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One topic of research interest today in three-dimensional (3D) model
reconstruction is the generation of a complete and photorealistic 3D model

from multiple views of an object. This dissertation addresses the problem
of generating 3D computer models of real-world objects. We present Stereo

Vision systems and Computer Vision techniques for complete 3D model

reconstruction through a sequence of steps: (1) Multi-view range image

acquisition (2) Registration and integration of multi-view range images

(3) Pose estimation of 3D models (4) Integration of two-pose 3D models
and (5) Photorealistic texture mapping.

We present two stereo vision systems to obtain multi-view range images
and photometric textures of an object. Each system consists of a stereo

camera and a motion control stage to change the view of the object. Cal-

ibrations of both stereo cameras and motion control stages are presented.

Range images obtained from multiple views of an object are registered to a

common coordinate system through the calibrations of the vision systems.
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In order to re�ne the registration of multi-view range images, we intro-
duce a novel registration re�nement technique. The proposed technique

combines Point-to-Tangent Plane and Point-to-Projection approaches for

accurate and fast re�nement.

In order to merge registered range images, we present two di�erent

integration techniques. A mesh-based technique integrates range images

through merging of multiple contours on a cross section of a volumetric

representation of the object. A slice-by-slice integration on all cross sec-

tions reconstructs a complete 3D model represented by a set of closed

contours. We also present a volumetric multi-view integration technique.

In order to remove erroneous points outside of the visual hull of an object,

Shape-from-Silhouettes technique is combined. A 3D grid of voxels is clas-

si�ed into several sub-regions based on the signed-distances of a voxel to
overlapping range images. The iso-surface of the object is reconstructed
by a class-dependent technique of averaging the signed distances. March-

ing Cubes algorithm then converts the iso-surface representation of the
object to a 3D mesh model.

For many real objects, using a single pose yields only a partial 3D
model because some surfaces of the object remain hidden from a range
sensor due to occlusions or concavities. In order to obtain a complete and

closed 3D model, we generate two 3D models of the object, register and
integrate the 3D models into a single 3D model. By placing the object
in di�erent suitable poses and sensing the visible surfaces, we reconstruct

two partial 3D models. We then merge the partial 3D models by novel
pose registration and integration techniques. Registration of two pose

models consists of two steps, coarse registration, and its re�nement. A
pose estimation technique between two 3D models is presented to deter-
mine coarse registration parameters. The pose estimation technique �nds

a stable tangent plane (STP) on a 3D model which can be transformed

to the base tangent plane (BTP) of the other model and vice versa. After

pose estimation, the two pose models are integrated to obtain a complete

3D model through a volumetric pose integration technique. The integra-
tion technique merges two iso-surfaces of the corresponding partial 3D

models. Texture mapping �nally generates photorealistic 3D models of
real-world objects.
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Chapter 1

Introduction

Automatic reconstruction of photo-realistic three-dimensional (3D) models of
real world objects has been a topic of much interest for applications such as E-

Commerce, Human-Computer Interaction, Reverse Engineering, and Augmented Re-

ality. Recently, there has been considerable progress in automatic 3D reconstruction
techniques that build 3D models through merging of multi-view range images of ob-

jects. This dissertation addresses issues of automatic 3D reconstruction by developing

techniques of obtaining multi-view range images, merging range images into 3D mod-

els, estimating pose of 3D models, merging multi-pose models, and �nally displaying
photo-realistic images of real objects.

This chapter begins by describing a set of problems in the frameworks of auto-

matic 3D reconstruction. We then discuss some relevant previous work and conclude
with an overview of the dissertation.

1.1 Motivation

This dissertation presents automatic 3D reconstruction techniques to reconstruct

complete 3D models of real-world objects. The research on 3D reconstruction has

been one of the interesting topics in Computer Vision and Computer Graphics. It

also has a variety of applications such as E-commerce, Reverse Engineering, Computer

Animation, and Augmented Reality, etc. In Computer Vision and Computer Graphics,

the outer surfaces of a rigid-body object, which is in 3D space, may be represented

by a �nite number of manifold polygons (usually by a set of triangles). Each polygon

is a representation of a surface patch on the real object's outer surfaces. The overall

goal of this dissertation is automatic 3D reconstruction of real world objects through

complete representation of the objects using manifold polygons.

Let us consider a rigid-body object in 3D space. We call a 3D surface model of

the object is complete (or closed) when its outer surfaces are exact representations

of geometric and photometric structures of the real object's all visible surfaces. In

1
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order to reconstruct a complete 3D model (a representation of the object), the 3D
model should be reconstructed such that all manifolds (or surfaces) have the same

geometric and photometric structures as the real surfaces of the object.

A 3D surface model of a real object may be reconstructed by either passive or

active technique. Active technique uses a projected signal which scans over the scene

of interest. The most common techniques, in Computer Vision, are structured-light

and laser projection. They are the most reliable methods of acquiring 3D images.

Passive technique means that a vision system works only on naturally occurring im-

ages produced by re
ected light from the scene or object. Depth from Stereo and

Depth from Motion are two most obvious examples.

Range image is a 2D depth image of a scene of interest, which is obtained from

a single view direction of a range sensor. It represents the geometric 3D structure of

the scene from the given view point. Most range sensors produce the range image
of a scene in terms of a 2D image, where its intensity is the measure of depth from

the sensor to the scene. Therefore, strictly speaking, range image is a 2.5D image

rather than a 3D image. The 3D surface model of the range image is then obtained
by polygonizing it into a set of triangles or rectangles. However, both a range image

and its 3D surface model are often called Range Image without distinction. In this
dissertation, we also call both a 2.5D range image and its 3D surface model as a range
image.

Let us consider the problem of reconstructing a complete 3D model of a real

object. If we obtain a range image of the object from a single view point, it is
only a partial surface of the object's whole structure. Recently, there has been many
investigations on complete 3D reconstruction which produces full 3D structures of the

object. The central technique of complete 3D reconstruction is merging multi-view
range images into a single and closed 3D model. Multi-view range images are obtained

from multiple view points in order to collect geometric structures of all visible surfaces
of the object. And they are merged into a complete 3D model through two important

steps, registration and integration.

Figure 1.1 shows a 
owchart of our 3D model reconstruction steps. Let us con-

sider the reconstruction of the �rst pose of an object. Range images obtained from
multiple views of the object must be brought into a common coordinate system so

that their geometrical and photometrical structures are aligned. This requires de-

termining rigid transformations from the all multiple view points to the common

coordinate system. We call this process as Multi-view Registration. Given registered

multi-view range images (or partial shapes), it is again required to merge all partial

surfaces into a single surface to reconstruct a complete 3D model. The process which

merges all partial shapes into a single surface is called Multi-view Integration. When

an integrated 3D model has complete structures on its all outer surfaces, without any

hole, we call the 3D model is complete (or closed).
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Most investigations on such multi-view 3D reconstruction have been limited to
using a single pose of an object. However, for many real objects, using a single pose

yields only a partial 3D model because some surfaces of the object remain hidden from

the range sensor for any given pose due to occlusion, concavities, etc. An example of

incomplete reconstruction is shown for the �rst pose of the object in Figure 1.1. The

3D model experiences some holes on its outer surface due to occlusions. This kind

of incompletion may happen on most real objects. For example, a tea cup placed

upright on a turntable hides the bottom surface of the cup from the range sensor.

A 3D model of such hidden surfaces could be reconstructed by placing the object

in a di�erent suitable pose (e.g. by placing the tea cup on its side) and sensing the

visible surfaces. This yields a second partial 3D model for the new pose, for example

the second pose model in Figure 1.1. In order to obtain a complete 3D model as

shown in the �gure, the two partial 3D models for the two di�erent poses need to
be registered and integrated. However, since there is no a priori information of the
rigid transformation between two di�erent poses, it also needs to estimate the pose

between the 3D models before registration. For this reason, only a few researchers
have considered Pose Registration and Pose Integration problems.

In this dissertation, we address some problems of automatic and complete 3D

reconstruction. We address the problems by presenting techniques from building a

range image acquisition system to mapping textures on reconstructed 3D models.

The problems addressed in this dissertation are:

� How can we obtain an object's surface geometry using a digital stereo camera?

� How can we accurately register and integrate multi-view range images into a

single seamless 3D surface model?

� How can we obtain all outer surfaces of an object placed on a planar turntable?

� How can we automatically reconstruct a complete and closed 3D model of the

object by integrating two 3D models obtained with di�erent poses?

� How can we estimate a rigid transformation matrix between two 3D models?

1.2 Literature Review

The technique of 3D reconstruction from multi-view range images has been ad-

dressed by many researchers. In this section, we summarize the previous work in

areas of range image acquisition, multi-view registration, multi-view integration, and

pose estimation and integration.
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1.2.1 Range Image Acquisition

Range image (or partial shape) is a 3D structure of a scene of interest acquired

from a given view point. Many vision techniques have been investigated for obtaining

range images (or partial shape) of objects. Some popular techniques are stereo image

analysis, laser range imaging, structured light, shape from focus and defocus, etc.
Among them, laser range imaging and structured light techniques are the most widely

used active techniques. In contrast, stereo image analysis (SIA) and shape from focus

and defocus are the most widely used passive techniques [41, 48, 92, 91, 93]. Many
commercial products based on active techniques are already available, but they are

usually very expensive. In contrast, passive techniques are generally less expensive
than active techniques. For example, SIA technique produces range images using

disparity between the coordinates of two image points, which are projections of the

same 3D point to stereo image planes.

Laser range imaging and structured light techniques are the most common ac-
tive techniques. These techniques project special light patterns onto the surface of a
real object to measure the depth to the surface by a simple triangulation technique

[19]. Some common patterns for the structured light are a single line pattern [53], a
multi-line pattern [75], a colored pattern [109], and a space-time coded pattern [82].

Advantages of using the active techniques are accuracy and speed of depth acquisi-

tion. Some recent investigations on this technique show that they can reconstruct a
complete 3D model very accurately in real-time [109, 82]. However, the cost of active

techniques is still expensive than that of passive techniques.

In contrast, the passive techniques work only on naturally formed images pro-

duced by re
ected light from an object. A common technique is Stereo Image Analysis
(SIA). The task of searching correspondence in a pair of stereo images is called stereo

matching. In Computer Vision research, stereo matching has been an important prob-

lem in the last thirty years [21, 51, 68]. However, due to inherent stereo problems
(mis-matching, occlusion), it is still considered a diÆcult problem. One of the simple

and eÆcient techniques in SIA is a correlation-based technique [29, 33]. Correlation-
based technique �nds stereo correspondence in a pair of stereo images which max-

imizes a cross-correlation function. It is easy to implement and robust, but com-

putationally expensive. With the growing computing power, some approaches have
been investigated for fast stereo matching by employing multi-resolution techniques

[94, 102]. Gaussian pyramids are used for generating multi-resolution stereo images,

and coarse-to-�ne stereo matching techniques reduce computation time[13, 46].
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1.2.2 Multi-view Registration

Obtaining range images of objects from a �xed range sensor results in some

occluded regions due to the object's hidden surfaces. In order to view the occluded

parts of an object, either the object or the camera has to be moved. Then multi-

view range images can be obtained from di�erent view directions to view such hidden
surfaces. Because all range images are constructed with reference to di�erent camera

coordinate systems corresponding to di�erent directions of view, it is necessary to

register reconstructed partial surfaces. This requires determining the relative position

and orientation between each camera coordinate system and a reference (common)

coordinate system.

Registration of multiple partial shapes generally consists of two steps, coarse

registration and registration re�nement. Coarse registration determines approximate
rigid transformation parameters between each camera coordinate system to a common

coordinate system. In a calibrated vision system, those parameters are already known

from the calibration of the vision system. Registration re�nement is a process of
re�ning the parameters to minimize registration errors between all overlapping partial

shapes. Without the re�nement step, an integrated 3D model may include some
geometric artifacts on its surface or photometric texture mismatch between di�erent
views.

