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ABSTRACT

This paper describes the application of a new Spatial-Domain Convolution/ Deconvolution transform
(S transform) for determining distance of objects and rapid autofocusing of camera systems using
image defocus. The method known as STMAP involves simple local operations on only two images
taken with different aperture diameters and can be easily implemented in parallel. Both images can
be arbitrarily blurred and neither of them needs to be a focused image taken with a pin-hole camera.
STMAP has been implemented on an actual camera system named SPARCS. Experiments on the
performance of STMAP and their results on real-world objects are presented. The results indicate
that STMAP is useful in practical applications. The utility of the method is demonstrated for rapid
autofocusing of electronic cameras. STMAP is computationally more efficient than other methods
and the results are comparable to a Fourier transform based approach [15]. When combined with
a Depth-from-Focus method or a stereo ranging method, STMAP can reduce the computations by

about one order of magnitude.
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1 Introduction

Determining distance of objects using image defocus information has been investigated by many
researchers. Most of the previous work deals with methods involving processing a large number of
images [3, 6, 7, 17], or simple objects such as edges [2, 11, 18], or camera systems with restricted
class of point spread functions [9, 12], or computing Fourier coefficients of images [15]. Recently
some researchers [5, 9, 15] have proposed methods for finding distance of an object which does not
involve focusing the object. They take the level of defocus of the object into account in determining
distance. This approach known as Depth-from-Defocus (DFD) does not involve searching for any
camera parameter values that maximize a focus measure of the image. Therefore the DFD methods
require processing only a few images (two or three), irrespective of whether the objects are focused
or not.

Pentland [9] proposed a DFD method for finding the distance of an object which required
acquiring the focused image of the object. The focused image was obtained by setting the aperture
diameter to be very small (pin-hole) and then acquiring an image. A very small aperture has two
problems: (i) it increases diffraction effects thus distorting the acquired image, and (ii) it increases
the exposure period of the camera. Subbarao and Wei [15] have proposed a DFD method based on a
Fourier Domain approach. The performance of their method is comparable to the method presented
here. Enns and Lawrence [5] have proposed a method based on a spatial domain analysis of two
blurred images. It is a matrix based method and employs an iterative regularization approach in
the presence of noise.

A new transform named Spatial-Domain Convolution/Deconvolution Transform or S Transform
was introduced recently [14]. S transform provides a direct spatial domain method for both con-
volution and deconvolution of images. It is useful in the restoration of defocused images, and in
determining distance of objects from a camera system. The S Transform has been successfully
applied for distance estimation by using two blurred images taken with different sets of camera
parameters [16]. The method reported in [16], called the S Transform method (STM), required two
blurred images of an object taken with two different lens positions. The results obtained for this

method on a large number of experiments (about 350) yielded an RMS error of about 2.25 % in lens



position. In addition to being novel, STM has one important advantage over existing methods in
that it involves only local operations on images. Therefore it can yield denser depth-maps, and can
be easily implemented in parallel. Although it was mentioned that the two blurred images could
be obtained by changing any of the camera parameters (such as aperture, wavelength of light, focal
length etc.,) the experimental results were obtained only by moving the lens.

In this paper we describe the implementation of the S Transform method by changing the
aperture diameter (we shall call it STMAP). As before, it is applicable to arbitrary objects and
does not impose restrictions on the point spread function of camera systems. Further, the method
does not involve the computation of Fourier coefficients of images. STMAP has been implemented
on an actual camera system. The results indicate that STMAP is useful in practical applications
such as passive ranging in robotic vision and rapid autofocusing of camera systems.

In Section 2 we briefly review the camera model and image defocus model used in this paper. In
Section 3 we give some examples of the S transform for third order polynomials. Section 4 describes
the theory of STMAP. Implementation of STMAP, experiments, and their results are presented in

the subsequent sections.

2 Camera model

Image formation in a simple camera is shown in Fig. 1. Let P be a point on a visible surface in
the scene and p be its focussed image. Let the light energy incident on the camera aperture in one
exposure period of the camera be 1 unit. The relation between the positions of P and p is given by

the lens formula,

1 1 1
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where u is the object distance and v is the image distance. If P is not in focus it gives rise to a
blurred image. According to geometric optics, the blurred image of P has the same shape as the
lens aperture but scaled by a factor. Let the blurred image of the point P be h(z,y). Clearly h(z,y)
is the response of the camera to a point source and hence h(z,y) is the point spread function.

