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ABSTRACT

A new localized and computationally efficient approach is
presented for shift/space-variant image restoration. Unlike
conventional approaches, it models shift-variant blurring in
a completely local form based on the recently proposed Rao
Transform (RT). RT facilitates almost exact inversion of the
blurring process locally and permits very fine-grain parallel
implementation. The new approach naturally exploits the spa-
tial locality of blurring kernels and smoothness of underly-
ing focused images. It formulates the deblurring problem in
terms of local parameters that are less correlated than raw im-
age data. It is a fundamental advance that is general and not
limited to any specific form of the blurring kernel such as a
Gaussian. It has significant theoretical and computational ad-
vantages in comparison with conventional approaches such
as those based on Singular Value Decomposition of blurring
kernel matrices. Experimental results are presented for both
synthetic and real image data. This approach is also relevant
to solving integral equations.

Index Terms— Shift/Space-Variant Image Restoration,
Deblurring, Deconvolution, Integral Equations

1. INTRODUCTION

Restoration of shift/space-variant blurred images to recover
focused images is an important problem in digital imaging
and machine vision [1, 2, 3, 4, 5, 6, 7]. Such blur may
be due to 3D shape or motion of objects in digital cam-
eras/microscopes, optical aberrations in imaging systems, or
atmospheric turbulence in astronomical telescopes. Many
approaches have been proposed in the literature for restoring
such images to recover the underlying focused image. For
example, see [1, 4, 5, 6, 7] and the references there.
Conventional approaches to modeling shift-variant or
space-variant blurring of images is not fully localized and
computationally exorbitant. Typically, a large shift-variant
blurred image is divided into many smaller image blocks of
size K x K where K is around 32 or 64 and restored sepa-
rately and then synthesized. A two-dimensional image block
is converted to a very large K2 x 1 one-dimensional vector
b by rearranging the columns of the image block vertically
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one below another. The shift-variant blurring kernel or point
spread function (SV-PSF) is specified by a huge K2 x K2
matrix A. The focused image vector x, again represented as a
large K2 x 1 column vector, is obtained by solving the matrix
equation Ax = b which has a very high computational com-
plexity of O(K©). Unlike the new approach proposed here,
this formulation of the problem does not exploit the natural
locality and limited support domain of the physical blurring
kernel and spatial smoothness of focused images.

A spatial-domain convolution/deconvolution transform (S
Transform) was proposed and demonstrated for modeling and
restoring shifi-invariant (i.e. convolution) blurred images [2,
3]. Recently, this approach has been extended to shift-variant
image deblurring [8, 9] based on a new transform named Rao
Transform (RT). This new approach models the blurring pro-
cess in a completely local form that naturally exploits the
spatial locality and limited support domain of blurring ker-
nels (SV-PSFs). Further, it formulates the problem in terms
of local parameters (e.g. derivatives) of an analytic approx-
imation to the focused image. These parameters are much
more independent and uncorrelated with each other than raw
pixel data used in conventional methods. Thus it exploits spa-
tial smoothness in images. As a consequence, in a typical
practical application, the new approach reduces computation
significantly, and provides a new theory. In this sense, the
new approach represents a fundamental theoretical and com-
putational advance. Further, RT is also relevant to solving
integral/differential equations and shape from defocus [8, 9].
First we present the computational algorithm and analysis of
the new approach and then the experimental results.

2. RT THEORY, ALGORITHM, AND ANALYSIS

In the continuous domain, the shift-variant point spread func-
tion (SV-PSF), the focused image, and the corresponding
blurred image are represented by h(x,y,u,v), f(z,y), and
g(x,y) respectively. The conventional continuous domain
blurring model uses the global form SV-PSF k, and is given
by

b d
oa,y) = / / ke, y,u,0)f(w o) dudo (1)
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A localized kernel h(x, y, u, v) corresponding to k(z, y, u, v)
can be defined as [8]

h(z,y,u,v) = k(z +u,y +v,2,9) ()

A completely localized blurring model which is exactly
equivalent to Eq. (1) can be obtained by the change of vari-
ables ' = x — wand v' = y — v. The resulting expression

defines Rao Transform (RT):
r—u,y—uv,u,v) f(x—u,y—v) dudv

r—a y—c
g(z,y) = / / h(
z—b y—d

A3)
Next we derive the inverse of RT to solve the above integral
equation for the focused image f. The m!" partial derivative
with respect x and the n'” partial derivative with respect to
y of a function will be denoted by the superscript (m, n) for
the function, for example, g™, f("") and h(™™). The

(p, ¢)*" moments with respect to u, v of h(m ) are defined
by

W = H )

r—a py—c
= / / upvqh(m’”)(a:7y,u,v)du dv
z—b y—d

for m,n,p,q = 0,1,2,.... Note that, for all SV-PSFs, by
definition (follows from the conservation of light energy),

- [ [

for all (z,y) and therefore, all derivatives of h( ) with re-
spect to = and y are zero. Also, although unnecessary for
a theoretical development of the method, due to its practical
utility, we shall assume that h is symmetric with respect to u
and v, i.e. h(z,y,u,v) = h(x,y,|ul,|v|), which is the case
for 2D Gaussian, cylindrical and rect functions. In this case,
derivatives with respect to « and y are also symmetric, i.e.

