be the radius of the blur circle and ¢ be the scaling factor defined as ¢ = 2R/D. In Figure 1, from
similar triangles and from the lens formula ( 2) we obtain
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Note that ¢ and therefore R can be either positive or negative depending on whether s > v or s < v. In the
former case the image detector plane is behind the focused image of p and in the latter case it is in front of the
focused image of p. After magnification normalization, the normalized radius R’ = soR/s of the blur circle can
be expressed as a function of the camera parameter setting and object distance u as

R,:%[l_l_l]. (4)



If we assume the camera to be a lossless system (i.e., no light energy is absorbed by the camera system) then

//h(x,y) de dy = 1 (5)

because the light energy incident on the lens was taken to be one unit. Using this and the fact that the blur
circle has uniform brightness inside a circle of radius R’ and zero outside, we obtain the PSF to be a cylindrical
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where h; is the PSF according to paraxial geometric optics.

(6)

In practice, the image of a point object is not a crisp circular patch of constant brightness as suggested by
geometric optics. Instead, due to diffraction, poly-chromatic illumination, lens aberrations, etc., it will be a
roughly circular blob with the brightness falling off gradually at the border rather than sharply. Therefore, as an
alternative to the above cylindrical PSF model, often® a two-dimensional Gaussian is suggested which is defined
by 2 2

hal@y) = 5o o (7)
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where o is a spread parameter corresponding to the standard deviation of the distribution of the PSF. In practice,
it is found that o is proportional to R', i.e. ¢ = k R’ for k > 0 where k is a constant of proportionality
characteristic of the given camera. Except when ¢ is very small (in which case diffraction effects dominate), in
most practical cases k = % is a good approximation.® Since the blur circle radius R’ is a function of e and u, o

can be written as o(e,u). (However, the image of an actual point light source for our camera was quite close to
a cylindrical function and was far from a Gaussian.)

If the radius R’ is a constant over some region on the image plane, the camera acts as a linear shift invariant
system. Therefore the observed image g(z,y) is the result of convolving the corresponding focused image f(x,y)
with the camera’s point spread function h(z,y), i.e., g(z,y) = h(z,y) * f(z,y) where x denotes the convolution
operation.

The point spread functions h; and hy defined above are only two specific examples used to clarify our method.
In order to deal with other forms of point spread functions, we use the spread parameter oy, to characterize them
where g}, is the standard deviation of the distribution of any function h. It can be defined as the square root of
the second central moment of the function h. For a rotationally symmetric function it is given by
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Using the polar co-ordinate system it can be shown® that the spread parameter oy, corresponding to h; is
R'//2. Therefore from equation (4) we have
d c
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We see that for a given camera setting (i.e., for a given value of the camera parameters s, f, D) the spread
parameter oy, depends linearly on inverse distance u~!. Similarly it can be shown that the spread parameter oy,

of hy is 0. Therefore from equation (4) we again obtain oy, = mu~! +c.

3 Distance of Moving Objects (CSTM)

In this section we present the outline of the theoretical basis for determining distance. Details can be found
in.!? Let f(z,y) be the focused image of a planar object at distance u. The focused image f(z,y) at a point



(z,y) of a scene is defined as the total light energy incident on the camera aperture (entrance pupil) during one
exposure period from the object point along the direction corresponding to (z,y).

Let g1 (z,y) and gz(z,y) be two images of the object recorded for two different camera parameter settings e;
and e, where
e1 = (s1,f1,D1) and ez = (s2,fa2, Do) (10)

The images g1 and go are normalized with respect to magnification, brightness, and other factors such as sensor
response and vignetting as necessary.

For a planar object perpendicular to the optical axis, the blur circle radius R’ is a constant over the image of
the object (this may not be obvious at first sight, but it can be proved easily). In this case the camera acts as a
linear shift invariant system. Therefore g; will be equal to the convolution of the focused image f(z,y) with the
corresponding point spread function h;(z,y). In brief this can be expressed by g1 = by * f and go = hg * f. Let
the spread parameter o5 for A, be o1 and for hs be os.

