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Abstract

An automatic 3D model reconstruction technique is pre-
sented to acquire complete 3D models of real objects. The
technique is based on novel approaches to pose estimation
and integration. Two different poses of an object are used
because a single pose often hides some surfaces from a
range sensor. The presence of hidden surfaces makes the 3D
model reconstructed from any single pose a partial model.
Two such partial 3D models are reconstructed for two dif-
ferent poses of the object using a multi-view 3D modeling
technique. The two partial 3D models are then registered.
Coarse registration is facilitated by a novel pose estimation
technique between two models. The pose is estimated by
matching a stable tangent plane (STP) of each pose model
with the base tangent plane (BTP) which is invariant for a
vision system. The partial models are then integrated to a
complete 3D model based on voxel classification defined in
multi-view integration. Texture mapping is done to obtain a
photo-realistic reconstruction of the object.

1. Introduction

In recent years, there are considerable investigations on
the topic of complete 3D model reconstruction from mul-
tiple views of an object. One of the approaches is merg-
ing multiple range images into a complete 3D model [4, 3].
Most investigations on 3D model reconstruction are limited
to using a single pose of an object. However, for many
real objects, using a single pose may yield only a partial
3D model because some hidden surfaces of the object from
the sensor. A 3D model of such hidden surfaces could be
reconstructed by placing the object in a different suitable
pose. In order to obtain a complete 3D model, the two par-
tial 3D models for the two different poses need to be regis-
tered and integrated. However, registration and integration
of multiple partial 3D models is a very difficult problem.
For this reason, only a few researchers have considered this

problem.
P. Allen and R. Yang [1] stitch a bottom surface of an

object by matching edge features of the object’s 3D model
with an edge image of the bottom. After reconstructing a
3D model, they acquire a partial shape of the bottom sur-
face and stitch the shape and texture of the bottom to the
3D model using a feature matching technique. K. Wong
and R. Cipolla [11] and W. Niem [7] employ shape-from-
silhouettes techniques for 3D modeling. But they manually
register the top and the bottom surfaces of the object. D.
Huber [5] also presents a 3D reconstruction technique us-
ing an unconstrained registration of n-view partial shapes.
He register the partial shapes using Spin images and a graph
searching technique.

A schematic diagram of our 3D modeling system is
shown in Figure 1. We register multiple range images into
a common coordinate system based on the system calibra-
tion parameters. After refining the registration, we use the
Marching Cubes(MC) algorithm to polygonize volumetric
space into triangle meshes [2, 6]. We classify voxel space
according to the signed distance of a voxel for accurate re-
construction of the implicit surface of the object [8]. Reg-
istration of two pose models consists of two steps, coarse
registration and its refinement. We use a novel pose es-
timation technique of two 3D models to determine coarse
registration parameters [9]. The pose estimation technique
finds a stable tangent plane (STP) on a 3D model which can
be transformed to the base tangent plane (BTP) of the other
model and vice versa.

A novel pose integration technique for two 3D models
is presented to reconstruct an accurate and complete 3D
model. The novelty of our technique is integrating two
iso-surfaces rather than multi-view range images. Because
there may be occlusions either the first or the second pose,
the integration technique merges two models by combining
the signed distance and the classification of a voxel. Texture
mapping for photo-realistic 3D model is also presented on
real objects.
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Figure 1. Schematic diagram of 3D modeling

2. Reconstruction of a single pose-model

2.1. Multi-view modeling

We use a high-resolution digital stereo camera to acquire
range image of objects. In order to change viewing direc-
tion, we use a rotation stage to rotate the object. Object’s
silhouettes are also segmented by a blue screen technique.
In order to refine calibration parameters of the system, a
point-to-plane registration technique is employed to mini-
mize transformation errors between all overlapping shapes
[2].