Usually camera systems have a circular aperture. In this case the blurred image of a point on the



image detector is circular in shape and is called the blur circle. Let R be the radius of the blur
circle and D be the diameter of the lens aperture, and s be the distance from the lens to the image
detector plane (Fig. 1). Also let ¢ be the scaling factor defined ¢ = 2R/D. In Fig. 1, from similar

triangles we have

(2)
Note that ¢ and therefore R can be either positive or negative depending on whether s > v or
s < v. In the former case the image detector plane is behind the focused image of P and in the
latter case it is in front of the focused image of P. In either case the magnitude of R corresponds
to the actual radius of the blur circle. According to geometric optics, the intensity within the blur
circle is approximately constant. If we assume the camera to be a lossless system (i.e., no light

energy is absorbed by the camera system) then

[ [ ha.v) dady =1 3)
because the light energy incident on the lens is taken to be one unit. So we get

L ifa? 4+’ < R?
hi(z,y) =4 ™ (4)
0 otherwise

where hy(z,y) is the point spread function of the camera, derived using geometric optics.
Taking diffraction and non-idealities of lenses into account, an alternative model has been suggested

for the intensity distribution given by a two dimensional Gaussian [9, 12],
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where ¢ is the spread parameter such that
c=kR (6)

where k is a constant (k > 0) of proportionality characteristic of a given camera. Except when ¢ is

very small (in which case diffraction effects dominate), in most practical cases

1
) (7)



is a good approximation [11, 13].

If the radius R is a constant over some region on the image plane, the camera acts as a linear
shift invariant system. This is justified because the camera parameters s, D and f all remain the
same. Therefore the observed image g(z,y) is the result of convolving the corresponding focused

image f(z,y) with the camera’s point spread function h(z,y), i.e.,

9(z,y) = h(z,y) * f(z,y) (8)

where % denotes the convolution operation.

The point spread functions h; and h, defined above are only two specific examples used to
clarify our method. In order to deal with other forms of point spread functions, we use the spread
parameter o to characterize them where o, is the standard deviation of the distribution of any
function h. Using the polar coordinate system it can be shown [11] that the spread parameter oy,

corresponding to h; is R/+/2. Therefore from equation (2) we have

o, =muTt +c (9)
where
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We see that for a given camera setting (i.e., for a given value of the camera parameters s, f, D)
the spread parameter o, depends linearly on inverse distance u~'. Similarly it can be shown that

the spread parameter op, of hy is 0. Therefore from equations (6), (7) and (2) we again obtain
on, = mu”' +c. (11)

In fact it has been shown in [13] that even for an arbitrarily shaped aperture, oy, is linearly related
to inverse distance u~".

In a practical camera system, if two images g (z,y) and go(z, y) are taken with different aperture
diameters, then the mean image brightness will change even though nothing has changed in the
scene. In order to compare the blur in images ¢; and g, in a correct and consistent manner, they

must first be normalized with respect to mean brightness. It is carried out by dividing the image

brightness at every point by the mean brightness of the image.
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3 S Transform

A detailed discussion of S transform can be found in [14]. In this section we summarize some results
relevant to STMAP.
Let f(z,y) be a two variable cubic polynomial defined by
3 3—m
=2 D mar™y" (12)
m=0 n=0
where a, , are the polynomial coefficients.
Let h(z,y) be a rotationally symmetric point spread function. The moments of the point spread

function are defined by
/ / ™y"h(x,y)dzdy (13)

Now consider the convolution of the image f(z,y) and the point spread function h(z,y)

o) = [ [ sl ¢y—mh(¢n) ddn (14
Since f is a cubic polynomial, it can be expressed in a Taylor series as
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Equation (19) expresses the convolution of a function f(z,y) with another function h(z,y) as a
summation involving the derivatives of f(z,y) and moments of h(z,y). This corresponds to the
forward S-Transform. Now let us use this formula to derive a deconvolution formula. Since h(z,y)

is circularly symmetric it can be shown that

hoy = hio=hy1 = hoz =hsg=hy1 =hi2=0and hog = hg (20)