Now from equation (9) we can write

o = mlu_l + ¢ (11)
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Similarly we obtain
o9 = mgu_l + Co (13)

Therefore, o1 can then be expressed in terms of o9 as

m m
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mo mo

We assume that in a small image neighborhood the focused image f(x,y) can be adequately approximated
by a cubic polynomial in (x,y). This assumption has been relaxed in the implementation, using smoothed
differentiation filters as discussed in.'2 In our application, the image neighborhood is of size 9 x 9 pixels. Using
the S-Transform the following deconvolution expressions have been derived in.!?
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In the above two relations, the dependence of all functions on (z,y) is understood but has been dropped from
notation only for convenience. It can easily be shown that for a cubic polynomial, 72g; = v2g2. Defining
g = (g1 + 92)/2 and equating the right hand sides of the equations in (15) and squaring first and then integrating
over a small region around the point (z,y) we get
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where G’ = £G. The sign of G’ is ambiguous, but this ambiguity is not inherent. It was introduced by the
squaring of equation (16). The ambiguity can be resolved from the given images g; and g» in one of several ways.
As one example, if g; is more blurred than go then 02 > 02 and therefore the sign is positive, otherwise the sign
is negative. It is easy to determine which of g; and g2 is more blurred. From the theory on Depth-from-Focus
methods it is well-known that the gray-level variance of an image is a good measure of the degree of focus of the



image. Therefore, if v; , vg are the gray-level variances of g1, gs respectively, then the sign is positive if v; < v
and negative otherwise. Therefore
GI:{ +G i v < e
—G  otherwise

Now substituting for o1 in terms of o5 using equation (14) into equation (18) yields
o3(a® = 1)+ 2aB0y + 82 =G (19)
The above equation can be solved as a quadratic in os.

In our experiments, Dy = Ds and therefore a = 1.0. In this case the above quadratic equation in g9 reduces
to a linear equation. Therefore we get the unique solution:
G — 2
g9 = 6
2

(20)

Ideally it should be possible to compute the value of 9 at one pixel (z,y) in the image and obtain an estimate
of the distance. But because of noise and digitization, it is necessary to combine information from many pixels in
an image region. oy is computed at each pixel in a neighborhood of size 48 x 48 and a histogram of the values is
obtained. The histogram is smoothed by a Parzen window and the mode of the resulting distribution is taken to
be the best estimate of g2. Once o5 is determined the object distance w can be obtained using a look-up table or
calculated from equation (13). The distance u can then be substituted into the lens formula to obtain v. Moving
the lens such that s = v in Figure 1 results in autofocusing the object. In our experiments, the lens position v for
focusing the object was determined using a look-up table with o as the index to the table. The look-up table
itself was created by a calibration process. This approach was found to be more accurate than using equation (13)
and the lens formula.

Until now what we have described is the STM for determining distance and autofocusing of a stationary
object. In this case the two images g; and go are recorded at lens positions S; and S; + AS.

In the case of a moving object, the two images g; and go will have to be recorded at the same instant. They
cannot be recorded in sequence one after the other because the object would have moved during the time it takes
to move the lens from one position to the other. Figure 5 shows a scheme for recording g; and g» simultaneously
using a beam splitter and two image detectors ID1 and ID2. The effective distance of ID1 and ID2 from the lens
are set to be S; and Sy = S; + AS.

Let ID1 be the image detector in Figure 5 on which we want to continuously record the focused image of
a moving object. When the lens is moved along the optical axis to focus the moving object, both S; and S
change but So — 57 = AS remains the same. CSTM1 is based on this camera architecture. CSTM1 is a direct
extension of STM applied to moving objects using a camera system which is similar to the one shown in Figure 5.
In general, look-up tables have to be used for better accuracy in focusing. In the case of CSTM1, look-up tables
have to be obtained for a number of discrete values of S;. The data at other values of S; are obtained through
interpolation. Therefore, CSTM1 involves camera calibration for a number of lens positions.

CSTM2 is based on the following observation. It can be shown that if we take two images g; and go keeping
the aperture diameter constant (D; = Dy), then a = 1.0 and 8 = ¢; — c2. So equation (14) becomes

g1 =09 +C1 — Cs. (21)

Therefore, if we know o = g5 for a lens position Sy, then we can compute o = o7 for any other lens position
S1, by adding a known constant ¢; — ¢o. Consequently, if a look-up table is available to find the lens focused
position using g9, then the same look-up table can be transformed to obtain the lens focused position using o .