There are mainly three approaches for multi-view registration: point-to-point,

point-to-tangent plane, and point-to-projection approaches. A popular method in

point-to-point approach is the Iterative Closest Point (ICP) algorithm [9, 81]. In
case of two overlapping shapes, for example, the ICP algorithm iteratively minimizes

overlapping errors between two shapes by estimating transformation parameters using

two closest point sets on both shapes. The point-to-tangent plane approach �nds the
control point sets such that a point on a tangent plane at a destination partial shape is
intersected from a control point on a source partial shape [17, 7, 22, 30]. The Euclidean

distance from the source point to the tangent plane is measured as a cost function

of registration error between two views. The point-to-tangent plane technique is a

more stable technique because it uses geometric properties of the overlapping shapes
[7, 70]. Point-to-projection approach �nds the correspondence of a source control
point by projecting the source point onto the destination surface from the point of

view of the destination [10, 64].

Many researchers have investigated the registration problem for calibrated and

uncalibrated vision systems. When a vision system is not calibrated, an auto cali-

bration technique in projective space is used [97, 107], or motion parameters between

di�erent views are estimated [24, 105]. In contrast, when the system is calibrated, an

initial estimate of calibration parameters is usually computed at the beginning, and

re�ned later during the registration step [17, 76, 101]. Our vision system is initially
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calibrated by the Tsai's method and re�ned in the registration step.

1.2.3 Multi-view Integration

After the registration step, multiple partial shapes have to be integrated into

a complete 3D model. There are two common approaches for multi-view modeling

techniques. The �rst one is merging multiple range images into a complete 3D model
[8, 27, 87, 34, 18, 103]. The other approach is based on processing photographic

images using volumetric modeling technique, such as Voxel Coloring or Shape-from-

Silhouettes [12, 26, 86]. In this dissertation, we present a 3D model reconstruction

technique based on merging of multiple range images of an object. Multi-view (or N -

view) range images are acquired from di�erent views of the object. Viewing direction
can be changed by either moving the senor or the object. A moving object on a
turntable [18, 26] with a �xed sensor, or a moving sensor with a �xed object [2, 65]

have been used by researchers, in addition to other variations [36, 37, 50].

Mesh-based integration and volumetric integration are popular techniques of

merging range images [73, 85, 88, 99]. One of the mesh-based integration techniques
is based on stitching neighborhood meshes from one view after segmenting meshes
according to a 'Region of Construction' algorithm [54]. Mesh 'zippering' and mesh

'growing' are other techniques investigated by Turk et al. [99] and Rutishauser et
al. [83], respectively. However, it is not easy to �nd connecting points between two

surfaces in mesh-based integration. A technique for mitigating this problem is to
integrate meshes slice-by-slice by considering cross-sections of the object [69].

In volumetric integration approach, implicit representation of object's surfaces is

commonly used [18, 23, 34, 35, 77, 79, 70, 103]. Hoppe et al. [35] have reconstructed
an implicit surface model from unorganized points. Their approach assumes that

all points are on the physical object surface, which may not be true in a practical

system. Curless and Levoy [18] have used multiple range images obtained from a

laser range �nder to construct an object surface. Hilton et al. [34] also used multiple
laser-range images and assumed noise-free partial shapes. Because they have all used

laser range �nders to acquire partial shapes, errors in partial shapes are negligible.

An approach to handle the noise problem in partial shapes has been investigated

recently by Wheeler et al. [103]. They use a 'Consensus-Surface' algorithm to �nd the
points which have similar geometric conditions with each other to get the 'Consensus-

Surface'. However, he also uses a range �nder and many overlapping partial shapes
for one surface point to minimize the e�ect of errors. Some other approaches use

multiple video sequences to generate in real-time a 3D model of an object for virtual

reality applications [43, 62, 61, 79, 84, 100].

Most researches on 3D modeling have been done using range images obtained

from high-quality laser ranging systems or structured light systems. However, rela-
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tively less research has been done on using passive techniques, such as Stereo Image
Analysis (SIA) or Depth from Focus, for complete 3D modeling. This is mainly

due to the inherent problems (e.g. mismatching and occlusion) of stereo matching

[25, 54, 106]. Chen [16] has used a stereo camera to get partial shapes and integrated

them using a volumetric method. His approach looks similar to ours, but he used a

3D volume mainly for �nding a disparity surface, not for integrating partial shapes.

Rander et al. [79] and Vedular et al. [100] also used stereo algorithm to create 3D

models of a dynamic scene for Virtual Reality applications. They use a large number

of cameras and a Multiple Baseline (MB) stereo matching technique. They mitigate

stereo correspondence problem using 'shape from silhouettes' technique as a post-

processing operation to the stereo algorithm. But a simple space carving algorithm

can also remove the object area due to errors in registration step. There are also

some investigations to mitigate these problems by integrating Image Focus Analysis
(IFA) and Image Defocus Analysis (IDA) with SIA [106, 54]. IFA and IDA provide
an approximate 3D shape of the object which simpli�es the stereo matching problem

in SIA. The approximate 3D shape is re�ned by SIA to obtain a more accurate 3D
shape.

1.2.4 Pose Estimation

In this dissertation, one of the interesting research issues is pose estimation be-

tween 3D models. Because our approach of complete 3D model reconstruction is

merging two partial 3D models into a single 3D model, we have to register two 3D
models by estimating the pose between them. Registration of two pose models consists
of two steps, coarse registration and its re�nement. Coarse registration is estimating

rigid transformation between two 3D models to approximately register the models.
It can be considered a pose estimation problem of the models [14, 57]. Pose esti-
mation is a very interesting problem in computer vision, and there has been many

investigations [14, 42, 44, 95, 108].

Pose estimation between multiple 3D models can be done based on either geomet-

ric features or photometric features of the models. Barequet [5] employs volumetric

structures of 3D models to estimate the pose between models. Cyr [20] introduces a

pose estimation technique using geometric features of 2D projection images of a 3D

model. Similar technique is also investigated by Winkler [104]. There are also con-
siderable investigations on the pose estimation using the (Extended) Gaussian Image
of a 3D model [38, 39, 45, 55]. In this dissertation, we introduce a pose estimation

technique of two 3D models to determine coarse registration parameters [70, 71]. The

pose estimation technique �nds a stable tangent plane (STP) on a 3D model which

can be transformed to the base tangent plane (BTP) of the other model and vice

versa.
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1.2.5 Pose Integration

Registration and integration of partial 3D models into a single 3D model is also

a very diÆcult problem. For this reason, only a few researchers have considered

this problem. P. Allen and R. Yang [2] stitch a bottom surface of an object by
matching edge features of the object's 3D model with an edge image of the bottom.

They acquire multi-view range images of a �xed object using a moving range �nder.

After reconstructing a 3D model, they acquire a partial shape of the bottom surface

and stitch the shape and texture of the bottom to the 3D model using a feature

matching technique. K. Wong and R. Cipolla [105] employ a shape-from-silhouettes
technique for 3D modeling and combine a structure-from-motion technique to estimate

registration parameters of multiple views. But they manually register the top and the
bottom surfaces of the object. W. Niem [65] also reconstructs complete 3D models

using a shape-from-silhouettes technique, registers, and integrates the top and the
bottom surfaces manually. H. Lensch et al. [52] and Y. Iwakiri and T. Kaneko

[40] use silhouette matching techniques for registration and stitching of textures to a

3D model. However, their investigations consider only the registration and stitching
of texture properties of an object, not the geometric reconstruction of the object.
D. Huber [36] also presents a 3D reconstruction technique using an unconstrained

registration of n-view partial shapes. He registers the partial shapes using Spin images
and a graph searching technique.

1.3 Dissertation Overview

This dissertation is organized as follows. In Chapter 2 and Chapter 3, we intro-

duce two stereo vision systems, SVIS-2 and SVIS-3. The SVIS-2 system consists of a

parallel-axis stereo camera and a turntable stage. We use a simple camera calibration
technique because we know the system parameters such as the baseline of the stereo

camera and the rotation angle of the turntable. We have calibrated the transforma-
tion parameters of the turntable axis with respect to the camera coordinate system.

We also present a multi-resolution stereo matching technique to obtain a range image

from a pair of stereo images.

Chapter 3 introduces another 3D vision system called SVIS-3. The system's

con�guration is similar to the SVIS-2 system, but we use a toed-in stereo camera to

more e�ectively accommodate the size of an object. Instead of �xing the position

of the stereo camera, we freely move the stereo camera on the planar table top to

change the distance from an object depending on the size of the object. We accurately

calibrate the stereo camera and rectify a pair of images to make the epipolar line to be

on the same horizontal line on the images. We also calibrate the turntable coordinate
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system with respect to the camera coordinate system.

In this dissertation, both mesh-based and volume-based integration techniques

are presented to integrate multiple range images. In Chapter 4, we present a mesh-

based 3D model reconstruction technique. In this chapter, a new registration algo-

rithm based on an epipolar line constraint between two view directions is proposed.

In order to integrate multiple partial shapes, we divide the partial shapes into many

slices, segment a partial shape into several contours, and integrate multi-view con-

tours after removing some erroneous segments. After integration, we polygonize all

slices of contours into a 3D mesh model.

In Chapter 5, we present another 3D reconstruction technique based on a vol-
umetric integration of multiple range images. The proposed technique registers all

range images using a point-to-plane registration technique. After re�nement, we

compute the implicit surface function of the object in a volumetric space and convert
it to a 3D mesh model using the Marching Cubes algorithm [56]. We introduce a

new volumetric integration technique by classifying the volume into multiple regions

based on the signed distance of a voxel. We also test the visibility of the voxel from
all view points from its simple visibility code, which is called voxel code. In order

to remove some erroneous voxels, we combine the Shape-from-Silhouettes technique
[3, 49, 59, 65, 66, 89, 96].

A novel pose estimation and an integration techniques are presented in Chapter
6 and Chapter 7. These techniques facilitate integration of two 3D models into a

complete and closed 3D model. In Chapter 6, we present a novel pose estimation
technique to determine coarse registration parameters between two 3D models of
the object. We introduce a simple pose estimation technique based on matching

tangent planes of a 3D model with the base tangent plane (BTP) which is invariant
for a vision system. By matching the BTP of one 3D model to a STP of the other

model, we derive a pose transformation matrix and register the models to a common
coordinate system. Chapter 7 addresses a pose integration problem in order to merge

two partial 3D models into a complete and closed 3D model. The novelty of our

pose integration technique is merging two incomplete iso-surfaces which represent
two di�erent models. Since the two 3D models are already reconstructed through
integration of n-view range images in each pose, we integrate two iso-surfaces rather

than 2�n-view range images.

In Chapter 8, we address a registration re�nement problem and present an accu-

rate and fast Point-to-(Tangent) Plane registration technique. We introduce a novel
Point-to-Plane registration technique by incorporating the high-speed advantage of

the Point-to-Projection approach. In order to �nd the intersection point fast and
accurately, we forward-project the source control point to the destination surface and

reproject the projection point to the normal vector of the source point. Therefore,

we call our technique as Contractive Projection Point (CPP) algorithm. Finally, in
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Chapter 9, we conclude the dissertation by summarizing presented 3D reconstruction
systems and techniques. Future research topics are also presented.



Chapter 2

Parallel Stereo Vision System (SVIS-2)

This dissertation introduces two stereo vision systems for range image acquisition.
This chapter presents one of them, which is named SVIS-2 (Stony Brook Vision

System{2). Calibration of the vision system and acquisition of multi-view range

images are presented.

2.1 Introduction

This chapter presents a stereo vision system for acquisition of multi-view range

images. This system is �xed on the top of a planar table while obtaining range images.
In order to reconstruct a complete 3D model of an object, we need multiple range

images obtained from di�erent views of the object. A rotation stage (turntable) is

employed to change the object's view for multiple range image acquisition.

We calibrate the stereo camera and the rotation stage. The calibration of rotation
stage facilitates registration of multi-view range images into a common coordinate

system. We use the Tsai's calibration technique using a calibration pattern which
contains several control points [98]. A focus calibration with respect to multiple

distances of an object is also presented.

2.2 System Overview

The SVIS-2 vision system consists of �ve components. A digital still camera, a

translation stage to implement a parallel stereo geometry, a rotation stage to change

view direction of an object, a slide projector to project a random dot pattern on the

object surface, and a personal computer system to control all motion components.