Also from equation (3)
hog =1
Therefore we obtain
oo9) = Fop)+ 2 () + ()
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Applying % to the above expression on either side

2z, y) = ¢*°(,y)

Similarly applying % we get

¥z, y) = g% (2, y)

h
Therefore f(z,y) = g(z,y)— % (8°(z,) + g"*(z, v))

h
= g(z,y) - % v’ 9(z,y)

(24)

(25)

(26)

where /2 is the Laplacian operator. Equation (26) is a deconvolution formula. It expresses the

original function f(z,y) in terms of the convolved function g(z,y), its derivatives and the moments

of the point spread function. In the general case this corresponds to the Inverse S-Transform [14].

In the following section we describe the application of this formula to the problem of distance

estimation from blurred images.

4 Determining Distance

STMAP is based on approximating the image function f(z,y) as a polynomial function in small

regions. (Note: At least in principle, for any given analytic finction, a polynomial arbitrarily close to

it exists, according to a famous theorem by Weirstrass, as is well known in Approximation Theory.)

In our application, usually a third order polynomial approximation in image neighborhoods of size

about 9 x 9 pixels suffices. This assumption is specified by

fla,y) = Y maz™y" -
0<m+n<3 Bl1< y < B2

(27)



From the definition of moments and o5, we have hgo = hog = 02/2. So
Th o
flzy) =9(@y) = v 9(z,9) (28)
Let us consider a blurred image g¢;(z,y) of the object and let o; be the corresponding spread
parameter. Now, the original (focused) image f(x,y) can be expressed in terms of g;(z,y) as

0.2

f(z,y) = gu(@,y) = V' a(w,9) (29)
Similarly f(z,y) can also be expressed in terms of a second blurred image go(z,y) as

0.2

f(IE,y) ZQQ(IE,y) - Z2 V2 g2(x7y) (30)
Equating the right hand sides of equations (29) and (30) we have
ot s a5 s
gl(x7y) - Z V gl(x7y) = QQ(IE,y) - Z V g2(x7y) (31)
If Ry and Ry are the radii of blur circles corresponding to two aperture diameters D; and D,

respectively, then from equation (2) it can be seen that

R, D
= 32
R, D, (32)
And since ¢ = % we have
on_Di (33)
() DQ
Therefore
D
o, = Ao, where A = =% (34)
D,

Using this result in equation (31) we get

o = J 4(91 - 92) (35)
* N\

A2 7% g1 — V2g2)
In the above equation the variables z and y have been left out for notational convenience. The
Laplacians 2g; and v/2¢y are computed from the two observed images ¢g; and g;. We can then
calculate the value of oy from equation (35). The distance w of the object is then obtained from

equation (11).



However due to noise, the two focused images derived from the two blurred images may not be
exactly the same and equation (31) may not be valid. In order to make the method robust in the

presence of noise, a small variation was used, which is described below. We have from equation (31)

1

JL=92=7 (07 —03) Vo (36)

where we have made use of the fact that for a third order polynomial v/2¢; = v/?¢». Squaring and

integrating over a small region around the point (z,y) we get

[ [0~ gdsiy = 1 (07 = o2 [ [(7%01)? dody (37)

which can be expressed as

ot =olf = G
= af - ag = G (38)

J [ (g1 — g2)*dzdy
where G* = 16 39
] J(V?91)? dzdy (39)

Combining equations (38) and (34) we get
A%0) — 05 = +£G
+G

= g9 = A2 — 1 (40)

The distance u of the object is then obtained from equation (11). Ideally it should be possible to
compute the value of oy at one single point (z,y) in the image and obtain an estimate of distance
from it. But because the third degree polynomial approximation may not be valid at all points
of the image, it is required to compute the values of oo at many points in a region. When o5 is
calculated for many points, each point may give rise to a different value of o5. In order to pick
the correct value of g, a histogram of number of pixels verses o9 is generated and the mode of the
distribution is chosen to be the correct value of o5. It can be interpreted as if each pixel in a region
votes for a value of o, and that value of ¢, which receives the maximum number of votes is chosen
as the correct value of 05. However due to non idealities of the lens system a correction may have
to be applied to the value of u so obtained. A more effective method would be to use a “look-up
table” from which it would be possible to obtain the distance of the object corresponding to any

value of g5. In fact our implementation of this method uses this kind of a look-up table.