Given multiple range images of an object, we estimate
the iso-surface of the object and convert it to a mesh model
using the Marching Cubes(MC) algorithm [6]. However,
because our vision system uses a stereo camera for range
image acquisition, there are inherent mismatching errors on
range images. In order to accurately integrate partial shapes,
we classify the voxel space into multiple regions based on
signed distances d(p) of a voxel p as follows:

� If at least two distances jdi(p)j are shorter than a
threshold dTH , where i = 0; : : : ; N0 � 1, a voxel p
is in an overlapping region, and p 2 Poverlap.

� If for all i; di(p) > 0 and jdi(p)j > dTH , then the
voxel is outside the object, and p 2 Poutside.

� If for all i; di(p) < 0 and jdi(p)j > dTH , then the
voxel is inside the object, and p 2 Pinside.

� Otherwise, the voxel is in non-overlapping area, p 2

Pnonoverlap,

where N0 is the number of overlapping shapes, and it is
N=2 in this paper.

The implicit distanceD(p) of the voxel p is a function of
signed distances di(p) to all overlapping shapes, which is

D(p) = f(d0(p); � � � ; dNo
(p)): (1)

For more information about computing the signed distance
D(p), see the reference [8]. In order to remove erroneous

data points outside the visual hull, we also combine shape-
from-silhouettes technique.

3. Pose estimation and registration

3.1. Tangent plane matching

In order to integrate two 3D models, it is necessary
to register two models into a common coordinate system.
Therefore, we estimate the pose between two models for
coarse registration. In this paper, we employ a novel pose
estimation technique of two 3D models [9]. This technique
finds a stable tangent plane (STP) on a 3D model which
can be matched to the base tangent plane (BTP) of the other
model. When we place a rigid object on the flat (planar)
top of a turning table, the object rests with its outer surface
touching the table top. The planar table top will be a tangent
plane of the object’s surface. We call the planar table top the
BTP of the turntable. The BTP is invariant with respect to
the object’s pose and the world coordinate system.

Suppose an object is placed on the turntable with two
different poses, Pose1 and Pose2 as shown in Figure 2.
Then there is a unique tangent plane T1 (n̂T1) in the first
pose which matches the BTP B (n̂B) in the second pose.
Similarly, there is also a unique plane T2 (n̂T2) in Pose2,
which matchesB (n̂B) in Pose1. Because n̂B is a common
and invariant vector in the vision system, we can estimate
a rotation matrix using n̂T1 and n̂T2. Translation between
two models is estimated by Center of Mass (CoM) of the
models.
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Figure 2. A tangent plane of the first pose n̂T1
uniquely matches with the BTP of the second
pose n̂B , and vise versa.

3.2. Finding stable tangent plane (STP)

We find all tangent planes using Extended Gaussian Im-
age (EGI) of the 3D model. For each face of the tessellated
sphere of EGI, we determine whether the tangent plane cor-
responding to the face is a candidate for matching with the
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BTP of the other pose. After determining an initial tangent
plane T = Ax + By + Cz +D, we refine the plane using
its supporting vertices which are close to the plane. Each
refined tangent plane T consists of supporting vertices and
has its own coordinate system. See [9] for more details.

There will be a finite, but large number of tangent planes
for each 3D mesh model. Let a set of tangent planes of
Pose1 be T1, and T2 be another tangent plane set of Pose2.
In order to reduce computation time for finding matching
tangent planes from all possible combinations of two sets,
we remove some local or unstable tangent planes by em-
ploying three geometric constraints.

The first constraint is Base plane constraint. The BTP is
a global tangent plane in the sense that it will not intersect
the object’s volume anywhere. Therefore we check all ver-
tices to determine if a tangent plane intersects the volume.
If the dot product of any vertex v with the plane normal n̂ T

is greater than the parameterD+ÆI of the plane, we remove
the plane.