For photometric image acquisition, we use a Olympus C3030-Zoom digital cam-

era which interfaces with a host computer via an Universal Serial Bus (USB). We

have written a Windows-based program to communicate the camera with the host

12



13

computer using an Active-X control. Most properties and functions of the camera
can be controlled by the host computer, which include focus, zoom, aperture, picture

resolution, etc. Focus distance of the camera can be controlled from 200 mm to 1

distance, and focal length can be controlled from 6.5 mm (Wide mode) to 19.35mm

(Tele mode). For stereo image acquisition, focus is set to the best focus position for

a given object distance and zoom is set to the tele mode of the lens.

The translation stage moves the camera in the horizontal direction along the

baseline to implement a parallel stereo geometry. We assume that the stereo base-

line is parallel to the x axis of the camera coordinate system. The rotation stage

rotates the object to change viewing directions from the camera to acquire multiple

stereo pictures around the object. Both the translation and the rotation stages have

stepper motors, which are controlled by the host computer through a stepper motor
controller. The rotation stage rotates 360Æ in 2400 motor steps and the translation

stage horizontally moves 76 mm in 600 steps. The accuracies of the movements in
the translation stage and the rotation stage are 0.127 mm and 0.1 degree respectively

per motor step.

In order to introduce contrast on the surface of a low-contrast object, we use

a slide projector to project a random dot pattern onto it. A slide �lm with black
and white random dots pattern was taken from a computer screen with 1024�768

resolution. The resulting contrast facilitates the use of stereo matching. We named
the vision system as SVIS-2 (Stony Brook VIsion System-2). Figure 2.1 shows a

diagram of SVIS-2 and Figure 2.2 shows a picture of the system.

2.3 Vision System Calibration

2.3.1 Focus Calibration

Focus changes with respect to the distance of an object. Calibration of the focus
lens is �nding the best lens position which focuses the object most sharply. Later in

this chapter, we calibrate the rotation stage for multi-view modeling. An object is

placed on the rotation stage and it is necessary to sharply focus the object to obtain

high-quality images of the object from multiple viewing directions.

To �nd the exact focus step position of the lens with respect to the object dis-
tance, a calibration pattern is set up in front of the camera, and its distance is changed

from 300 mm to 1010 mm with 50 mm intervals. The calibration pattern has high

contrast textures so that a focus-measuring method can easily measure the level of

focusing on the target. At each distance of the calibration pattern, we take several

pictures of it by changing focus step number, and �nd the lens position corresponding

to the maximum focus measure. Measuring how much the object is focused on the
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image plane is done by computing a focus measure. The sum of the energy of the
Laplacian �ltered image within 16�16 blocks is used as the focus measure [90]. Step

number of best focus with respect to object distance is plotted in Figure 2.3. The

horizontal axis of the �gure is focus step number of the camera, and the vertical axis

is the corresponding focusing distance. We put the rotation stage about 0.8 m from
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Figure 2.3: Plot of object distance vs. focus step of C-3030 digital camera

the camera and set the focus of the camera based on the calibration table. According
to Figure 2.3, focus step number 120 is corresponds to about 0.8 m distance from the

camera.

2.3.2 Stereo Camera Calibration

A parallel stereo geometry is used in SVIS-2. A digital camera is installed on the
translation stage to implement the parallel stereo. Calibration of the stereo camera

is done by Tsai's algorithm [98]. Consider a point P in Figure 2.4 in 3D space, its

representations Pl and Pr in the left and the right camera coordinate systems. Then

the transformation between two coordinate systems is

Pr = Rr

l
(Pl � t

r

l
): (2.1)

Where, Rr

l
and tr

l
are rotation and translation matrices from the left to the right

camera coordinate system, respectively. We assume that the translation stage moves
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the camera in horizontal direction{x axis in camera coordinate system. Therefore,
there is little error on epipolar line so that we can search stereo correspondence on

epipolar line in horizontal direction. When there is an error in vertical direction{

y axis in camera coordinate, we can manually adjust the level of the translation

stage to minimize it. Figure 2.4 shows the geometry of the stereo camera of SVIS-2

system. The baseline of the stereo camera B is 76 mm, it corresponds to 600 steps

of the stepper motor on the translation stage, and the focal length of the camera f

is 19.35 mm, at tele mode of the lens. The focal length was calibrated using Tsai's

non-coplanar camera calibration technique.

Consider again a 3D point P and its projection point on the right CCD plane,

pr as shown in Figure 2.4. If we �nd another point pl in the left image plane, which

is the corresponding point of pr computed by a stereo matching algorithm, we can

get the vector P in 3D space,

P =

0
@ x

y

z

1
A =

0
BBBBB@

Bf

xpl�xpr
zxpr

f

zypr

f

1
CCCCCA

(2.2)

and xpl and xpr are the x coordinates of the points pl and pr respectively. Here, we
assign the right camera position as the reference of the camera coordinate system.

2.3.3 Rotation Stage Calibration

Rotation stage calibration is important for registering multiple range images.

This calibration gives transformation parameters between the camera coordinate sys-

tem to the rotation coordinate system. These parameters are later used to register
all partial 3D shapes into a common coordinate system and to integrate them. An

accurate calibration of the rotation stage gives better performance for registration

and integration of multiple range images.

A calibration pattern which has several control points is used for calibrating the
stage. Since several stereo images of an object are taken at every � degree interval

around an object, two consecutive images of calibration pattern are also taken with

� angle di�erence. By estimating calibration parameters which register two sets of

3D control points as close as possible, we can also register the partial shapes of the
object into a common coordinate system.

Calibration for each view coordinate system is done using Tsai's algorithm. But

we modi�ed the algorithm to �x the focal length of the camera to get more accurate

parameters. A checkerboard calibration pattern is placed on the rotation stage. Two
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Figure 2.4: Parallel stereo geometry of SVIS-2 system

sets of stereo images are taken with � degree angle di�erence. Let V0 and V1 denote
the camera coordinate systems of the two view directions and Vw denote the world

coordinate system. Let a control point in Vk be Pk, where k = 0 and 1, and Pw be
the same point represented by the world coordinate system. Then transformations
Tk

w
from the world coordinate system to each camera coordinate systems are

P0 = T0

w
Pw

P1 = T1

w
Pw;

and

P0 = T0

w
(T1

w
)
�1
P1

= R0

1
P1 + t0

1
: (2.3)

where, R0

1
and t0

1
are rotation and translation matrices between two coordinate sys-

tems as shown in Figure 2.5.

In order to register all partial shapes to a common view coordinate system, it is

necessary to �nd the transformation between the common view coordinate system{

view 0 (V0) in this dissertation{and the rotation stage coordinate system. Let RS and
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Figure 2.5: Multi-view geometry of SVIS-2 system

tS be the rotation and the translation matrices between the rotation stage coordinate
system and the camera coordinate system. The transformation between two view
directions is also expressed as

P0 = R�RS(P1 � tS) + tS:

= R�RSP1 + tS(I�R�RS): (2.4)

From equations (2.3) and (2.4),

RS = R�

�1R0

1
;

tS = (I� (R0

1
)
�1
)t0
1
:

2.3.4 Calibration Test

A picture of the calibration pattern with 48 control points is shown in Figure

2.6. From one viewing direction, a pair of stereo image of the calibration pattern is

taken and the 3D positions of all control points fP0g are obtained. After rotating

the pattern, another set of control points fP1g are obtained again in the same way.
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We set the rotation angle � = 90Æ. Parameters of the rotation R0

1
and the translation

t0
1
are computed by Tsai's algorithm,

R0

1
=

0
@ 0:0144 0:0022 �0:9998

�0:0163 0:9998 0:0020

0:9997 0:0163 0:0145

1
A

t0
1

=
�
793:37 �2:862 856:56

�T
: (2.5)

And, the resulting calibration parameters for the system is

RS =

0
@ 0:9980 0:01966 �0:0586

�0:0188 0:9997 0:0147

0:0588 �0:0136 0:9980

1
A

tS =
�
�38:19 0:0 833:38

�T
: (2.6)

Figure 2.7 shows an initial calibration result. One set of control points is regis-

tered to the coordinate of the other point set. Table 2.1 shows errors in calibration.

Table 2.1: Rotation calibration error analysis

No. of control points 48

Max. distance error 3.60mm

Average distance error 1.90mm

2.4 Partial Shapes Acquisition

This section describes the reconstruction of 3D partial shapes for a single viewing

direction. A 3D partial shape of an object is reconstructed from a stereo matching

technique. A multi-resolution stereo matching technique based on Sum of Squared
Di�erence (SSD) algorithm is applied to a pair of stereo pictures.

2.4.1 Multi-resolution Stereo Matching

We employ a multi-resolution stereo matching algorithm using a Gaussian Pyra-

mid [13]. Multi-resolution approach in stereo matching gives many advantages. It
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(a) (b)

Figure 2.6: Calibration patterns.(a) 0 degree (b) 90 degree

(a) (b)

Figure 2.7: Result of registration of two control point sets (a) Before calibration (b)

After calibration
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can restrict search range from the result of matching in lower resolution image and
thus reduce computation time for searching stereo correspondences.

A Gaussian pyramid for an image I is a sequence of copies of I, where each

successive copy has half the resolution and sample rate. The levels of a Gaussian
pyramid for a given image I is calculated as

gk(i; j) =

2X
m=�2

2X
n=�2

w(m;n)gk�1(2i+m; 2j + n) (2.7)

g0(i; j) = I(i; j):

where w(m;n) is a 5�5 size of Gaussian kernel. Because this kernel is separable,

we use one-dimensional Gaussian kernel w(m) whose length is 5. The weights of
Gaussian kernel are

w(0) = 0:4;

w(1) = w(�1) = 0:25;

w(2) = w(�2) = 0:05:

Three levels of Gaussian pyramid are used from level 0 to level 2. Image of level

0 corresponds to the original image and level 2 corresponds to the smallest image.
Original image size is 1280�960 and the image size at level 2 is 320�240. We use
a variable size of matching block for stereo matching. It is (15-2k)�(15-2k) for the

kth pyramid level. A sample picture, a segmented image, and it's range image, are
displayed in Figure 2.8. Normalized Gaussian low-pass �lter is also applied to the

range image to obtain sub-pixel accuracy.

Object's silhouettes in the stereo image are segmented by a blue screen technique.

A binary morphological closing and opening operation is used to remove noise in

image segmentation. The matching algorithm �nds stereo correspondence only on

the object areas in left and right images. Object's silhouettes are also used later for

volume intersections in multi-view integration processing.

SSD based stereo matching is done at each level of the Gaussian pyramid from
low resolution to high resolution. At the �rst level of the stereo matching, initial

search range of stereo disparity SR0 at level 0 is set to [0,sr0]. Then, at the lowest
level of pyramid for k = 2, initial stereo disparity SR2 becomes [0,sr0/(2k)]. At

successive levels of pyramid, the result of stereo disparity at lower level decides the

search range of the respective level. If the disparity at lower level is Di, then the
search range of current level SRi is restricted within [2�Di�2; 2�Di+2] so that the

stereo matching algorithm can correct possible mismatches in previous level. When

there is a pair of stereo image, gk
(l) and gk

(r) for left and right images, which are at
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level k of the pyramid, SSD(i,j) at image coordinate (i; j) is

SSD(i; j) =

mX
k=�m

mX
l=�m

�
gk

(l)(i; j)� gk

(r)(i+ k; j + l)
	

(2.8)

where, 2m+ 1 is the size of a matching block.

(a)

(b) (c)

Figure 2.8: An example of object segmentation and stereo matching (a)An image of
a stereo pair (b)Segmented object (c) Stereo matching result on segmented region

2.4.2 Experimental Results

A pair of stereo image of an object 'Monkey' is obtained with 1280� 960 image

size. The SSD-based stereo matching is done within a multi-sized matching block.
Figure 2.9 (a) and (b) show a input pair of stereo image and Figure 2.9 (c) and (d)
show the corresponding pair of segmented images of the object from the background.

Figure 2.9 (e) shows results of 3D shape reconstruction from the multi-resolution
stereo matching. Shapes are represented as point clouds, where each point represents

a range data point on the object's surface.

