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Abstract

This paper describes the application of a new Spatial-Domain Convolu-
tion/Deconvolution transform (S transform) for determining distance of objects
and rapid autofocusing of camera systems using image defocus. The method
of determining distance, named STM, involves simple local operations on only
a few (about 2 to 4) images and it can be easily implemented in parallel. STM
has been implemented on an actual camera system named SPARCS. Experi-
ments on the performance of STM and their results on real-world objects are
presented. The results indicate that STM is useful in practical applications.
The utility of the method is demonstrated for rapid autofocusing of electronic
cameras. STM is computationally more efficient than other methods, but for
our camera, system, it is somewhat less robust in the presence of noise than a
Fourier transform based approach. Although less robust, STM is still a useful

technique in many applications such as rapid autofocusing.
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1 Introduction

A new transform named Spatial-Domain Convolution/Deconvolution Transform or S
Transform was introduced recently [20]. S transform provides a direct spatial domain
method for both convolution and deconvolution of images. It is useful in the restora-
tion of defocused images, and in determining distance of objects from a camera system
[21]. In this paper, we describe the application of the S transform for determining
distance of objects from a camera using image defocus information.

Determining distance of objects using image defocus information has been in-
vestigated by many researchers. Most previous works deal with methods involving
processing a large number of images [5, 7, 11, 8], or simple objects such as edges
[22, 4, 15, 18], or camera systems with restricted class of point spread functions
[9, 16, 17], or computing Fourier coefficients of images Sub89.06. In this paper, a new
method named S Transform Method or STM which uses only a few images (about 2
to 4) is presented. It is applicable to arbitrary objects and does not impose restric-
tions on the point spread function of camera systems. Further, the method does not
involve the computation of Fourier coefficients of images.

In addition to being novel, STM has one important advantage over existing meth-
ods in that it involves only local operations on images. Therefore it can yield denser
depth-maps, and it can be easily implemented in parallel.

STM has been implemented on an actual camera system named Stonybrook Pas-
sive Autofocusing and Ranging Camera System or SPARCS. Experiments on SPARCS
and their results are described. The results indicate that STM is useful in practical
applications such as passive ranging in robotic vision and rapid autofocusing of cam-
era systems.

Next section describes the camera model and image defocus model used in this
paper. The following section defines S transform and summarizes some results relevant
to STM. Section 4 deals with the detailed theory of STM. Implementation of STM,

experiments, and their results are presented in the subsequent sections.



2 Camera model

Image formation in a simple camera is shown in in Fig. 1. Let P be a point on a
visible surface in the scene and p be its focussed image. The relation between the

positions of P and p is given by the lens formula,
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where u is the object distance and v is the image distance. If P is not in focus it gives
rise to a blurred image. According to geometric optics, the blurred image of P has
the same shape as the lens aperture but scaled by a factor. Let the blurred image of
the point P be h(z,y). Clearly h(x,y) is the response of the camera to a point source
and hence h(z,y) is the point spread function.

Usually camera systems have a circular aperture. In this case the blurred image of
a point on the image detector is circular in shape and is called the blur circle. Let
R be the radius of the blur circle and D be the diameter of the lens aperture, and s
be the distance from the lens to the image detector plane (Fig. 1). Also let ¢ be the

scaling factor defined ¢ = 2R/D. In Fig. 1, from similar triangles we have
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Substituting for 1/v from Eq. (1) in the above equation, we obtain
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Therefore

(4)
Note that ¢ and therefore R can be either positive or negative depending on whether
s > vors < wv. In the former case the image detector plane is behind the focused
image of P and in the latter case it is in front of the focused image of P.

According to geometric optics, the intensity within the blur circle is approximately
constant. If we further assume the camera to be lossless system (i.e., no light energy

is absorbed by the camera system) we get

L if2?+y? < R?
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where hi(z,y) is the point spread function of the camera, derived using geometric
optics.