8



5 Implementation

STMAP described above was implemented on a camera system named Stonybrook Passive Aut-
ofocusing and Ranging Camera System (SPARCS). SPARCS was built over the last few years in
the Computer Vision Laboratory at the Department of Electrical Engineering, State University of
New York, Stony Brook. A block diagram of the system is shown in Figure 2. SPARCS consists of
a SONY XC-77 CCD camera and an Olympus 35-70mm motorized lens. Images from the camera
are captured by a frame grabber board (Quickcapture DT2953 of Data Translation). The frame
grabber board resides in an IBM PS/2 (model 70) personal computer. The images taken by the
frame grabber are processed in the PS/2 computer.

The focal length of the lens can be varied manually from about 35mm to 70mm. The F-number
which is defined as the ratio of the focal length f to aperture diameter D can also be set manually
to 4, 8, 22 etc.,. The lens system consists of multiple lenses and focusing is done by moving the front
lens forward and backward. The lens can be moved either manually or under computer control. To
facilitate computer control of the lens movement there is a stepper motor with 97 steps, numbered
0 to 96. Step number 0 corresponds to focusing an object at distance infinity and step number 96
corresponds to focusing a nearby object, at a distance of about 50 cm from the lens. The motor
is controlled by a microprocessor which can communicate with the IBM PS/2 through a digital
I/O board (Contec mPI1024/24). Pictures taken by the camera can be displayed in real time on
a color monitor (SONY PVM-1342 Q). The images acquired and stored in the IBM PS/2 can be
transferred to a SUN workstation.

As mentioned earlier, there are 97 step positions for the stepper motor, and therefore there
are 97 distinct focusing positions of the lens. For each position of the lens, there corresponds a
unique distance such that an object placed at that distance from the camera would be in focus. For
convenience we shall use lens step positions to specify and measure distances. For example, if the
distance of an object is said to be step 30, we mean that the distance of the object is such that if

the lens is moved to step number 30, the object would be in best focus.



5.1 Camera Calibration

The first step in the implementation of STMAP is calibration. During calibration a table of o
versus object distance is generated. In the present set of experiments, only one camera parameter,
the aperture diameter D was varied. All other parameters (such as focal length f and lens position
s) were constant. The lens step was chosen to be zero (focusing at oo). The steps involved in the
calibration are given in the flow chart of Figure 10. We place an object at a given step distance
and take two pictures g;(z,y) and go(z,y) with different aperture settings. In our case the two
apertures correspond to F-Number 4 and F-Number 8 (this corresponds to about 35/4 mm and
35/8 mm diameters respectively). Once we have the two blurred images ¢;(z,y) and ga2(x,y) the
next step is to smooth them and obtain their Laplacians v/?¢; and y/2g,. Smoothing and Laplacian
estimation were done using the smoothed differentiation filters proposed by Meer and Weiss [8].
With the knowledge of camera parameters, the value of oo can be obtained for each point (z,y)
in the image using equation (40). This computation is repeated for all pixels in the image. The
allowable range of o, is divided into about 200 divisions and with every pixel giving rise to a
value of 05, a histogram of number of pixels versus o, is generated. The histogram is smoothed
using the Parzen Window method with window size 5. The mode of the histogram is chosen to
be the correct value of oy. Thus for one particular image and one particular object distance we
have obtained the value of oy. This value is recorded and the procedure is repeated for all object
distances corresponding to step 10 through step 95, with increments of 5 steps. Similar procedure
is repeated with different objects. The values of sigma thus obtained for lens step 0 are shown in
Table 2. Another sigma table was generated by keeping the lens position at 60, which is shown in
Table 3.