2.5 Conclusions

The SVIS-2 system is developed to obtain range images of an object frommultiple
view points. We have calibrated the stereo camera and the turntable stages. Since

the stereo camera has a parallel stereo geometry, we use a mechanical measurement

for the baseline of the stereo camera. The focus of the camera is also calibrated

by measuring focusing of the lens as a function of the distance of an object. The

calibration parameters of the turntable will facilitate registration of the multiple views

into a common coordinate system. Multi-view registration and integration will be

presented in the Chapter 4 and 5.
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(a) (b)

(c) (d)

(e)

Figure 2.9: Experimental result of stereo matching: (a) Left image (b) Right image

(c) Left segmentation (d) Right segmentation (e) Point clouds of the reconstructed
3D shape



Chapter 3

Vergence Stereo Vision System (SVIS-3)

This chapter presents another stereo vision system called SVIS-3 (Stony Brook
VIsion System-3). The con�guration of SVIS-3 is similar to that of SVIS-2. However,

the system adopts a toed-in stereo camera to obtain range images of an object more
e�ectively. We calibrate the stereo camera to rectify stereo image pairs. In contrast
to the SVIS-2 system, the stereo camera in SVIS-3 can be placed on the table top

arbitrarily to accommodate to the size of an object. Therefore, we precisely calibrate

a rotation stage with respect to the stereo camera so that the system can reconstruct

a complete 3D model from an arbitrary view point.

3.1 Introduction

Calibration and recti�cation techniques of another stereo vision system (SVIS-
3) are presented. The vision system consists of a digital stereo camera, a turning

table, and a personal computer. We calibrate the stereo camera and the turntable,
rectify stereo images, acquire range images of an object from multiple view points, and
reconstruct a complete 3D model. Stereo recti�cation determines a transformation of

each image plane such that pairs of conjugate epipolar lines become parallel to the

horizontal image axes [28, 32]. The recti�ed images can be considered as new images

acquired by a new parallel stereo camera, obtained by rotating the original camera.
An important advantage of recti�cation is for computing stereo correspondences.

Because each pair of epipolar line is parallel to the horizontal image axis, �nding

correspondence between two stereo images are done on the same horizontal image

axis.

In order to rectify stereo images, we calibrate the stereo camera. Some useful

calibration techniques for vision systems are already available, which determine ex-

ternal and internal calibration parameters. However, we do not use the techniques,

but obtain only projection matrices of the left and the right cameras for recti�cation.

Projection matrix is a homogeneous transform matrix which maps a 3D point in space

24
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into a 2D point in the image plane of a camera. Estimating the projection matrix is
the solution of simple and overdetermined linear system equations, and we solve it

from Singular Value Decomposition (SVD) of the linear system.

Given calibration parameters, we rectify stereo images by using a recti�cation

technique investigated by A. Fusiello, etc [28]. Their algorithm determines a transfor-
mation of each stereo image plane by assuming that a new stereo camera is obtained

by rotating an original stereo camera. We adopt this technique because it is simple

and accurate.

3.2 Stereo Camera Calibration

In this section, we describe a calibration technique of a vision camera. It can be

considered as an estimation of a projective transformation matrix from the world co-
ordinate system to the camera's image coordinate system. If we have the coordinates

(Xw

i
; Y

w

i
; Z

w

i
; 1) of a 3D point in space and the coordinates (xc; yc; 1) of its projection

on the 2D image plane, a 3� 4 projection matrixM can be written according to the
equation

2
4 ui

vi

wi

3
5 =M

2
6664
X

w

i

Y
w

i

Z
w

i

1

3
7775 ; (3.1)

with

x
c
=

ui

wi

=

m11X
w

i
+m12Y

w

i
+m13Z

w

i
+m14

m31X
w

i
+m32Y

w

i
+m33Z

w

i
+m34

y
c
=

vi

wi

=

m21X
w

i
+m22Y

w

i
+m23Z

w

i
+m24

m31X
w

i
+m32Y

w

i
+m33Z

w

i
+m34

(3.2)

The matrix M is de�ned up to an arbitrary scale factor and has only 11 inde-
pendent entries. Therefore we need at least 6 world image points and their matching

points in the image plane. If we use a calibration pattern, for example a checker-

board pattern, we have more correspondences and M can be estimated through least
squares techniques. If we assume we are given N matches for the homogeneous linear

system like Equation (3.2), we have

Am = 0; (3.3)

with
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A =

2
66666666666664

X1 Y1 Z1 1 0 0 0 0 �x1X1 �x1Y1 �x1Z1 �x1

0 0 0 0 X1 Y1 Z1 1 �y1X1 �y1Y1 �y1Z1 �y1

X2 Y2 Z2 1 0 0 0 0 �x2X2 �x2Y2 �x2Z2 �x2

0 0 0 0 X2 Y2 Z2 1 �y2X2 �y2Y2 �y2Z2 �y2

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

XN YN ZN 1 0 0 0 0 �xNXN �xNYN �xNZN �xN

0 0 0 0 XN YN ZN 1 �yNXN �yNYN �yNZN �yN

3
77777777777775

and m = [m11; m12; � � � ; m33; m34]
T
:

Since A has rank 11, the vector m (or M) can be recovered from SVD related

techniques as the column of V corresponding to the smallest singular value ofA, with

A = UDVT. For more information see reference [97].

3.3 Stereo Recti�cation

Suppose we have two cameras whose optical centers are C1 and C2, respectively.
Let a 3D point in space be W and its projection to the left camera's image plane be

p1. Then we can �nd its correspondence p2 on the right image plane on the epipolar

line u2, which is the intersection of the right image plane and the epipolar plane of
a triangle WC1C2. If two image planes are collinear, the epipolar line u2 will be
collinear with the epipolar line u1 on the left image plane. However most stereo

cameras, which have a toed-in angle between left and right cameras, their conjugate
epipolar lines are not collinear.

Stereo recti�cation determines a transformation of each image plane such that

pairs of conjugate epipolar lines become parallel to the horizontal image axes. This
gives an advantage for computing stereo correspondences. Because each pair of epipo-

lar line is parallel to the horizontal image axis, �nding correspondence between two

stereo images are constrained on the same horizontal image axis.

3.3.1 Pinhole Camera Model

A pinhole camera is modeled by its optical center C and its image plane R. A

3D point W is projected into an image point P , which is an intersection of R with

the line containing C and W . LetW = [x y z]T be the coordinates of W in the world

coordinate system, p = [u v]T the coordinates of P in the image plane (CCDs), and
p0 = [u0 v0]T the coordinates of P in the picture plane (pixels). The mapping from 3D

coordinates to 2D coordinates is the perspective projection, which is represented by a

linear transformation in homogeneous coordinates. Let ~p = [u v 1]T , ~p0 = [u0 v0 1]T ,
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and ~W = [x y z 1]T be the homogeneous coordinates of p, p0, and W, respectively.

Then the perspective transformation is given by the matrix ~M:

~p0 = K~p �= K ~M ~W; (3.4)

where �= means equal up to a scale factor. The camera is therefore modeled by a
scaling and translating matrix K and its perspective transformation matrix (PPM)
~M which can be decomposed, using the QR factorization, into the product

~M = A[Rjt]: (3.5)

The matricesK and A depend on the intrinsic parameters only, and have the following

forms:

K =

2
4 ku 0 0

0 kv 0

0 0 1

3
5
;A =

2
4 fu 
 u0

0 fv v0

0 0 1

3
5
; (3.6)

where, fu ; fv are the focal lengths in the horizontal and the vertical directions, ku ; kv
are the scaling factors from the CCD plane to the picture plane, (u0; v0) are the

coordinates of the principal point in picture plane, (ui; vi) are the coordinates of the
o�set of the principal point in image plane, and 
 is a skew factor. The camera

position and orientation (extrinsic parameters) are represented by a 3 � 3 rotation
matrix R and a translation vector t, representing a rigid transformation that brings
the camera coordinate system onto the world coordinate system.

The PPM can be also written as

~M =

2
4 qT

1

qT
2

qT
3

q14

q24

q34

3
5 = [Qj~q]: (3.7)

The focal plane is the plane parallel to the image plane that contains the optical
center C, and the projection of W to the plane is 0. Therefore, the coordinates C of

C is given by

C = �Q�1~q: (3.8)

Therefore, ~
M can be written as

~M = [Qj �QC]: (3.9)

The optical ray associated to an image point P is the line PC, that means the

set of 3D points W : ~p �= ~M ~W. In parametric form:

W = C+ �Q�1~p; � 2 R: (3.10)
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Figure 3.1: Epipolar geometry of a vergence stereo camera

3.3.2 Epipolar Geometry

Let us consider a stereo vision system composed by two pinhole cameras as shown

in Figure 3.1. Let C1 and C2 be the optical centers of the left and the right cameras,
respectively. A 3D point W is projected onto both image planes, to points P1 and
P2, which are corresponding points between two images. Given a point P1 in the left

image plane, its corresponding point in the right image plane is constrained to lie on

a line called the epipolar line. All the epipolar lines in one image planes pass through

a common point, E1 and E2 respectively, and it is called the epipole.

A very special case is when both epipoles are at in�nity. It happens when the

line C1C2 (the baseline) is constrained in both focal planes, where the image planes

are parallel to the baseline. Therefore, any stereo images can be transformed so that

epipolar lines are parallel and horizontal in each image. This procedure is called

recti�cation.
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3.4 Recti�cation of Camera Matrices

We assume that the stereo system is calibrated, that means the original PPMs
~Mo1 and ~Mo2 are known for both cameras. Recti�cation estimates two new PPMs
~Mn1 and ~Mn2 by rotating the old matrices around their optical centers until focal

planes become coplanar.

In order to have horizontal epipolar lines, the baseline must be parallel to the
new X axis of both cameras. In addition, corresponding points must have the same

vertical coordinate ( Y axis). Consequently, the positions of new optical centers are

the same as what in the old cameras, the new matrices di�er from the old ones by

suitable rotations, and intrinsic parameters are the same for both cameras. Therefore,

the new PPMs will di�er only in their optical centers.

Let us write the new PPMs in terms of their factorization,

~Mn1 = A[R j �R C1]; (3.11)

~Mn2 = A[R j �R C2]:

The intrinsic parameters matrix A is the same for both new PPMs and computed
arbitrary in this report as, A = A1+A2

2
. The rotation matrix R is also the same for

both PPMs. It can be speci�ed in terms of its row vectors

R =

2
4 rT

1

rT
2

rT
3

3
5 (3.12)

, which are the X, Y , and Z axes of the camera coordinate system.

According to the previous descriptions, each axis is computed as:

1. The new X axis is parallel to the baseline: r1 =
(c1�c2)

kc1�c2k
.

2. The new Y axis is orthogonal to X and to k : r2 = k ^ r1.

3. The new Z axis is orthogonal to XY plane: r3 = r1 ^ r2.

In number 2, k is an arbitrary unit vector, but we take it equal to the Z unit vector
of the old left camera coordinate system. Then, we constrain the new Y axis to be

orthogonal to both the new X and the old left Z.

In order to rectify the left and the right image, we need to compute transfor-

mations mapping of the image plane ~Moi = [Qoij~qoi] onto the image plane ~Mni =

[Qnij~qni].
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For any 3D point W, we can write

~poi �= ~Moi
~W

~pni �= ~Mni
~W:

According to Equation 3.10, the equations of the optical rays are the following:

W = Ci + �oQ
�1

oi
~poi; �o 2 R

W = Ci + �nQ
�1

ni
~pni; �n 2 R

hence,

~pni = �QniQ
�1

oi
~poi; � 2 R;

~pni = �Ti~poi: (3.13)

The transformation Ti = QniQ
�1

oi
is then applied to the original stereo images

to produce recti�ed images. Because the pixels of the recti�ed image correspond to
non-integer positions on the original image planes, we compute new pixel positions

by using bilinear interpolation.