Next constraint is Stability constraint. The BTP of the
turntable is horizontal and the object is in a stable pose.
Therefore, given the CoM of a 3D model, its projection to a
STP, CoMT is always inside the convex hull of the projec-
tions of all supporting vertices. The object will be unstable
and fall over if CoMT is outside the convex hull. The last
constraint is Height constraint. If two pose models are cor-
rectly registered, their heights will be very similar. We re-
ject tangent plane when the height difference is greater than
a threshold ÆH . Figure 3 shows an example of finding STPs.

(a) (b) (c) (d)

Figure 3. Example of finding STP (a)Initial TPs
(186 planes) (b) After baseplane constraint
(ÆI = 3mm, 141 planes) (c) After stability test
(18 planes) (d) After height comparison (ÆH =
3mm, 9 planes)

3.3. Matching tangent planes

Rejection of unstable and local tangent planes signifi-
cantly reduces the number of tangent planes. The last step
in pose estimation is finding two tangent planes, one from
each pose, which registers two 3D models with a minimum

pose error. For every STP in T1, we derive a transformation
matrix Qij using every STP in T2, measure the pose error,
and find two STPs which yield the best-matching. Let a
STP in T1 be T1 and another STP in T2 be T2. The trans-
fomration matrix of the second pose (vertex set V2) to the
first pose (vertex set V1) is estimated by using T2 and T1.
The transformation matrix first aligns T2 with the BTP B

and T1 with B0 by rotating the model along the Y axis

B0 = T2
�1B; (2)

T1 = Ry
�1B0: (3)

The coordinate system of B is the same as the world (or
common) coordinate system. A rotation matrix Ry aligns
B0 with the coordinate system T1. It is a rotation along the
Y axis and computed by

Ry =

0
BB@
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0 0 0 1

1
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Let the translation from the origin of the common coordi-
nate system to each CoM be M1 and M2. Then the pose
transformation matrix Q21 from V2 to V1 is computed by

V
0
2 =M1Ry

�1T2
�1M2

�1
V2 = Q21V2: (5)

The best matching pose transformation Q21 is estimated
by minimizing a cost function between two models,

min
fT12T1;T22T2g

f

X
kV1 �Q21V2k

2
g: (6)

3.4. Pose registration

Based on the estimated pose Q21, we register and refine
the second pose (range image set) to the first pose. Refine-
ment algorithm is similar with that of multi-view registra-
tion [2]. However, because partial surfaces within a pose
are already registered in multi-view registration, we refine
the pose between two range image sets.

4. Pose integration

After the pose registration, two models are integrated
into a complete 3D model. Pose integration computes fi-
nal signed distance of the model Df (p), which is a function
of signed distances to each pose,

Df (p) = f(D1(p); D2(p)); (7)

where;Di(p) = f(di0(p); � � � ; d
i
No

i(p)) for i = 1; 2;
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andDi(p) is a weighted signed distance of a voxel p in pose
i, dij(p) is the signed distance in pose i and view j, and No

i

is the number of overlapping shapes in pose i. Computing
Df (p) of the voxel p is based on average of signed distance
Di(p). If the voxel p is seen from any view in both poses,
Df (p) can be computed by weighted average. However, if
there is any occlusion or concavity in either pose, Df (p)
should be estimated according to the class of the voxel in
both poses.

Suppose there is a concavity on the object’s surface as
shown in Figure 4. As shown in Figure 4(a),Op1 is the com-
mon coordinate system of the first pose and all view points
are nearly on the XZ plane of the coordinate system. See
that no view in the first pose can observe the concavity. But
in Figure 4(b), some of the views in the second pose can see
the concavity. If a voxel p is inside of unseen surface region
as shown in Figure 4(a), voxel is classified to p 2 Pinside

from the first pose. And a continuation approach of the MC
algorithm closes a mesh model by following the visual hull
V H1(O) of the multi-view frustum as shown in the figure.
It means there is a voxel p which is close to the visual hull
and classified to Pinside in the first pose. However, because
it is seen from the second pose, there is no possibility that
the MC algorithm marches on the same voxel p. Instead, the
algorithm must follow the object’s surface, such as a voxel
p 2 Poverlap as in Figure 4(b).