“4)

(z,y,u,v)dudv=1 (5)

W (g, u,0) = O 2,y ful, o) (6)
Using the relations u?v? = —(—u)Pv? when p is odd and
uPv? = —uP(—v)? when ¢ is odd, we find that BY">™ (z, ) =
0 when p is odd or ¢ is odd.

Using the above notation, the truncated Taylor series ex-
pansion of f(z — w,y — v) around (z,y) up to order N and
h(z — u,y — v, u,v) around the point (z, y, u, v) up to order
M will be used below. For example, we express

M m
hlz—u, y—v,u,v) ~ Z am Z ijum*jvjh(mfj,j) 7)
m=0 7=0

where C* and C?" denote the binomial coefficients and a,,, =
(=1)™/m/!. Substituting the truncated Taylor-series expan-
sions of h and f into the RT in Eq. (3) and simplifying, we

get

N
x,y) = Zan
n=0

n N M m o
cp fin=id Z am Z Cgr’nhggq—s-_njji)—j,i—s—j
m=0 =0
(®)

=0

The above equation can be rewritten as

Z Z Spif ©)

n=0 =0

g(z,y) =

where

n m 3 (m—3,7)
nz—anc § am E C hm+n—i—j,i+j

m=0

(10)

Equation (9) above is in a completely localized form in the
sense that it expresses the blurred image g at (x, y) in terms of
the derivatives of the focused image f and the moments of the
blurring kernel h at the same point (z,y). This is a basic new
result that facilitates inversion of the blurring process exactly
at the point (z, y).

We can now write expressions for the various partial
derivatives of order (p, ¢) of g with respect to x, y, as

N n 8q
g<p,q>zzz_£[ AT T (4 p+q) (11)

1 ifn+p+qg< N
0 otherwise

T(n+p+q)={ (12)

assures that terms with derivatives of f of order greater than

N are set to zero, forp+ ¢ =0,1,2,..., N. Note that
gy _ O 01 o
dzp oya "
M—(p+q) (13)
— a, O Z am Z Cmpr D,
The above equation for g(”"” for p,g = 0,1,2,..., N, and

0 < p+ ¢ < N constitute (N + 1)(N + 2)/2 equations in
as many unknowns f(?"%) The system of equations for ¢(»-%)
can be expressed in a vector-matrix form as

9(0’0) Too To1 f(o,o)
9(1,0) o Tl e e f(LO)
=|. . . : : (14)
g(O:N) FO.N)
or
8x.y = Rl‘,yfz,y (15)

658



where the subscripts (z,y) make explicit the dependence of
the vectors/matrix on (z,y). Ry, is the RT coefficient ma-
trix of size (N + 1)(N + 2)/2 rows and columns. This ma-
trix equation can be solved to obtain f (9, and in particular,
£©9 by inverting the kernel matrix R, ,,. The solution can
be written in the form

foy = R;,ygnc,y (16)

= R:!

/
where Rm’y oy

pressed as

N n o
f(;r,y) = f(O,O) — ano Zizo S;M' g(n—z,z)

where the coefficient S), ; is obtained by a suitable grouping
ofthe terms. The solut1on above needs to be computed at each
pixel (z,y). As estimating accurate image derivatives is dif-
ficult in practice, a regularization approach such as the Trun-
cated Singular Value Decomposition (TSVD) [4] or Tikhonov
regularization can be used to solve Eq. (15) above to obtain a
smooth and stable solution for f.