3.5 Experimental Results

3.5.1 Stereo Camera

The stereo camera consists of two identical digital still cameras, which is Olympus

C-3020 Zoom. The two cameras are installed on a vertical stereo mount. We �x the
cameras on the mount with an arbitrary toed-in angle so that the optical axes of
the cameras converge at the distance about 800 mm from the camera. Two digital

cameras are connected to a personal computer, Intel Pentium 1.8GHz, through two

USB communication ports. We use an Active-X driver software, called CRye Control,

to communicate and control the stereo camera. Figure 3.2 shows a picture of the stereo

camera.

3.5.2 Camera Calibration

We use a checkerboard pattern to calibrate the stereo camera. It has two planes

which are parallel to the XY and the Y Z planes of the world coordinate systems. On

each plane there are 48 control points which compose a set of 3D world coordinate

points. Figure 3.3 shows a diagram of the calibration pattern. The speci�cations of

the pattern is as follows:
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Figure 3.2: Picture of SVIS-3 stereo vision system

� The size of a black square in the x direction, xd = 17:2 mm.

� The size of a black square in the y direction, yd = 17:18 mm.

� O�set to the Y Z plane in the x direction from the origin, xf = 6 mm, which
means x = �6 mm on the Y Z plane.

� O�set to the edge of the right-most square on the XY plane in the z direction,

zf = 11:5 mm.

Stereo pictures of the calibration pattern are shown in Figure 3.4(a) and 3.4(b),
which are the left and the right image, respectively. Each images' pixel resolution

is 960 � 1280 for (x; y) axes, but they are obtained originally with 1280 � 960 and

rotated to the new resolution because the cameras are mounted vertically.

All control points on the calibration pattern are acquired by a corner detection

algorithm. The world coordinates wi and the image coordinates pi of the inner 96

corner points on both calibration planes are used to compute the projective matrix of

each camera. Projection matrix is computed as described in an earlier section. The
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Figure 3.3: Checkerboard pattern for camera calibration

left and the right projection matrices, Mo1 and Mo2, which bring a 3D world point
to the corresponding image planes are

Mo1 =

2
4 1:4465 � 10�2 �4:2325 � 10�4 �1:4824 � 10�2 5:0865 � 10�1

�2:9278 � 10�3 2:0158 � 10�2 �3:4859 � 10�3 �1:5406 � 100

1:2290 � 10�3 3:7926 � 10�4 1:2175 � 10�3 1:0000 � 100

3
5 (3.14)

Mo2 =

2
4 1:6169 � 10�2 3:8523 � 10�4 �1:2728 � 10�2 5:3614 � 10�1

�2:9701 � 10�3 2:0061 � 10�2 �3:2199 � 10�3 �1:4531 � 100

1:0727 � 10�3 3:8318 � 10�4 1:3537 � 10�3 1:0000 � 100

3
5
: (3.15)

Coordinates of the optical centers of the two cameras are also calibrated as

C1 =

2
4 �423:81�50:45

�377:78

3
5
; C2 =

2
4 �370:69�51:52

�430:36

3
5
: (3.16)
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(a) (b)

Figure 3.4: Stereo images of the checkerboard pattern: (a) Left image (b) Right image

3.5.3 Stereo Recti�cation

Given projection matrix Moi for the stereo camera, new projection matrix Mni

is computed as described in the Section 3.4:

Mn1 =

2
4 1:4653 � 10

�2 �3:0417 � 10�4 �1:4570 � 10�2 6:9056 � 10�1

2:8936 � 10�3 �2:0141 � 10�2 3:3305 � 10�3 1:4683 � 100

1:2213 � 10�3 3:7957 � 10�4 1:2261 � 10�3 1:0000 � 100

3
5
; (3.17)

Mn2 =

2
4 1:4653 � 10

�2 �3:0417 � 10�4 �1:4571 � 10�2 �8:5421 � 10�1

2:8936 � 10�3 �2:0141 � 10�2 3:3306 � 10�3 1:4683 � 100

1:2213 � 10�3 3:7958 � 10�4 1:226 � 10�3 1:0000 � 100

3
5
: (3.18)

Transformation matrix Ti to rectify the stereo pair in the image planes is then
estimated as Ti = QniQ

�1

oi
. For a pixel po in the original image plane and its homo-

geneous coordinates ~po, a new pixel position ~pn is estimated as

~pn = Ti~po: (3.19)

The picture coordinates p0
n
= (u0;v0) of the image point pn is then obtained by
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multiplying the scaling and translating matrix K to the image coordinates:

~p0
n
=

2
4 ku 0 0

0 kv 0

0 0 1

3
5 ~pn: (3.20)

However when we save a recti�ed image to a 2D array of picture frame, we need

to consider a translation of the principal point. Otherwise, we may lose some portion

of the image outside of the original picture frame. It is because an o�set between the

original principal point (uo0; vo0) and the new principal point (un0; vn0), which is due
to the rotation of the optical axis of the camera. In order to translate the recti�ed

image back into the picture frame, we compute the new principal point (un0; vn0) by

adding the o�set to the old principal point. The o�set of the principal points can be
computed by mapping the origin of the retinal plane onto the new retinal plane:

~on = T

2
4 uo0

vo0

1

3
5
; (3.21)

and the new retinal coordinates are

~p0
n
= K(~pn � ~on): (3.22)

We consider the o�set only in x direction because rectifying transformation rotate

the image plane around y axis. O�sets of the principal points on the left and the
right retinal planes are (0:0742; 0) and (�1:299; 0) respectively.

Figure 3.5 (a) and (b) show the recti�ed images of the calibration pattern. For

each image, we compute a rectifying transformation matrix, transform a new pixel

position to an old pixel position, and obtain the gray value of the new pixel position

using bilinear interpolation. Recti�ed images are also shifted into the picture frame
according to the o�sets of principal points. However, we take into account the o�sets

when we compute the actual depth of a 3D object from stereo disparity.

3.6 3D Reconstruction

Using a recti�ed stereo image pair, we acquire a range image of a 3D object

using a multi-resolution stereo matching technique. The stereo matching technique

uses the Gaussian pyramid to obtain a multi-resolution image pyramid. A normalized

correlation technique is used to �nd the stereo correspondences. Figure 3.6 (a) shows

a pair of recti�ed stereo image and 3.6(b) and (c) show the results of stereo matching.

Depth to a 3D point is measured using the disparity between projected points in stereo

images. The o�sets in the picture plane are also taken into account for the depth

measure. We can use two methods to compute depth from stereo disparity.
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(a) (b)

Figure 3.5: Recti�ed stereo images (a) left (b) right

3.6.1 Simple Triangulation

Because stereo images are recti�ed already, depth computation uses a simple
equation for a parallel stereo camera. When there is a disparity d0

u
in x direction of

the picture plane, the depth D to a 3D point from the stereo camera is

D =
f �B

d
0
u
=ku + (~un1 � ~un2 )

; (3.23)

where B = kC1�C2k is the length of the baseline of the stereo camera and it is 74.25

mm in our system. For the focal length f of the camera we average the calibration

results for both left and right focal lengths fu; fv, and it is 11.65 mm.

3.6.2 Solution of a Linear Equation

The range for a pair of conjugate points is also reconstructed by using Equation

3.1. Given two conjugate points ~p1 = (u1; v1; 1) and ~p2 = (u2; v2; 1) and the two
projection matrices ~Mn1 and ~Mn2, we can write a overconstrained linear system

AW = y; (3.24)
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(a)

(b) (c)

Figure 3.6: Experimental results of stereo matching: (a) Recti�ed left and right stereo

images of an human face (b) Point clouds of the measured 3D shape (c) Texture

mapped result
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where

A =

2
6664

(a1 � u1a3)
T

(a2 � v1a3)
T

(b1 � u2b3)
T

(b2 � v2b3)
T

3
7775y =

2
6664
�a14 + u1a34

�a24 + v1a34

�b14 + u2b34

�b24 + v2b34

3
7775 : (3.25)

Then w gives the position of the 3D point projected to the conjugate points. Column

vectors ai and bi are entry vectors of the new left and the right projection matrices,

respectively. Sometimes, the recti�ed image can be re
ected along the vertical or

the horizontal axis. This can be detected by checking the ordering between the two

diagonal corners of the image. If a re
ection occurs, the image should be re
ected

back to keep the original ordering.

The 3D point w is represented with respect to the world coordinate system.
Therefore we need to transform the point in order to represent it with respect to the

reference camera coordinates. Suppose we let the right camera's coordinate system
be the reference. Then we can transform the point by simply using the external
calibration parameters [Rjt] of the right cameras.

However, two transformations can be considered, one is to the old right camera's
coordinates before recti�cation, and the other is to the new right camera's coordinates
after recti�cation. By taking into account a multi-view registration, which we will

present in the next section, we transform the point to the old right camera's coordinate
system by

Pw = [Ro2jt]W; (3.26)

where [Ro2jt] is the old external calibration parameters of the right camera. Because
it needs to calibrate the turntable for registration of multi-view range images, we
represent all range images with respect to the old right camera's coordinate system.

3.6.3 Comparison of Reconstruction Methods

In this section, we compare the accuracy of the two 3D reconstruction methods.

In order to compare the results with the ground truth, we use a checkerboard pattern
to compute the 3D positions of all control points. The pattern is placed on the table

and rotated by 0 degree and 45 degree. We take a pair of stereo images at each angle,

detect all corners, and compute the depth of corners using the disparity between their

conjugates. We assume that the stereo camera is calibrated.

As shown in Figure 3.7, we measure the horizontal length between two control

points which are at the upper-left and the upper-right corners on the pattern. In or-
der to minimize noise e�ect in measurement, we also average all 8 horizontal lengths

between left-most and the right-most corners. The triangulation method using Equa-

tion (3.23) shows small reconstruction error. As shown in Table 3.1, there is also a
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di�erence between two lengths measured at 0 and 45 degrees. This di�erence could
cause a serious problem when some multi-view models are registered and integrated

to a single 3D model. In fact, when we use this method to integrate multiple range

images, a geometric distortion occurs on the 3D model. In contrast, using Equa-

tion (3.24), we can reconstruct more accurate 3D model. Table 3.1 shows that the

reconstruction results are more accurate than the triangulation method.

(a) (b)

Figure 3.7: Checkerboard patterns for turntable calibration at (a) 0 degree (b) 45
degree

Table 3.1: Results of the width of the test pattern (Ground truth is 100 mm)

Method w0 w45

Linear eq. (mm) 99.6 99.2

Triangulation (mm) 104.1 99.7
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3.7 Turntable Calibration

3.7.1 Rotation Stage Calibration

The SVIS-3 system employs a turntable to change the viewing direction of an

object. In order to merge multiple range images, we need to know the rigid transfor-

mation of each image with respect to a common coordinate system. Suppose there
are N viewing directions for the object and view0 is the reference view point. When

there is a 3D point Pi

i
which is obtained and represented by the ith view point, we

can register it to a new point P0

i
in the reference view as follows:

P0

i
= Tc

s
RiT

c

s

�1Pi

i
: (3.27)

where, Ri is the rotational transformation from viewi to view0, and Tc

s
is the trans-

formation from the turntable coordinate system to the camera coordinate system,

which is represented by

Tc

s
= [Rc

s
jtc
s
] : (3.28)

Let us de�ne two coordinate systems in 3D space, the world coordinate and the
turntable coordinate systems, whose origins are Ow and Os respectively. Suppose we

know the transformation Tc

w
, from the world coordinate system Ow to the camera

coordinates Oc. If we know another transformation Tw

s
which is from the turntable

Os to the world coordinate Ow, then we can derive the transformation

Tc

s
= Tc

w
Tw

s
(3.29)

= [Rc

w
jtc
w
] [Rw

s
jtw
s
] (3.30)

Suppose there is a world coordinate system in 3D space with its origin at Ow as

shown in Figure 3.8. In the �gure, P0 is the origin of the world coordinate system
(but it is not necessary) and P0

0
is the same point after being rotated by � angle along

the Ys axis of the turntable. Given two 3D points and the rotation axis Ys, we can

de�ne a plane � as shown in the �gure. Then we know the vector product

(P0

0
�P0) �Ys = 0: (3.31)

In other words, 2
4 p

0

0x � p0x

p
0

0y � p0y

p
0

0z � p0z

3
5
T 2
4 Ysx

Ysy

Ysz

3
5 = 0: (3.32)
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When we have at least 3 points or more in world coordinates, we can solve a overde-
termined linear equation

AY =

2
6664

p
0

0x � p0x p
0

0y � p0y p
0

0z � p0z

p
0

1x � p1x p
0

1y � p1y p
0

1z � p1z

: : :

p
0

Nx
� pNx p

0

Ny
� pNy p

0

Nz
� pNz

3
7775
2
4 Ysx

Ysy

Ysz

3
5 = 0: (3.33)

using the SVD technique. When the matrix A is decomposed such that A =

(UDVT), the solution of the equation is a column vector of V which corresponds
to the column of the least eigenvalue in D matrix. We then normalize the Ys vector

to Ŷs. If the computed Ysy is negative, then we change the direction of the axis to

have the axis be the same direction with Yw axis of the world coordinate system.