The validity of equation (21) can be verified experimentally. Figure 4 shows calibration data for several lens
positions. The X-axis denotes object distances specified in lens step number and Y-axis is the blur parameter
o (see next section for more details). It is found that the data for different lens positions are roughly shifted
versions of the same curve. Equation (21) however is not exact, but only a good approximation for actual camera,
systems because our PSF model is not exact.

In the next section we describe the SPARCS system and then discuss in detail the implementation of this
algorithm. We also give experimental results on real world objects.

4 Implementation

4.1 SPARCS

CSTM described above for moving objects was implemented on a camera system named Stonybrook Passive
Autofocusing and Ranging Camera System (SPARCS). A block diagram of the system is shown in Figure 2.
SPARCS consists of a SONY XC-77 CCD camera and an Olympus 35-70 mm motorized lens. Images from the
camera are captured by a frame grabber board (Quickcapture DT2953 of Data Translation). The frame grabber
board resides in an IBM PS/2 (model 70) personal computer. The captured images are processed in the PS/2
computer.

The lens system consists of multiple lenses and focusing is done by moving the front lens forward and backward.
The lens can be moved either manually or under computer control. To facilitate computer control of the lens
movement there is a stepper motor with 97 steps, numbered 0 to 96. Step number 0 corresponds to focusing an
object at distance infinity and step number 96 corresponds to focusing a nearby object, at a distance of about
55cm from the lens. The motor is controlled by a microprocessor, which can communicate with the IBM PS/2
through a digital I/O board (Contec mPI024/24). Pictures taken by the camera can be displayed in real time
on a color monitor (SONY PVM-1342 Q). The images acquired and stored in the IBM PS/2 can be transferred
to a SUN workstation. In effect, the system is set up such that, a C program running on the PS/2 can move the
lens to any desired step number and take pictures and process them.

Figure 3 shows a plot of the lens step number (the first column) along the z-axis and the reciprocal of best
focused distance 1/Dg along the y-axis. This data was obtained from the lens manufacturer. The plot indicates
that the lens step number and the reciprocal of best focused distance have an almost linear relationship. This is
in fact predicted by the lens formula. Based on this relationship, we often find it convenient to specify distances
of objects in terms of lens step number rather than in units of length such as meter. For example, when the
“distance” of an object is specified as step number n, it means that the object is at such a distance Dy that it
would be in best focus when the lens is moved to step number n. The precise relationship between n and Dy is
given by Figure 3.

4.2 CSTM for moving objects

The overall operation of SPARCS for finding distance and autofocusing of a moving object is summarized as a
flow-chart in Figure 6. The stepwise operation is also explained briefly with comments below. In the experiments,
initially, the zoom setting of the lens was set to be 35 mm focal length and the F-number was set to be 4. The
camera gain was set to +6db.

The lens is first moved to S; and a first image g1(z,y) is obtained. Optionally we can specify the number
of image frames (typically 4) to be recorded which are then averaged to reduce noise. Such frame averaging



is particularly needed under low illuminations, and in the presence of flickering illumination such as fluorescent
lamps. This was clearly evident from a number of tests on SPARCS.

The lens is then moved to Sz and a second image go(z,y) is recorded. Again several frames may be recorded
and averaged. The object to be ranged/focused can be selected by specifying a region in the image. The default
region is the center of the image. The size of the region is also an option and the default size is 72 x 72. The two
images are then normalized with respect to brightness. This is done by dividing the grey level of each pixel by
the mean grey level of the entire image. Our implementation does not normalize the images with respect to other
types of distortions such as vignetting and sensor response characteristics, as their effects are not significant for
our camera. We have also ignored the magnification normalization, as the change in magnification due to change
in lens position was found to be negligible (about 2%).

The images are then smoothed using the least-squares polynomial fit filters proposed by Meer and Weiss.?
The filter size is 9 x 9. The Laplacian of the two smoothed images are then obtained using the differentiation
filters of Meer and Weiss.?

The sign of G’ is found by computing the gray-level variances of the original (unsmoothed) images g; and go.
G? is calculated at every pixel by integrating over a 9 x 9 window centered at the pixel. G’ is then calculated at
every pixel. The value of the camera constants a and § are calculated from a knowledge of the camera parameters
(see Table 1). An estimate of o9 is then obtained at every pixel using equation (20). Due to border effects of
smoothing filter and integration, the estimates of o3 is limited to the interior 48 x 48 region of the original 72 x 72
images. A histogram of the estimated o2 is computed. The bin size of the histogram was 0.1 (the expected range
of o3 was from about -10.0 to +10.0 pixels). The histogram was smoothed using a Parzen Window of size 5 bins.
The mode of the histogram was taken to be the best estimate of 5. This value is used to estimate the distance
of the object. In autofocusing application, from &9, the lens step number which will bring the object to focus is
determined. The lens is then moved to this step number to accomplish autofocusing.