In practice we find that the truncation of the Taylor se-
ries expansion of the kernel h is useful even for small values
of M, typically M = 1 or at most 2. Error introduced by the
truncation of the Taylor series of an analytic approximation to
the focused image f depends on two factors: image noise and
size of significant region of blurring kernel h. Quantization
noise in 8 bits/pixel images usually limits the use of image
derivatives to an order of N = 2 or N = 3 to be the maxi-
mum. The significant region of blurring kernel h is roughly
equal to the size of the maximum blur circle, which can be
specified roughly by

and the solution for £(%9 can be ex-

(17

h(z —u,y —v,u,v) =0 foru?+v? > R? (18)
where R could be the radius of the maximum blur circle size
or 20 for a Gaussian kernel. The useful maximum value of R
is typically limited by the value of IV, because, within the re-
gion of significant support of the SV-PSF, the truncated Tay-
lor series expansion of the focused image should be a good
approximation to the actual focused image. In summary, in
practical applications with 8 bits/pixel, NV is limited to be
around 3 due to image noise, which in turn limits the max-
imum blur circle size R to yield acceptable errors in restora-
tion. In our experiments, we find that for an 8 bits per pixel
image, a value of N = 2 in turn limits the maximum blur cir-
cle diameter to be around 7 pixels. This is still a very useful
and practical approach that provides good restoration results
and new insights into the nature and structure of the shift-
variant deblurring problem.

2.1. Example

We present a solution for the case of N = 2, M = 1,a =
¢ = —o0,and b = d = oo, for the case of a 2-D SV-PSF. In
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this case, Eq. (9) becomes

0,0) :f(o,o) + f(l’o)hél,éo) + f(o’l)hé?él)

1 0,0 1 070 (19)
+§f(2’0)hé,0 ) 4 5f(072)hé,2 )

The above equation gives a method of computing the output
blurred image g(x,y) given the input focused image f(z,y).
This equation could be used in Computer Graphics for ren-
dering a realistic image generated by a camera with limited
depth of field. Eq. (17) gives the following completely local-
ized explicit solution for (-9 at a point (z,y) in terms of
the derivatives of g and moments of the derivatives of & at the
same point (z, y) as below

F(0.0) _(00) _
+g(20)( (RS2 +1h(o,1>h(071)_1h<0,0))

+g(0,2)(§(h(01)) + h<10>h<1o>_,h<oo>)
(20)

(1’0)h(1’0) _ 9(0,1),18%1)

Further simplification of the above equation is possible when
the kernel is rotationally symmetric (e.g. h(o 0 — h(O %) and

therefore hgp Oq) = h(p 57)). The above equation gives an ex-
plicit, closed-form formula for restoring an image blurred by a
shift-variant symmetric point spread function. Such a closed-
form solution is new and represents a basic theoretical ad-
vance. Closed-form expressions for h( )(a:, y) in the case
of a 2D Gaussian is given below. Slmllar closed form expres-
sions can be obtained for Cylindrical and rect SV-PSFs [8].
The Gaussian SV-PSF and its moments are:

1 u® +v
M,y u,v) = 2no2(x,y) P _(202(x,y)) @
b () 0 if pis odd OR ¢ is odd
€, = p+q
PRI\ 2 (2T (22 otherwise
(22)

A (2, y) are obtained by differentiating the above.

2.2. Computational Complexity

The computational needs of a conventional method (e.g.
TSVD) is O(K®) for an image of size K x K. In compar-
ison, the computational complexity of the RT approach is
O(K?N°®) because the computations are dominated by the
inversion of R, , of size O(N?) at K? pixels. Therefore,
for K = 32 and N = 4, the computational advantage is a
factor of 256. Clearly this is a significant improvement and
this increases for larger K.

2.3. Experiments

Many simulation and some real experiments have been done.
Some results are presented here. Fig. 1 shows the results
of a simulation experiment using a Gaussian PSF where the
blur parameter sigma was about 2.8 pixels at the center and



decreased linearly to about 0.2 pixels with distance near the
edges. Image size was 469 x 188.

Fig. 2 shows the results of experiments on real image data.
A slanted planar object with printed characters was imaged by
a digital camera. The SV-PSF was estimated to be a Gaussian
with o decreasing linearly from about 2.5 pixels at the left
edge to 0.5 pixels near the center and then increasing back to
2.5 pixels near the right edge. Image size was 640 x 240. All
results are quite satisfactory.

&

(c) Result of shift-variant image restoration by RT

Fig. 1. Results of Simulation Experiments

3. CONCLUSION

We have presented the basic theory, algorithm, computational
complexity analysis, and experimental results for a new shift-
variant image restoration approach based on RT. The new ap-
proach is completely localized and has significant theoreti-
cal and computational advantages in image deblurring, shift-
variant signal filtering, and solving integral equations. Exper-
imental results indicate that it is useful in practical applica-
tions. Further investigation is underway on noise sensitivity
analysis and relative performance in comparison with other
state-of-the-art approaches.
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(a) Real image of a horizontally slanted planar object
with shift-variant blur

(b) Result of shift-variant image restoration by RT

Fig. 2. Results of Real Experiments
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