In order to compute the Xs and Zs axes of the turntable coordinate system,

we apply the following computations. Let us initialize the Xs axis to (1:0; Xsy; 1:0).

Then

Xs �Ys = 0;

Xsy = (�XsxYsx �XszYsz)=Ysy;

X̂s = Xs=kXsk;

and Ẑs = X̂s � Ŷs:

Finally, the rotation matrix from the turntable to the world coordinate system is
de�ned as

Rws =

2
64
(X̂s)

T

(Ŷs)
T

(Ẑs)
T

3
75
T

: (3.34)

Let us now consider a translation from the origin of the turntable coordinate

system to the origin of the world coordinate system. The origin of the turntable
coordinate system is de�ned as the intersection of the axis Ys and the plane �.

If we transform two 3D points P0 and P0

0
using the rotation in Equation (3.34),

transformed points are on the xz plane of the turntable coordinate system.

Suppose two points P0 and P
0

0
are transformed to the turntable coordinates to

new points Ps

0
and P0s

0
, respectively. Then the three points Os;P

s

0
, and P0s

0
are on

the plane � and forms an isosceles triangle. Therefore using a vector

b = P0s

0
�Ps

0
;

where; (Ps

0
;P0s

0
) = (Rw

s
)T(P0;P

0

0
)
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p0

p'0
b

-Ys

Xs

Zs

θ
tws

Xw

Y
w

Zw

Ow

Os

Π

Figure 3.8: Rotation axis calibration with respect to the world coordinate system

and the rotation angle �, we can compute a translation vector tw
s
from Ps

0
to the

origin Os.

Let us consider the plane � on which the origin is moved to Ps

0
and the y

component is zero as shown in Figure 3.9. Then the center of rotation intersects with

� at a 3D point ti = (x; 0:0; z). Because the isosceles triangle is also on the plane,
the origin ti is one of the intersection points of two circles c1 and c2 as shown in the

�gure. On the plane �, the center of c1 is at (0:0; 0:0; 0:0) and it's diameter is ktik.

Similarly, the center of c2 is at (bx; 0:0; bz) and it's diameter is also ktik. Let r = ktik

and b = kbk, then we derive two circle's equations

x
2 + z

2 = r
2 (3.35)

(x2 � bx)
2 + (z2 � bz)

2 = r
2
:

(3.36)

Using the equations, we get

z =
b
2
x
+ b

2
z
� 2bxx

2bz
: (3.37)
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From equation (3.35), we also get

r
2 = x

2 +
(b2 � 2bxx)

2

4b2
z

;

0 = 4b2x2 � 4bxb
2
x + (b4 � 4r2b2

z
); (3.38)

where r =
b=2

sin(�=2)
:

Xs

Zs

c1

c2

b

r

θti

Figure 3.9: The rotation center is one of the intersections of two circles c1 and c2

Therefore, the x coordinates of the two intersection points are the solution of a

second order binomial Equation (3.38). And the z coordinate is computed by Equa-
tion (3.37). Given two intersection points, only one of them is the real intersection

point. If the intersection point is computed as ti = (x; 0:0; z) on the � plane, it

should have a property such that

a = b� ti;

and ay > 0;

because we rotate the point P0 by a positive angle � along the Ys axis of the turntable

coordinates.

Now let us derive the transformation matrix from the turntable coordinate system

to the camera coordinate system. Because we shift the origin Os to point P
s

0
to �nd
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the point ti, the translation from Ow to Os becomes �(ti +Ps

0
) with respect to the

turntable coordinate system, and �Rw

s
(ti+P

s

0
) with respect to the world coordinate

system. Finally the transformation from turntable to the camera coordinate system

is computed as

Tc

s
= Tw

s
Tc

w

where; Tw

s
= [Rw

s
jtw
s
] = [Rw

s
j �Rw

s
(ti +Ps

0
)] : (3.39)

In order to reduce noise e�ect on computing ti, we average results of the vectors using
a number of world points.

3.7.2 Experimental Results

We use a checkerboard calibration pattern to estimate the turntable coordinate

system. First we put the pattern on the table so that the xy plane of the pattern faces
the camera, leaving the rotation axis behind. Using the stereo camera in the SVIS-3

system, we take two pairs of stereo pictures at 0 and � degrees. Then we detect all 48

corner points in each picture. Using conjugate points in a pair of stereo picture, we
compute the 3D position of the corner points with respect to the right-side camera's

coordinate system.

Computing the transformation from the world coordinate system to the camera

coordinate system is done as follows. As shown in Figure 3.10, translation tc
w
is a

vector from the camera to the upper-left corner point Pul. The three axes of the

world coordinate system with respect to the camera system is computed as

r̂wx = Pur �Pul=kPur �Pulk; (3.40)

r̂wz = Pll �Pul=kPll �Pulk; (3.41)

r̂wz = r̂wz � r̂wz; (3.42)

and Rc

w
=

2
4 r̂T

wx

r̂T
wy

r̂T
wz

3
5
T

(3.43)

A transformation matrix from the turntable coordinate system to the camera

coordinate system is computed as

Tc

s
=

2
6664

0:504629 0:013110 �0:863265 �11:003747

�0:123068 0:990635 �0:058155 �72:315765

0:854513 0:135868 0:501416 487:191485

0:000000 0:000000 0:000000 1:000000

3
7775 (3.44)
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(a) (b)

Figure 3.10: World coordinate system on the checkerboard patterns (a) 0 degree (b)
45 degree

We test our calibration algorithm at several positions of the stereo camera. Table 3.2

shows registration error between two control point sets, at 0 degree and 45 degree,
on the checkerboard pattern. The z value of the translation tc

s
shows distance from

the camera to the turntable coordinates.

3.8 Conclusions

Calibration and recti�cation techniques of a new stereo-vision system (SVIS-

3) are presented. The new camera has a toed-in vergence angle and an arbitrary

focal length. External and internal calibration parameters are estimated through

a camera calibration technique. Stereo images of an object are recti�ed according
to the calibration parameters and a range image of the object is obtained using a
matching technique. In order to facilitate registration of multi-view range images, we

also calibrate a turntable. The new stereo camera system can be used for obtaining

multi-view range images and for reconstructing a complete 3D shape of real objects.
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Table 3.2: Registration error of turntable calibration in mm

tc
s

Mean error Max. error

x y z

-41.9 -64.6 393.7 0.21 0.53

-41.0 -69.3 420.6 0.21 0.53

-18.2 -80.8 488.9 0.15 0.39

-15.4 -93.3 569.4 0.11 0.20

4.93 -105.3 638.1 0.11 0.25

14.2 -120.4 727.1 0.18 0.35

21.9 -140.1 825.5 0.27 0.50



Chapter 4

Surface-based 3D Reconstruction

This chapter and the next chapter present two di�erent 3D model reconstruction

techniques. The two techniques both address the problem of merging multi-view range
images into a complete 3D model. In general, there are two approaches for merging
range images. One is a surface-based approach which stitches multiple partial surfaces

into a single surface. The other is a volumetric approach which �nds the iso-surface of
an object in a grid of voxels. This chapter presents a surface-based merging technique.

4.1 Introduction

We present a surface-based reconstruction technique which exploits the epipolar
constraint for the multi-view geometry. Partial 3D shapes of an object from multiple
viewing directions are obtained using the SVIS-2 vision system presented in Chapter

2. The vision system is calibrated as described in the same chapter, to obtain initial

transformation matrices for both the stereo geometry and the multi-view geometry.

The partial 3D shapes are registered coarsely using the initial transformation matri-
ces. They are then re�ned iteratively until registration errors between overlapping

surfaces minimize close to zero. At this step, a modi�ed Iterative Closest Point (ICP)

algorithm is used to �nd correspondence between two di�erent views. A 3D point

in one view is projected to another view using the transformation between them

and a search is made for a closest point in the other view that lies on the epipolar

line. A similar idea is used during partial surface integration step to obtain improved

results. Partial surfaces are represented as linked lists of segments and integrated

segment by segment. Experimental results are presented to show the e�ectiveness of

the technique.

46
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4.2 Multi-view Registration

4.2.1 Coarse Registration

We acquire stereo images of an object from N viewing directions by rotating

the object with 360=N angle. However, we model this data acquisition by assuming
the object to be stationary but the camera system being rotated around the rotation

axis by the same angle. For each of the rotation position of the camera system, we

associate a coordinate system Vi for i = 0; : : : ; N . Stereo image analysis, which was

presented in Chapter 2, is used to compute the partial 3D shapes of the object with

respect to Vi. In our experiments, Vi is the same as the right camera coordinate
system of the stereo rig.

All partial 3D shapes computed with respect to Vi have to be registered with
respect to a common coordinate system, which is V0 of the �rst view. An accurate
knowledge of the position and orientation of the rotation axis of the turntable with

respect to V0 is needed for registration of the partial 3D shapes. Let us assume
the orientation of the rotation axis is almost parallel to the y-axis of the camera

coordinate system and the rotation angle of the turntable is very accurately controlled

by a computer. The translation of the rotation axis from V0 is de�ned by a vector ts.
An initial estimate of ts is obtained through stereo camera calibration which is made

by Tsai's technique [98]. This estimate will be re�ned iteratively during registration
re�nement as described later.

Let Pi

i
denote a 3D point obtained and represented with respect to Vi. Similarly,

let Pj

i
denote the same 3D point which is represented with respect to Vj by registering

Pi

i
to Vj. Also let Ri

j
be the rotation transformation matrix from Vj to Vi. In order

to register the point Pj

j
to the common coordinate system V0 to obtain P

0

j
, we use a

rigid transformation,
P0

j
= T0

j
Pj

j
= R0

j
(Pj

j
� ts) + ts (4.1)

where, ts is the translation vector de�ned earlier.

4.2.2 Partial Shape Representation

The partial 3D shapes are initially registered by R0

j
and ts, which are estimated

from the system calibration. The registered shapes are then represented by the co-

ordinates of the �rst view V0 with its y-axis along the rotation axis. Suppose the

partial shapes are registered to a 3D workspace which contains the object, and the

workspace is assumed to be a cube with its volume W �H �D (mm3). Now let us
consider intersections of the partial 3D shapes with NH horizontal planes which are

dH mm apart and parallel to the x � z plane. Then the intersections are horizontal

contours as shown in Figure 4.1, where each contour consists of a sequence of points.
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These points are represented by the 2D coordinates on the horizontal slice containing
them, where each slice corresponds to a constant vertical (y) coordinate in 3D space.

H

D

W

dH

Intersecting
planes

Object

Workspace

Figure 4.1: Representation of a volumetric workspace: The object workspace is a

stack of slices on which a 3D object is represented by segmented contours.