In each row of Tables 2 and 3, the mean value of the three recorded entries was calculated.
The results are plotted in Figure 4. In this Figure, the plot with label “step0.sigma” corresponds
to Table 2 and the plot with label “step60.sigma” corresponds to Table 3. These plots essentially
constitute our look-up tables. In Figure 4 the X-axis corresponds to object distances (in lens step
numbers) and the Y-axis corresponds to the sigma values. As can be seen from Table 2, when the

object distance is closer than step 60 (i.e., when the step number is greater than 60) , there is a
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large variation in sigma from object to object. Hence it will be necessary to use the calibration
data of Table 3. There is a two fold ambiguity in the plot of Table 3 because we are squaring and
integrating in equation (37). However we use only one side of the folded curve (for step numbers
greater than 60). For step numbers less than 60, the plot “step0.sigma” is used.

The program can be run in the Calibration Mode during which the user just places an object

facing the camera and inputs the actual distance. The sigma values are computed and saved in a

file.

5.2 Distance Estimation

Once calibration is done, the program can be run in the depth estimation mode. It is similar to the
calibration mode, as far as obtaining the sigma values are concerned. That is, we take two blurred
images of an object with two different aperture settings and calculate the values of o5. We then
have to look up the calibration table to find the object distance. If the calculated sigma value lies
in between two successive values of the calibration table, linear interpolation is used to determine
the object distance. Once the object distance is known the step number to which the lens has to be
moved in order to focus the image, is easily calculated. The lens is then moved to make the image
appear focused (we noticed that in our camera system there is an assembly error and we need to
offset the lens positions calculated by the program by about 12 steps).

Experiments were conducted on four different objects at room illumination (about 200-300 Lux)
and ten different objects at 400 Lux illumination. All these images have been saved as a database.
Some of the objects in the database are shown in Figure 9. For each object the experiment was
repeated by moving the object to different distances from step 10 to step 95 in steps of 5. Thus the
total number of experiments is 18 x 14 = 252. The results are tabulated in Tables 4 and 5. The
mean values of the results and the standard deviations are also shown in these tables. The mean
values of these results are plotted in Figure 5 and Figure 6. The results seem to be well within the
noise margin. The overall RMS error is about 2.25 steps out of 97 steps.

Figure 3 is a plot of the reciprocal of the object distance 1/u versus the lens step number. The
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relationship is almost linear and can be expressed as
l/u=az+b (41)

where z specifies lens position. For our camera, the lens position is specified in terms of a motor
step number where each step corresponds to a displacement of about 0.03mm. The RMS errors
mentioned above are for the lens position and it gives a good indication of the performance of the
method for application in rapid autofocusing of cameras. In order to compute the error in terms of

object distance, we have to consider the error differentials in equation (41).

6(1/u)] = aléz| (42)
= |(%u| = aldz|u (43)
= [du| = a|dz|u? (44)

From the above relations we see that the relative (percentage error) |%“| in actual distance u increases
linearly with distance, and the absolute error |du| in actual distance increases quadratically with
distance. Based on the lens data of Table 1, for our camera system the constant a = 0.0172.

We have also implemented a Depth-from-Focus method (DFF) on our camera system based on
a focus measure proposed in [17]. The DFF methods usually take a number of images (about 10-12)
and search for the sharpest focus position by maximizing some focus measure. Many different focus
measures have been proposed and their performances are nearly the same. Since DFF methods
involve exhaustive search for the focused position, we assume that the results that can be obtained
by a DFD method (which takes just 2-3 images) can at best be equal to a DFF method. Hence we
shall call the results obtained by the DFF method as DFF.BST and it serves as a benchmark to
evaluate STMAP. A number of experiments were performed with the DFF method using the same
objects used for the STMAP experiments and yielded an RMS error of 1.52 steps.

Setting |6z| to be the RMS error of 1.52 steps and 2.25 steps respectively, a plot of relative error
|%“| is shown in Figure 7 and a plot of the absolute error is shown in Figure 8. In Figure 7 we see
that for STMAP the percentage error in distance at 0.6 meter is about 2.3% and increases linearly

to about 20% at 5 meter distance. This compares well with the best possible error of about 1.6%
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at 0.6 meter and increasing linearly to about 12.5 % at 5 meter distance that is obtained with the
DFF method. Figure 8 shows that for STMAP, absolute error increases quadratically from 1.3 cms
at 0.6 meter to about 1.0 meter at 5 meters distance. The corresponding numbers for the DFF
method are 1 cm at 0.6 meter and about 0.6 meter at 5 meters distance.