Taking diffraction and non-idealities of lenses into account, an alternative model has
been suggested for the intensity distribution given by a two dimensional Gaussian

(12, 9, 17],

1 _1 w2+y2
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where ¢ is the spread parameter such that
oc=kRfork>0. (7)

k is a constant of proportionality characteristic of the given camera. In except when

o is very small (in which case diffractioneffects dominate), in most practical cases

k= (8)
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is a good approximation [19, 15, 18].

If the radius R is a constant over some region on the image plane, the camera acts
as a linear shift invariant system. This is justified because the camera parameters
s, D and f all remain the same. Therefore the observed image g(z,y) is the result of
convolving the corresponding focused image f(z,y) with the camera’s point spread

function h(z,y), i.e.,
9(z,y) = h(z,y) * f(z,y) (9)

where * denotes the convolution operation.

The point spread functions h; and hy defined above are only two specific examples
used to clarify our method. In order to deal with other forms of point spread func-
tions, we use the spread parameter g; to characterize them where oy, is the standard
deviation of the distribution of any function A.

Using the polar co-ordinate system it can be shown [15] that the spread parameter

o, corresponding to hy is R/+/2. Therefore from equation (4) we have

o, =mut+e 10
1 (
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We see that for a given camera setting (i.e., for a given value of the camera parameters
s, f, D) the spread parameter o, depends linearly on inverse distance u~'. Similarly it
can be shown that the spread parameter oy, of b is 0. Therefore from equations (7),
(8) and (4) we again obtain

Ony, = mu"" +c. (13)

In fact it has been shown in [18] that even for an arbitrarily shaped aperture, oy, is

linearly related to inverse distance u 1.

3 S Transform

A detailed discussion of S transform can be found in [20]. In this section we summarize
some results relevant to STM. First we introduce some notation, and then present
the results.

PN*1. Space of all real valued two-dimensional polynomial functions of degree less
than or equal to N for N =0,1,2,3,---.

For z,y real and any function real f(z,y),

™= B By (z,y). (14)

Two-dimensional N-th order polynomial:

N N-m
f@y) = >0 D amaz™y" (15)
m=0 n=0
= Z Am " Y". (16)
0<m+n<N
If f € PNt then
fm"=0 for m+n>N. (17)



Two-dimensional moments:

B, = /_o:o /_o:o z™ y" h(z,y) dz dy (18)

for m,n = 0,1,2,3,---.
Mj'*': the space of all real valued functions h(z, y) such that kg # 0 and all moments

of h upto order N are finite, i.e.,
|| <00 for m+n=0,1,2,---,N. (19)

Forward S transform of f(xz,y) with respect to h(z,y):

Fale,y) = hzy) « f(z,9) (20)
- 0<m+n<N min! m,n

where A, ,, is as defined in Eq. (18).

Inverse S transform of Fy(z,y) with respect to h(z,y):
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where, in the above equation, summation is done over all possible mgy, n4, p, for ¢ =

1,2,3,---,p, subject to the conditions
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ntngte = : (24)
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(We apologize, for we could not find a simpler notation/representation for the inverse
S transform. Derivation of this transform and examples can be found in [20, 21].
For the purposes of this paper, N < 3. If you have patience, it is not difficult (but

tedious) to verify the inverse transform.)



4 Determining Distance by STM

STM is based on approximating the image function f(z,y) as a polynomial function

in small regions. (Note: At least in principle, for any given analytic finction, a

polynomial arbitrarily close to it exists, according to a famous theorem by Weirstrass,

as is well known in Approximation Theory.) In our application, usually a third order

polynomial approximation in image neighborhoods of size about 9 x 9 pixels suffices.

This assumption is specified by

fla,y) = Y amaz™y" -
0<m+n<3 B1< y < B2

From equations (9) and (21) we have the blurred image,

(-
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Assuming h(z,y) is circularly symmetric, it can be shown that
hyn =0 for (m odd) or (n odd) and hy,, = hpm-

For any point spread function,

hoo =1

From equations (26) and (28), g(z,y) becomes

1 1
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(25)

(26)

(27)

(28)

(29)