Now suppose a slice from the stack as shown in Figure 4.2. On this 2D slice,
we establish linked lists of all surface points and sort them with respect to x and
z coordinates. The sorting is done because we want the linked list to represent the

points in order on a continuous contour on the object's surface. For each slice plane,
we generate one linked list for each viewing direction, thereby generating N linked

lists. Figure 4.2 shows an example when N = 4. Let LV i be the ith linked list of

points for Vi. Integration of all linked lists for i = 0; : : : ; N � 1 is merging the lists
in such a way that the resulting list represents a closed contour that is an accurate

cross-section of the object.
There will be some erroneous points on the list representing short, irregular,

false contours that do not belongs to the object. Also, some points on the object's

surface could be missing due to gaps in contours. These errors are introduced by
stereo mismatching due to occlusion, low contrast, or noise. Therefore, we segment

the linked lists to detect and reduce these errors. This is important because re�ning

the registration matrix should be done using only the correct object points.
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LV 3
LV 0

LV 1

LV 2

Slice plane

ds

LV 0

LV
0(0)

LV 0(1)

LV
0(2)

p0

pi

p0
pj

p0

pk

Figure 4.2: Hierarchical structure of contour segments

Initially we have only one linked list of points LV i for the ith view. Then, we
split the linked lists LV i into multiple sublists LV i(j) where each sublist represents

one connected contour segment. This splitting is done based on thresholding the
distance between two consecutive points on a list. If the distance ds = jP(i)�P(i+1)j

is larger than a threshold, we divide the linked list into two separate lists under the
assumption that the object surface is locally linear and continuous. As a result, a list
LV i for ith view is split into multiple lists LV i(j) for m = 0; : : : ;M where M is the

number of segments on the list of ith view. After generating linked lists of segments
for all views, we remove a linked list if its length dl is too short, as it is very likely to
be due to errors in stereo mismatching. When there are K points on a segment list,

the length of a segment list is computed as

dl =

K�1X
k=0

jp(k) � p(k+1)j (4.2)

Figure 4.3 shows a tree structure of the linked list of segments and voxels on a slice

of one view.

4.3 Registration Re�nement

In Chapter 2, we presented the calibration of the SVIS-2 vision system. Assuming

that each rotation interval of the turntable is exactly (360=N) degree, we calibrate the
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LV 0(0)

A slice plane

LV 0
LV N-1LV 1

LV N

. . . . .
.

. . . . . .

LV 0(1) LV 0(J)

. . .

p 0 . . . p j p 0 . . . p kp 0 . . . p i

Figure 4.3: The structure of a segment linked list

rotation and the translation matricesRs and ts from the origin of the common camera
coordinates to the center of rotation coordinates Os. In previous section, all partial

shapes are registered to the �rst view's coordinate system according to the calibration

parameters. However, due to inherent errors on system calibration, we need to re�ne
the parameters before integration of shapes. Before describing re�nement procedures,
let us present a epipolar geometry between di�erent viewing points.

4.3.1 Epipolar Geometry of Multiple Views

In order to re�ne the registration matrix between a pair of partial shapes, we
introduce a new technique called EICP(Epipolar Iterative Closest Point) method.

Our technique exploits the epipolar geometry to reduce errors and computation com-
plexity in searching the closest point. Given two segment lists, we compare spatial

information of two segments in the image space as well as in the object space. Com-

paring in the image space is based on the reprojection of one segment to the other's
image space. To �nd out the geometrical information of two segments in the image
space, we transform the coordinate of one segment to the other's coordinate system.

Consider two segment lists LV0 and LV1, which are reconstructed from V0 and

V1, respectively. Each list consists of many sublists and each sublist represents a



51

contour segment. Therefore we can write

fLV0g =
�
LV0(j) j j = 0; � � � ; J � 1

	
fLV1g =

�
LV1(k) j k = 0; � � � ; K � 1

	

,where M and Q are the number of sublists at the 0 and 1 view, and LV ij is the jth
sublist on LV i. Let P

0

0
be a point in a list of LV0, the projection of this point onto

the image plane of V0 be p
0

0
, and another projection onto the image plane of V1 be

p1
0
.

Figure 4.4 shows the geometry of V0 and V1. The three points{ origin of V0,
origin of V1, and the point P0

0
{ together determine the epipolar plane between two

di�erent views. A point P0

0
in V0 is denoted by Pi

0
in Vi. They are related by

�

� �
� �

���

P0
0

P
0

1

p 0
0

p 0
1

P0
0

Epiolar Plane

u 1

u 0

e 0 e 1

Epipolar line

O 0 O
1

�

�p 1
1

P
1

1

LV
1(k)

LV
0(j)

Projection of
overlapping

segment

Figure 4.4: Epipolar geometry of V0 and V1

Pi

0
= Ri

0
(P0

0
� ts) + ts: (4.3)
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The projection of Pi

0
onto the image plane in Vi is given by the perspective transfor-

mation relation:

pi
0
=

�
f

P
i

0x

P
i

0z

; f

P
i

0y

P
i

0z

; f

�
; (4.4)

Setting i = 1 in the above equations, we can get the epipolar line u1 on the

image plane in V1 by transforming the image vector p0
0
as

u1 = Ep0
0

(4.5)

where, E is a essential matrix and it is represented as

E = R1

0
S; (4.6)

and

S =

0
@ 0 �t10z t

1
0y

t
1
0z 0 �t10x
�t10y t

1
0x 0

1
A

, where t1
0
is a translation vector (V1 � V2). If two points P0

0
and P1

1
correspond to

the same physical point on the object, the projections of the points onto the same

image plane should have the same coordinate. Therefore p1
0
and p1

1
should be the

same vectors.

However, because of registration error due to errors in initial calibration caused
by stereo mismatching, distortion of the camera lens, and noise, there will be an error
between two vectors. To minimize the registration error, we introduce an iterative

minimization technique based on the epipolar geometry of the two directions of view.

In Figure 4.4, we can expect the vector p1
1
to be on the epipolar line u1 if two

vectors are di�erent representations of the same point, because the epipolar line is
the transformation of the vector p1

0
to the V1 image plane.

4.3.2 Pairwise Re�nement

In order to re�ne the translation matrix, we search for two closely overlapping
segments from segment lists of two di�erent views and compute translation error

between them. The errors t� is computed for all possible overlapping segments from

adjacent pairs of views and averaged. This error is assumed to have a Gaussian

distribution. The average error is iteratively minimized until it converges close to

zero.

Let us consider registration of two partial segments LV0 and LV1, which are

reconstructed from V0 and V1, respectively. Suppose there is a 3D point P0

0
on LV0,

a transformed point P1

0
to V1, its projection p1

0
onto the image plane of V1, and
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the corresponding epipolar line u1. Projection of the point P1

0
to p1

0
is done by a

projection matrix M1 such that

p1
0
�=M1P

1

0
= A[Ij0]P1

0
; (4.7)

where A =

2
4 fu 
 ui

0 fv vi

0 0 1

3
5
:

Given a segment in LV0(j) that contains P
0

0
, we �nd a closely overlapping seg-

ment LV1(k) in V1 as shown in Figure 4.5. We consider a contour segment LV1(k)
is overlapping with P0

0
when the distance from any point on the segment to the P0

0

is shorter than a threshold dTH . In Figure 4.5, black-colored segment on LV1(k) is

overlapping with the point P0

0
.

Now let us project the segment onto the image plane of V1 to plot a projected

contour lv1k. As presented in this chapter, the projection of the corresponding point
P1

0
should be on the epipolar line u1, if there is no registration error. However,

because of the error, we need to �nd an image point on lv1k which is the closest

to the epipolar line. Rather than comparing projection distances of all points on
lv1k to u1, we �t the segment into a linear line lv01k to get the intersection p01

1
with

the epipolar line. Then we select an image point p1
1
, which is the closest to p01

1
, as

the matching image point. This point is back projected onto the segment LV1(k) to
determine the point P1

1
in 3D space.

If we assume that two vectors P0

0
and P1

1
in 3D space correspond to the same

physical point on the object, we can consider the di�erence of the two vectors as

a translation error between two view coordinates. Let t�j
1

0 be a translation error

between two views, then
t�j

1

0 = P1

0
�P1

1
(4.8)

The translation vector t1
0
between two object points from P0

0
to P1

1
is computed

as follows. Let ts
0 be a re�ned translation matrix between the �rst view coordinate

system V0 and the rotation center. Then

ts = ts
0 + t� (4.9)

,where ts is the translation matrix which is calibrated by Tsai's calibration method
and t� is a translation error in ts. To �nd the translation between two camera coor-

dinate system, we use transformation between two vectors

P1

1
= R1

0
(P0

0
� ts) + ts

= R1

0
P0

0
+ (I�R1

0
)ts

= R1

0
P0

0
+ t1

0
(4.10)
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, where t1
0
is the translation from P0

0
to P1

1
and can be expressed as

t1
0

= t1
0

0
+ t�j

1

0

and

t�j
1

0
= (I�R1

0
)t�

t� = (I� (R1

0
)
T

) t�j
1

0
: (4.11)

Where, (R1

0
)T is the transpose of R1

0
and t�j

1

0 is a translation error in the matrix t1
0
.

Using Equation (4.11), we �nd the matrix t� from the epipolar geometry of the
overlapping segments, and compute the translation matrix ts by Equation (4.9). This

procedure is repeated to all horizontal slice planes and the average of the translation
error t̂� is computed. After getting the matrix ts, we re-register all partial shape to
the common coordinate system based on the new translation matrix. The matrix is

computed again iteratively until the error t� converges close to zero. An algorithm
for re�ning the translation matrix is summarized below.

Pseudo-codes for registration re�nement

do

for j = 0 to m : number of segments on LS0
for each point on a segment LV0(j)

for k = 0 to n : number of segments on LS1
for each point on a segment LV1(k)

if Overlapping segment(p1
0
,LV1(k))

�nd intersecting point p1
1

t�j
1

0  P1

0
�P1

1

t� (I� (R1

0
)
T
) t�j

1

0

t̂�  averaged t�
ts

(t+1)  ts
(t) + t̂� :update (t+ 1)th iteration

Register again all segment lists of V0 and V1

while ( t̂� not close to zero).
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4.4 Multi-view Integration

4.4.1 Partial Shape Integration

After �nding the ts matrix that minimizes the registration error for all views, we

integrate partial shapes to obtain a complete 3D shape. The basic ideas used in this

step are similar to those in the registration step. Integration is also done slice by slice
by merging partial shapes of views V0 and V1 �rst, V1 and V2 next, etc. Consider the

integration of partial shapes of views V0 and V1. we have two linked lists LV0(j) and

LV1(k), where i and j are the index of segments for each view. For a point P in the

linked list LV0(j), we �nd points on the LV1(k), which are close to the point P. As

before, let P0

0
be a point vector in V0 which becomes P1

0
after transforming to V1,

and let p1
0
be its projection onto the image plane in V1.

Finding points close to p1
0
is similar to the method in the registration step. It is

based on two criteria. We �nd the epipolar line u1 corresponding to p1
0
, and �nd a

segment from the list of second view that intersects the epipolar line close to p1
0
. As

the �rst criterion, we use c1 given by a scalar product of two vectors

c1 = u1 � p
1

1
: (4.12)

We �nd a set of close points p1
1
for which c1 is smaller than a pre-de�ned threshold.

As the second criterion, we use c2 which is the Euclidean distance between two points

in 3D space,

c2 = kP1

0
�P1

1
k: (4.13)

The distance has to be less than the threshold dTH. Both criteria have to be satis�ed

for merging the two segment lists. If they are satis�ed, the linked list LV0(j) is
connected to the list LV1(k) as shown in Figure 4.6. In the �gure, a point P1

0(m) on a

segment LV0(j) has the closest point p
1

1(q) on another segment LV1(k). Therefore, the

point P1

0(m) is connected to a new P1

0(m+1) which was p1
1(q) on LV1(k). The connected

segment LV0(j) also has a new data structure on its linked list. As shown in Figure

4.7, two linked lists are connected to a single linked list in a similar way with the
connection of two contours. The number of lists of the new structure is also updated

by counting all its elements. After integration, a linked list LV1(k) is removed.

We compare all linked lists between two views LV0(j) and LV1(k) for j = 0; : : : ; J
and k = 0; : : : ; K one by one to �nd possible connections. After connecting the

linked lists of two views, we check the next segment lists between V1 and V2, and

so on. Final step is connecting segments between VN�1 and V0 on the same slice.