The camera settings used in the experiment were (i)Focal Length = 35mm. (ii) F- Numbers =

4 and 8. (iii) Camera Gain Control = +6dB.

6 Conclusions

We have described the theory and implementation of a new DFD method for determining depth
from image defocus information. The method uses two blurred images of an object taken with two
different aperture settings. Both the aperture settings can be arbitrarily chosen and neither of them
needs to be a pin-hole. The method known as STMAP has been successfully demonstrated on an
actual camera system built by us. Experimental results indicate that STMAP is useful for passive
ranging and rapid autofocusing. The ranging accuracy is high for nearby objects and decreases with
increasing distance. This method can be combined with a Depth-from-Focus method to reduce the
percentage error by a factor of about 2 at the additional cost of acquiring and processing a few
(about 3) more images. The combination will then be a good trade off between speed and accuracy.

In comparison with the stereo method of ranging, the STM methods do not suffer from the
correspondence problem, but it is in general less accurate than stereo vision. Therefore the STM
methods can be used to get a rough estimate of distance which can then be used by a stereo algorithm
to determine more accurate distance. The computation associated with establishing correspondence
is reduced due to the availability of a rough estimate of distance.

The distance of “plain” objects such as white walls which do not exhibit reflectance variation
under uniform illumination cannot be determined by the STM methods. However a random illu-
mination pattern can be projected onto such objects to make them “textured”. The STM methods
can then be used.

Most existing camera systems (including our camera) are designed to maximize the depth-of-

field since the goal is to obtain a “good” image of the scene for viewing by humans. However this
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minimizes the accuracy when ranging is concerned, since maximizing depth of field reduces the
difference in blur between objects at different distances. Therefore, STM methods can be made

much more accurate by designing cameras with small depth of field for the purpose of ranging.
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Fig.1 Image Formation in a Simple Camera System
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Stonybrook Passive Autofocusing and Ranging Camera System-
SPARCS - is a prototype camera system developed at the
Computer Vision Laboratory for experimental research in robotic
vision, State University of New York at Stony Brook.
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Lens Step 0 5 10 15 20 25 30 35 40 45
Distance(m) | oo | 5.300 | 3.750 | 2.850 | 2.500 | 1.930 | 1.720 | 1.465 | 1.320 | 1.170
Lens Step 50 55 60 65 70 75 80 85 90 95
Distance(m) | 1.080 | 0.965 | 0.900 | 0.822 | 0.770 | 0.715 | 0.670 | 0.628 | 0.595 | 0.560

Table 1. Lens step Vs Best Focused Distance (Lens Data)

Dist. | Sigma Values

Step | tg | fa | gs | mean
10 2223 21 2.2
15 25|26 2.5 | 253
20 28|29 28| 283
25 |3.3|34|33)| 333
30 (3.8 )3.8]|3.7]| 3.77
35 4.2 4.2 | 4.2 4.2
40 4.8 | 4.7 | 4.5 | 4.67
45 5.1 4.9 5.0 5.0
50 |55 |55|52| 54
55 |5.9 |5.7| 5.4 | 5.67
60 (6.2 6.1 57| 6.0
65 (6.5 |6.4| 57| 6.2
70 |6.7|6.6| 6.3 | 6.53
7% |7.0|7.0]| 6.2 6.73
80 |73 |7.2]|6.7| 7.07
8 (7.6 |7.1)|6.6 | 7.10
90 (827164 723
95 (84 |79|62| 75

Table 2. Sigma with lens step 0

Dist. | Sigma Values Actual Dist. | Estimated Dist. (step)