In order to use the inverse S transform for this case we can write down the weights

w; ; from equation (23) as

1
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From equation (27) we have hy; = h1o = hi; = 0 and hey = hoo. Substituting these

values of Ay, in the expressions for w; ; above, and using Eq. (22) we get

Fla,) = 9(z,u) — "2 {022, 9) + ¢(2,1)) (36)

From the definition of moments and o5, we have hoo = hog = 03 /2. So

Fow) = a(e.9) = 2 {0 (e0) + 4°%(0,1) (37)

Let us consider a blurred image g;(z, y) of the object and let o; be the corresponding

spread parameter. From equation (10) we can write

op=mu + ¢ (38)
where
Ds; Dis; |1 1
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Similarly for a second blurred image go(z,y) we can write

09 = mgu_l =+ Co (40)
where
Dsso Dysy | 2 2
my = ——— and —— |- — 41
T 22 ‘T 2/2 lh 321 (4)
Therefore,
1_0176a 027 O (42)
ma mo
o1 can then be expressed in terms of oy as
o, = aoy + . (43)
where
o= m and,@zcl—@@. (44)
mo mg



Now, the original (focused) image f(z,y) can be expressed in terms of ¢;(z,y) using
equation (37) as

1
f=g" = ot (60" +41") (45)

Similarly f(z,y) can also be expressed in terms of a second blurred image go(z,y) as

1
f=9"~ 0 (" +4") (46)

Equating the right hand sides of equations (45) and (46) we have

1 1
o’ = of (9 +97°) = g3° - 103 (95° + 95°) . (47)

Using relations (43) and (47) we obtain,

aos; +boy +¢ =0 (48)
where
o = 3{ot (@ +ad?) - (o +02) ) (49
b = % o B (95° +95°) (50)
c = (°-2°)+ i 8 (92 +95°) (51)

Note that (¢%% + ¢g*°) = ?g corresponds to the Laplacian operation on the image
g(z,y). The values of o and § are determined using the camera parameter values in
relations (39), (41) and (44). The Laplacians \v?¢; and v/%g2 are computed from the
two observed images ¢g; and go. Therefore, the coeflicients a, b and ¢ can be computed
from a knowledge of the camera parameters and the observed images using relations
(49), (50) and (51). Having computed the coefficients a,b and ¢, we can solve for oy
by solving the quadratic equation (48). The distance u of the object is then obtained
from equation (40).

Every pixel of the 64 x 64 image gives rise to two values of object distance u.
Ideally every pixel should give rise to the same set of values of u. This happens if
the polynomial approximation of the image, in a small neighbourhood around the

pixel, is good enough. But in practice there will be some pixels giving rise to different
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values of u. In order to deal with this problem, a histogram of the number of pixels
versus object distance is generated. The mode of the histogram, is then taken to be
the actual value of u. In a sense, each pixel votes for a value of u. The value of u

which receives the maximum number of votes, is chosen to be the actual value.

5 STM Implementation

STM described above was implemented on a camera system named Stonybrook Pas-
sive Autofocusing and Ranging Camera System (SPARCS). SPARCS was built over
the last two years in the Computer Vision Laboratory at the Department of Elec-
trical Engineering, State University of New York, Stony Brook. A block diagram of
the system is shown in Figure 2. SPARCS consists of a SONY XC-711 CCD camera
and an Olympus 35-70mm motorized lens. Images from the camera are captured
by a frame grabber board (Quickcapture DT2953 of Data Translation). The frame
grabber board resides in an IBM PS/2 (model 70) personal computer. The images
taken by the framer grabber are processed in the PS/2 computer.

The focal length of the lens can be varied manually from about 35mm to 70mm.
The F-number which is defined as the ratio of the focal length f to aperture diameter
D can also be set manually to 4, 8, 22 etc.,. The lens system consists of multiple
lenses and focusing is done by moving the front lens forward and backward. The
lens can be moved either manually or under computer control. To facilitate computer
control of the lens movement there is a stepper motor with 97 steps, numbered 0 to
96. Step number 0 corresponds to focusing an object at distance infinity and step
number 96 corresponds to focusing a nearby object, at a distance of about 50cm from
the lens. The motor is controlled by a microprocessor, which can communicate with
the IBM PS/2 through a digital I/O board (Contec mPI024/24). Pictures taken
by the camera can be displayed in real time on a color monitor (SONY PVM-1342
Q). The images acquired and stored in the IBM PS/2 can be transferred to a SUN
workstation.