In obtaining the object distance or lens step number for focusing from the computed value of o3, a look-up
table is used. The look-up table itself is obtained through calibration as described in.!?

Suppose the result of the first trial is Sy (step number n). After the first iteration, the lens is moved to Sy
(step number n) to focus on the object. Since the object would have moved in the mean time, we again take
two images at lens positions S1 = Sy and S; = Sy + AS (steps n and n + 30 in our implementation). In a
camera system as shown in Figure 5, it is not necessary to move the lens. Both the images can be obtained
simultaneously. Hence the time between two iterations can be very small. The entire procedure is repeated with
the two new images. Every time, a new focus position Sy is calculated using the appropriate calibration table
(CSTM1) or by using the same calibration table, but shifted versions of it (CSTM2). The amount by which the
calibration table has to be shifted depends on the previous focusing position. Everytime a new result is obtained,
two new images are taken and the entire procedure is repeated in a loop. This ensures that the object is always
in focus (on ID1) whether the object is stationary or moving.

4.3 Experiments

We used five different planar objects in our experiments (Figure 7). A center region of 72 x 72 pixels, that is
usually used for computation is highlighted, in the Tiger image. After filtering, the useful region for computation
of o will be only 48 x 48 pixels. We have tried our experiments with even smaller regions upto 32 x 32 pixels and
obtained satisfactory results, as long as there is some contrast in that region.

For CSTM1 we calibrated the system at 6 different lens positions, namely steps 40, 50, 60, 70, 80 and 90. The
calibration results are plotted in Figure 4, where the X-axis is the object distance in step number and Y-axis is
the value of sigma. In the Figure, the plot “call0.dat”, was obtained using images recorded at lens steps of 10



and 40, the plot “cal20.dat” was obtained corresponding to lens steps of 20 and 50 and so on. The plots can be
seen to be more or less shifted versions of each other. We assumed that the calibration characteristics do not
change much in a 10 step interval and hence the choice of these 6 lens positions. Instead of calibrating at all the
96 lens positions we just calibrated at these 6 almost uniformly spaced lens positions and for other lens positions
we obtained the calibration data by merely shifting the nearest available calibration data.

The essence of CSTM is that we can take two images from any arbitrary lens positions S¢ and Sy + AS to
compute distance. To demonstrate this fact, we placed the objects at a known distance (say step 10) and the
program was run by specifying a different starting lens position (10,20,30,40,50 or 60), everytime. It means that
the first time the two images were taken at steps 10 and 10+30 = 40 and the program was run without changing
the object position. The second time the object position was still the same as before but the program was run
with starting lens steps of 57 = 20 and S3 = 20 4+ 30 = 50. This procedure was repeated for other lens positions
of 81 = 30,40,50 and 60.

Suppose we placed an object at step 10 and specified step 60 as the starting lens position. It is equivalent
to the case when the object actually moved from step 60 to 10 (about 2 meters), a relatively high velocity,
between two runs of the program. With one single object and for one single object position we did 6 experiments,
corresponding to the 6 different starting lens positions mentioned above. The experiments were then repeated
for 18 different object distances. Thus, with one single object we performed 6 * 18 = 108 experiments. For five
different objects, the total number of experiments becomes 108 * 5 = 540.

During calibration, it was found that the estimated value of oo (in Figure 4) was unreliable when both the
images g1 and go (on which the estimation was based) were highly blurred. For this reason, calibration was limited
to the case when the lesser blurred image, say g1, was recorded at a position that was at most 25 lens steps away
(corresponding to a radius of blur circle of about 7 pixels) from the focused lens position and the higher blurred
image, say go, was recorded at a lens position that was at most 25+30 = 55 lens steps away (corresponding to
a radius of blur circle of about 14 pixels) from the focused lens position. It is for this reason that the plots in
Figure 4 do not cover the entire range (0 to 96) of lens positions. For example, “call0.dat” in Figure 4 covers
the range from step 10 to step 65. The range 66 to 96 is not covered because in that case the two images would
be highly blurred. The range 0 to 10 steps is not covered by any plot because lens positions 0 and 5 correspond
to placing objects at distances of 5.30 meters and 9.03 meters from the camera. Due to space restrictions in our
laboratory, we were not able to place objects farther than 5 meters, and therefore the calibration data for these
two points were not obtained.