Step | tg | fa | gs | mean Step | meters | Tgr | Face | GS | Edge | mean | std. dev.
10 3.6 |3.7| 35 3.6 10 3.750 10 11 10 13 11.00 1.22
15 3.3 (3.4 3.3 | 333 15 2.850 14 16 14 17 15.25 1.30
20 |3.03.1)3.0| 3.03 20 2.500 19 20 19 21 19.75 0.83
25 2.6 2.6 2.6 2.6 25 1.930 24 25 24 24 24.25 0.43
30 (2222 22 2.2 30 1.720 30 30 29 31 30.00 0.71
35 1.8 1.8 | 1.8 1.8 35 1.465 35 35 35 37 35.50 0.87
40 14 |1.4| 1.4 1.4 40 1.320 41 40 38 40 39.75 1.09
45 1.1 (13| 1.0 | 1.13 45 1.170 46 43 45 47 45.25 1.48
50 1.0 | 1.0 | 0.8 | 0.93 50 1.080 51 51 47 50 49.75 1.64
55 1.3 |1.5| 1.0 | 1.27 55 0.965 55 58 51 63 56.75 4.38
60 1.5 1.8 | 1.4 | 1.57 60 0.900 58 63 57 65 60.75 3.34
65 1.9 1.8 | 1.9 | 1.87 65 0.822 65 63 65 70 65.75 2.59
70 |2.2|22|23| 223 70 0.770 69 69 70 75 70.75 2.49
75 | 27|26 2.8 2.7 75 0.715 75 73 T4 80 75.50 2.69
80 |33 3.1 3.2 3.2 80 0.670 81 (el 80 84 81.00 1.87
85 |3.6 (35| 3.6 | 3.57 85 0.628 85 84 85 88 85.50 1.50
90 |41 |4.0| 4.1 | 4.07 20 0.595 20 89 20 94 90.75 1.92
95 |45 44| 4.4 | 443 95 0.560 95 94 94 96 94.75 0.83

Table 3. Sigma with lens step 60 Table 4. Results at normal illumination

Actual Dist. Estimated Distance (step)

Step | meters | ¢1 [ c2 | fa | ft | gl | gs | mk | mn | sb | tg | mean | std. dev.
10 3.750 (10|10 (11|11 (11|10 | 10 | 10 |10 | 10 |10.3 0.46
15 2.850 [17 |11 (15|17 |15 |14 | 14 | 13 |14 | 14 | 14.4 1.68
20 2.500 (17|17 (20|20(20|19| 19 | 20 |19 |19 |19.0 1.09
25 1.930 |23 |23 25|25 |25 |25 | 24 | 23 |25 |24 |24.2 0.87
30 1.720 |28 (27|30 (30|29 (30| 30 | 28 |31 |29 |29.2 1.17
35 1.465 | 35|32 |36 |35|35|37| 32| 33 |36 | 36| 34.7 1.68
40 1.320 |51 |38 |42 |42 40|40 | 38 | 39 | 40| 39 | 40.9 3.62
45 1.170 |46 (44 | 46 |45 |45 |45 | 43 | 45 |45 | 44 | 44.8 0.87
50 1.080 |51 |50 50|46 | 50|44 | 49 | 51 | 50 | 50 | 49.1 2.16
55 0.965 |55 |54 | 55|54 |55 55| 65 | 66 | 56 | 54 | 54.9 0.70
60 0.900 |63 |59 60|60 62|60 60 | 56 | 58 | 59 | 59.7 1.85
65 0.822 64 | 68 |65 |68 |63 56| 63 | 62 | 64|62 63.5 3.23
70 0.770 |64 |67 |70 |72 |71|64| 70 | 72 | 67 | 70 | 68.7 2.86
75 0715 |74 |73 |75 |75 |75 |72 | 73 | 74 |73 |75 |73.9 1.04
80 0.670 |78 |78 |80 |82|95|80| 78 | 80 | 80|81 |81.2 4.78
85 0.628 |83 82|85 |85 |84 84| 84 | 84 | 84 | 84| 83.9 0.83
20 0.595 |89 88|90 |92 |92 92| 88 | 89 | 89 |90 | 89.9 1.51
95 0.560 |95 | 95|88 |95 |95 95| 95 | 95 | 95 | 95 | 94.3 2.10

Table 5. Results at 400 Lux
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Figure 9. Test Images in the Database
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Figure 10. Flow Chart of the Algorithm
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