As mentioned earlier, there are 97 step positions for the stepper motor, and there-
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fore there are 97 distinct focusing positions of the lens. For each position of the lens,
there corresponds a unique distance which is such that an object placed at that dis-
tance from the camera would be in focus. For convenience shall use lens step positions
to specify and measure distances. For example, if the distance of an object is said to
be step 30, by this we mean that the distance of the object is such that if the lens is
moved to step number 30, then the object would be in best focus.

The first step in the implementation of STM is to find the camera constants
myq, ¢y and mo, co. There are two different ways of determining these constants. One
method which was already mentioned is to use relations (39) and (41). This requires
accurate knowledge of the camera parameters. The second method is to determine

them experimentally [15]. The experimental method is briefly outlined next.

5.1 Camera Calibration

In our experiments, only one camera parameter, the lens position s was varied. All
other parameters (focal length f and aperture diameter D) were almost nearly con-
stant. In the experiments, three different lens positions corresponding to step numbers
10, 40, and 70 were chosen. For each position of the lens, the object distance was
varied from step number 0 to 95 at 5 step intervals. The object was chosen to be
a step edge created by pasting black and white papers on a cardboard. For each
distance of the object, the parameter o was measured. More details on this part can
be found in [15, 18]. The data thus obtained for lens step positions 10, 40, and 70 are
shown in Figures 3, 4, and 5, respectively. The slope and the intercepts of the linear

parts of these plots give the values of m and c respectively.

5.2 Experiments

A typical object was placed in front of the SPARCS camera. Three images of the
object were obtained for three lens positions of steps 10, 40, and 70. A subimage
of size 64 x 64 from the center of each of the the three images were extracted for

further processing. The three images were normalized with respect to brightness by
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normalizing their mean grey levels to unity.

In order to reduce the effects of noise, the images were smoothed using the
smoothed unweighted differentiation filters suggested in [23]. The filter size was 9 X 9.
The same filters were used for estimating the Laplacian of the images.

Next the coefficients a, b, and ¢ were calculated for images taken at steps 10 and
40. The solution for o was then obtained. The distance of the object was obtained
from the solution for o3. In our experiments, due to the cubic polynomial model
for the image f(z,y), the Laplacians of g; and g, were the same, and also a = 1.0.
Therefore, the coefficient a was always zero. For this reason, the solution for o, and
hence the solution for distance were always unique. Next the same calculations were
repeated for images taken at lens positions 40 and 70 to check for consistency of the
results.

One value of distance was calculated from each image neighborhood where the
Laplacian was more than a specified threshold. A histogram of the values thus com-
puted at different pixels were computed. The mode of the histogram was taken to be
the most likely estimate of distance of the object.

The experiment described above was performed on three different objects: poster
of a tiger (Fig. 6), a binary image with printed text (Fig. 7), and a teddy bear (Fig.
8). The results are plotted in Figs. 9, 10, and 11 respectively. The actual distance of
the object measured in step numbers is along the z axis, and the estimated distance
is along the y axis. Under ideal conditions, the plots would have been diagonals
running from bottom-left to top-right. The experimental results, especially for the
tiger’s face poster, are generally good. The bad points in the graph are probably
due to our assumption that the image can be locally modeled as a cubic polynomial.
Large errors will result in places where this assumption is in gross error.

The camera settings used in the experiment were
e Focal Length = 35mm.

e F- Number = 4.

e Camera Gain Control = +6dB.

13



e White Balance = Off.

e Gamma Compensation = Off.

6 Conclusions

STM is more accurate for nearby objects than for farther objects. This is a common
characteristic of all Depth-from-Defocus methods. Integration of STM with Depth-
from-Stereo can reduce the computations involved in Depth-from-Stereo which is
about an order of magnitude more accurate than STM. STM illustrates one appli-
cation of S transform. Another application in image restoration is currently under

investigation.
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