If both images g; and gs are highly blurred, then reliable focusing can be achieved by iterating CSTM twice.
The first iteration gives a rough estimation of the focused lens position. The lens is moved to this position and
CSTM is applied again. In this case, the images will not be highly blurred as in the first iteration. Therefore
good focusing will be achieved. In the experiments, the object was not moved between two iterations. However,
modest movement (less than 20 lens steps) will not significantly alter the performance of CSTM.

Some of the results of CSTM1 are plotted in Figure 8. The X-axis indicates the experiment number. Since
there are five objects and six lens positions, the number of experiments for each distance is 30. The Y-axis
indicates the estimated distance in step number. The plot “step 17” shows the results when the objects are
placed at step 17, and images are obtained with different lens positions. The other two plots in Figure 8 show
the results when the objects are placed at step 56 and step 85 respectively. Ideally these plots should have been
straight lines parallel to the X-axis.

The first set of experiments included 440 trials of the case when the two images were not highly blurred
(corresponding to less than 25 steps of blur (7 pixel radius) for one image and less than 55 steps blur (14 pixel
radius) for the second image). For these trials, the RMS error in focusing for one iteration of CSTM1 was 2.22
steps out of 97 steps, or about 2.3%. In terms of the radius of blur circle the error is about 0.417 pixel. The
second set of experiments included the 440 trials of the first set and an additional 100 trials where both images
were highly blurred (according to the criteria explained earlier). In order to perform trials for the highly blurred



cases, when necessary, the calibration data in Figure 4 was extended through simple linear extrapolation of the
plots. Two iterations of CSTM1 were performed for each of the 540 trials in the second set of experiments. The
RMS error in focusing for these trials was 2.3 steps out of 97 steps or 2.4%. In terms of the radius of blur circle
this error corresponds to about 0.432 pixel.

For experiments on CSTM2, only one set of calibration data corresponding to the plot “cald0.dat” in Figure
4 was used. This data set was shifted by appropriate amounts to obtain other required calibration data such as
the plots labelled “call0.dat”,“cal20.dat” etc., in the figure. Experiments similar to those described earlier for
CSTM1 were repeated for CSTM2. The first set of experiments included 440 trials with one iteration, for the
case when the two images were not highly blurred. The RMS error in focusing for these experiments was 2.9
steps out of 97 steps or about 3.0%. The second set of experiments included 540 trials which included the 100
trials where the two images were highly blurred. CSTM2 was run for two iterations as before and the RMS error
in focusing was 3.05 steps out of 97 steps or about 3.1%.

A focusing error of 3% (corresponding to a radius of blur circle of about 0.56 pixel) is not perceptible by
humans. Therefore, the results of CSTM are quite satisfactory. However, further improvement can be obtained
by using a Depth-from-Focus (DFF) method and searching only in a small interval near the estimated lens
position.

5 Conclusions

The DFD method based on STM has been extended to continuously focus on moving objects. It has been
successfully demonstrated on an actual camera system built by us. Two variations of continuous focusing -
CSTM1 and CSTM2- are presented. CSTM1 involves straight forward extension of the STM described in'? and
involves extensive camera calibration. The focusing accuracy was 2.3% by calibrating the camera system at 6
different pairs of lens positions. In CSTM2, the camera is calibrated just once corresponding to one lens position.
The calibration data corresponding to other positions are obtained by transforming the data obtained for the
one single position. A theoretical justification for this has been provided. The focusing accuracy of CSTM2 was
found to be about 3% in lens position. The marginal improvement in accuracy of CSTM1 was achieved at the
cost of a more cumbersome calibration procedure.

A typical application for CSTM is in autofocusing of video cameras, where it is necessary to quickly focus on
objects which keep changing their positions. CSTM can also be used to continuously obtain a rough depth map
of a dynamic scene. The resolution of the depth map can then be improved by using stereo vision techniques, if
desired.
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