We average two weighted signed distancesDi(p), when
p 2 P i

overlap for j =1 and 2. Otherwise, we heuristically
select one of the distances or the shorter one as follows.

� Df (p) =

P
Wi(p)Di(p)P

Wi(p)
, if p 2 P 1

overlap and p 2

P 2
overlap.

� Df (p) = minfD1(p); D2(p)g, if p 2 P 1
inside and p 2

P 2
inside.

� Df (p) = D1(p), if p 2 P 2
inside, or Df (p) = D2(p), if

p 2 P 1
inside.

However, in some situations, there is a voxel which is
in P i

nonoverlapp at both poses. A voxel in a concave region
is sometimes in this class. Consider an example shown in
Figure 5. In the figure, the signed distance from voxel p to
two pose models are D1(p) and D2(p) and p 2 P 1

nonoverlap

and p 2 P 2
nonoverlap. As shown in the figure, D1(p) has

minus sign, even the voxel is outside the object, because
it is not visible from pose1. If jD1(p)j < jD2(p)j, the MC
algorithm may choose the shorter one, then the voxel is con-
sidered to be inside the object. Typically, this kind of errors
happen near the visual hull.

Rather than selecting the shorter distance of two poses,
we compare visibility of a voxel from views in each pose,
if the voxel is in Pnonoverlap in both poses. If the voxel
has many positive signs from the view points, that means
it has high visibility (Our implicit representation has (+)

unseen surface
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(a) First pose with an unseen concavity
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Figure 4. Signed distance in concave re-
gion: (a) MC algorithm follows the visual hull
V H1(O) to close mesh model. (b) MC algo-
rithm follows the actual surface of the object.

sign when a voxel is outside an object). The visibility
of the voxel can be considered to be the number of pos-
itive distances to each pose. It can be easily decided by
counting the number of positive distances of d ij(p) in each
pose. Therefore, we define more conditions for comput-
ing Df (p) in Pnonoverlap. If a voxel p 2 P 1

nonoverlap and
p 2 P 2

nonoverlap,

� Df (p) = D1(p) if count+(d1j (p)) > count+(d2j (p)).

� Df (p) = D2(p) if count+(d2j (p)) > count+(d1j (p)).

where, count+() is a function counting the number of pos-
itive distances in dij(p), where j = 0; � � � ; No

i.

5. Experimental Results

Our vision system is implemented under a Pentium III
1GHz computer. We have tested our modeling technique
on two complex objects. Each object is placed on the rota-
tion stage and 8 stereo image pairs are taken for each pose.
A stereo image pair has two 1280�960 color images. And
range image size is 320�240. In oder to introduce contrast
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Figure 5. An error on mesh growing

on the object’s surface, we project a random dot pattern us-
ing a slide projector.

Figure 6(a) and 6(b) show two pose images of an ob-
ject “Monkey”. Pose registration and integration results are
shown in 6(c) and (d). Figure 6(e) shows a texture-mapped
novel view of the object. The second object is a small toy,
“Pokemon”. Texture mapping result in Figure 7(e) shows a
photo-realistic reconstruction of the object.

(a) Pose1 (b) Pose2

(c) Registered (d) Integrated (e) A novel view

Figure 6. Results of “Monkey” object

6. Conclusions

Pose estimation and integration techniques are presented
for an automatic and complete 3D model reconstruction. In
order to reconstruct all visible surfaces of the object, we in-
troduce a novel technique of merging two 3D pose-models.
Two models are constructed from two different poses of the
object. Pose between two 3D models is estimated by match-
ing global and stable tangent planes (STP) with the base tan-
gent plane (BTP). The two 3D models are then pose-refined
and integrated to a complete 3D model. Texture mapped 3D

(a) Pose1 (b) Pose2

(c) Registered (d) Integrated (e) A novel view

Figure 7. Reconstruction of “Pokemon”

models of real objects are presented.
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