After the last connection, we check the distance between the staring point of V0 and

the ending point of VN�1. If it is small, they are connected to close the segment

lists. This results in a closed contour representing the horizontal cross-section of the
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Figure 4.6: Connection of two contour segments (a) Point p1
0(m) on LV0(j) has the

closest point p1
1(q) on LV1(k) (b) Point p

1

0(m) is connected to a new p1
0(m+1) which was

p1
1(q) on LV1(k).
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Figure 4.7: Connection of two linked lists (a) Point p1
0(m) in the list of LV0(j) is

connected to p1
1(n) in LV1(k) (b) List LV0(j) has a new linked list after integration.

object. After connecting all segment lists together, we remove again some short-
length segments. A Gaussian low pass �lter is applied to the connected contours to
get a smoothed 3D shape after integration.

4.4.2 Mesh Generation

After integration of contours between di�erent view points, a slice plane consists

of several connected contours. In other word, all slices in object space consists of

stacks of contours which are integrated from all slice planes. Surface meshes of inte-
grated contours are generated between two adjacent slices from top to bottom. Given

two slices which are facing each other, we generate a mesh of triangles by connecting
all contours.

Given a point on the upper slice, the closest point on the lower slice is connected

as an edge of a triangle. Then the next point in the same linked list is also connected

with the upper point. For example in Figure 4.8, a pointPk on list LV
(u)

0(0)
is connected
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to the closest point Pm on another list LV
(l)

0(0)
on the lower slice. The next point Pm+1

is then connected to Pk to form a triangle PkPmPm+1. Other triangles are generated

in the same way until there is a gap on either contour. If there is a disconnection,

an edge of triangle can't be generated if its length is too long, for example between

P0 on LV
(u)

0(1)
and P1 on LV

(l)
11 . In case that there is a new contour on either slice, an

edge of triangle can be generated even though its length is not the shortest among
all candidates. For example in the �gure, from a point P0 on LV01 has the shortest

point P3 on LV11. However, it is better to select the previous point P2 to form an

edge P0P2, if the length of the edge is not too long.

p
k

pm

pm+1

p
k+1

contours on
(y) plane
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disconnected
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disconnected
contour

p
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p
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LV
01

LV
00
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Figure 4.8: Mesh generation between two slice planes.

4.5 Experimental Results

The presented surface-based 3D reconstruction technique is tested on three real

objects. Each object is placed on the turntable and 4 stereo image pairs are pictured

from di�erent view points by rotating the object by 90 degree. Each stereo image
is obtained with TIFF format with 1280�960 size. Range images of the object is
obtained by the technique described in Chapter 2. In order to introduce contrast on

the object's surface, a slide projector is used to project a random dot pattern.

Figure 4.9 shows three objects used in this experiments. For an object such as

'Potatohead' in the �gure, we do not use the slide projector because it already has

contrast on its surface. Figure 4.10 shows partial shapes of 4 di�erent views, all
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partial shapes are represented by segmented contours along the x � z plane of the
camera coordinate system. Integration of the sets of contours between di�erent views

are accomplished slide by slide.

(a) (b) (c)

Figure 4.9: Test objects for experiments: (a) Duck (b) Head (c) Potatohead

Figure 4.11 shows an example of merging two adjacent partial shapes. Figure
4.11(a) is the shape from the front view and (b) is that from the left-side view. On

each plane of slices, two views are merged to reconstructed the result shown in Figure

4.11(c). Merging of all 4 partial shapes is shown in Figure 4.12(a). In this �gure, the
object is represented by a stack of contours which are coplanar with x � z plane. A

mesh model of the object is generated and some novel views of it are displayed on

Figure 4.12(b) and (c). Because there are no information on the top and the bottom

views, there are some holes on those surfaces. Figure 4.13 and 4.14 show the results
of other objects 'Head' and 'Potatohead'. In Figure 4.14 (c), there is an error on
surface on object's left foot due to a stereo mismatching.

Translation errors from the center of the camera coordinate system to that of the

rotation stage is measured by the technique described in the previous section. The

results are plotted in Figure 4.15. In the �gure all objects are tested for 30 iterations

to show convergence of the error. However, registration procedure stops after 5 or 6
iterations in real applications. All results shows that the error reduces close to zero

after 10 iterations.

4.6 Conclusions

This chapter presents a surface-based 3D reconstruction technique using multiple

partial shapes acquired from a digital stereo camera. We have introduced new tech-
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(a) (b)

(c) (d)

Figure 4.10: Four partial views of the object 'Duck'. Shapes are represented by a set

of horizontal contours: (a) 0 degree (b) 90 degree (c) 180 degree (d) 270 degree

niques for registration and integration of partial 3D models. The algorithms exploit

the epipolar geometry between di�erent views. Correspondence between 3D points

are established by projecting overlapping contour segments from one view to another

view and �nding the closest point on the epipolar line.

Integration is done slice by slice using linked lists representing points and seg-
ments of contours of object's cross-sections. The linked lists for di�erent views are

merged based on two closeness criteria to obtain closed contours representing com-

plete cross-sections of the object. Meshes are created from the connected contours to

generate a complete model of the object. Experimental results for three real objects

are presented.



62

(a) (b) (c)

Figure 4.11: Pairwise merging of two partial shapes: (a) Shape from 0 degree (b)

Shape from 90 degree (c) Merged contours

(a) (b)

Figure 4.12: Integrated model of the object 'Duck': (a) Contour model (b) Integrated

mesh models
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(a) (b)

Figure 4.13: Integrated model of the object 'Head': (a) Contour model (b) Integrated
mesh models

(a) (b)

Figure 4.14: Integrated model of the object 'Potatohead': (a) Contour model (b)
Integrated mesh models
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Figure 4.15: Translation errors in the X and Z directions for objects (a) Duck (b)
Head (c) Potatohead



Chapter 5

Volumetric 3D Reconstruction

This chapter presents a volumetric 3D reconstruction technique for registration
and integration of multi-view range images. This technique is based on estimation of

the signed distance of a voxel element to the object's outer surfaces. This estimation
provides an implicit representation of the object's surfaces, which can be polygonized
to a mesh model by the Marching Cubes algorithm.

5.1 Introduction

Volumetric 3D reconstruction has been a common technique for generating 3D
models in Computer Vision and Computer Graphics. In contrast with surface-based

technique, in volumetric technique it is topologically easy to reconstruct complex
objects. In computer graphics, the term volumetric means a representation of both
the outer surfaces and the enclosed space of a 3D model in a sampled 3D space.

Examples are Space Carving and Voxel Coloring. In contrast, in computer vision
volumetric is used to represent outer surfaces of the reconstructed model. Octree [15]
and Rectangular Parallelepiped [1] are two examples.

However, in this thesis, the term is used only to refer to a 3D reconstruction tech-
nique which samples a 3D space on a grid of voxels to obtain an implicit representation

of the object. Implicit representation is a very eÆcient technique to represent a 3D

model in a volumetric space. The surfaces of an object are represented implicitly
by the signed distances of all voxels to the object's surfaces. A mesh model of the

object is then easily reconstructed by a well-known polygonization technique such as

Marching Cubes algorithm [11].
In this chapter, multi-view range images are registered to a common coordinate

system and their registration parameters are re�ned by a point-to-tangent plane re-
�nement technique. After the registration, signed distances of voxels which are close

to object's surfaces are computed by incorporating range images and their projections

on image plane. The signed distance of a voxel is computed by the weighted average

65
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of all signed distances to overlapping surfaces with which the voxel is associated. The
Marching Cubes algorithm polygonizes the implicit space into a single mesh to rep-

resent a 3D model of the object. Voxel space is classi�ed into four di�erent regions

to reduce computation error of signed distance.

Shape-from-silhouettes technique is also incorporated to carve the volumetric 3D

space from silhouettes of the multiple view points. Therefore, signed distance of a

voxel is computed only when it is inside of the Visual Hull of the object. Experimental

results for several real objects are presented to analyze registration errors and to show

mesh representations of the objects. In the �nal section, we analyze reconstruction

error of our volumetric technique by generating two real ground-truth objects.

5.2 Registration of Multiple Range Images

Multiple range images obtained by rotating an object should be registered into a
common coordinate system before integration. Calibration parameters of the vision
system are used for an initial registration of the range images. Registered range

image is represented by a triangle mesh by polygonizing the range image. After

initial registration, it needs to be re�ned to reconstruct an accurate 3D model.

As mentioned earlier, there are two main approaches to registration, point-to-

point and point-to-tangent plane approaches. This chapter adopts a point-to-tangent

plane approach to minimize the registration error because it is known to be more accu-

rate than point-to-point technique. We also estimate optimal calibration parameters
for our vision system based on the re�ned parameters.

5.2.1 Multi-view Registration

The camera calibration and center of rotation parameters are used for an initial

registration. The center of rotation is calibrated by Tsai's algorithm as presented in
Chapter 2. Figure 5.1 shows the geometry of the SVIS-2 vision system. We consider

the right camera coordinate system of ith view as the corresponding view point Vi
and the �rst view point V0 as the world and common coordinate system. Given a

stereo correspondence pl and pr in stereo image planes, a 3D point P = (Px; Py; Pz)
T

is represented as

P =

�
prx

f

Pz;

pry

f

Pz; f

B

(pl � pr)

�T

(5.1)

where prx and pry are x and y coordinates of the point pr in the right image plane.

All undistorted image points are calibrated by Tsai's algorithm. A partial shape of

ith view, Si and i = 1; : : : ; N , is registered to the common coordinate system V0 using
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the calibration parameters. If there is a point Pi from Vi, it is registered to V0 with
a new point P0

i
as

P0

i
= R0

i
(Pi � ts) + ts; (5.2)

= T0

i
Pi: (5.3)

where R0

i
is the rotation matrix from Vi to V0, and ts is the translation vector from

the origin of V0 to the center of the rotation stage coordinate system.

V0(r)

Rotation Table

View 0

x0

y 0

z0

xS

y S

zS

[R
S
,t

S
]

P

p
0r z i

xi

y i

View iT
i0 

= [ R0
i
,t0

i
]

Vi
V0(l) B

p
0l

Si

P
n

Figure 5.1: SVIS-2 vision system geometry. The coordinates of the right camera of
the �rst view, V0(r) is de�ned as the common coordinate system

Registration re�nement minimizes registration error due to inherent errors in
initial calibration parameters. A re�nement technique �nds correspondences between

two or more overlapping partial shapes to minimize the transformation error between
the correspondences. In general, geometric features on partial shapes are used to

decide the correspondences between views. There are also techniques using image

features on object's texture images, but we describe geometric feature matching on
this section.

Let us consider a problem of re�ning two partial shapes, which is called as pair-

wise registration. If correspondences between two partial shapes are decided, we
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call the corresponding points as control points. Suppose we have two control point
sets fPig on a partial shape Si, and fQjg on another partial shape Sj. Then the

re�nement procedure computes a rigid transformation matrix Ti

j
which minimizes

overlapping errors. The transformation matrix Ti

j
is computed by using a least-

squares-minimization technique.

Chen and Medioni [17] proposed a point-to-tangent plane registration technique.
They �nd an intersecting tangent plane on a target surface from a control point from

a source surface. Bergevin et al.[7] modify Chen and Medioni's algorithm to �nd

an intersecting point by interpolation of grid points. In addition, they propose a

multi-view registration algorithm. It simultaneously minimizes registration errors in

all overlapping regions.

Our approach is similar to the Bergevin's algorithm. Suppose there are two
partial shapes Si and Sj as shown in Figure 5.2. To register two partial shapes, we
�rst establish a set of control points fPig on the surface Si by sampling vertices

on surface and testing their reliability. Let us consider a point Pi 2 fPig. From its

normal vector P̂i, an intersecting pointQ
0

j
is decided by interpolating three vertices of

an intersecting triangle on surface Sj. Then we �nd another point Qj on the tangent

plane at Q0

j
, which is the projection of Pi to the plane. This point is saved as the

corresponding control point. By repeating this searching for all points in fPig, we

get its corresponding point set fQig.

Q'
j

P
i

Q
j

S0

S
1

Tangent plane
at Q'

j

ds

P
i

Figure 5.2: Registration of two partial shapes. From a control point Pi, its corre-
sponding control point Qj on the other surface is decided on the tangent plane at
Q0

j

In order to select reliable control points in the �rst view, we sample vertices and
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check them according to following conditions. Suppose the �rst view index is i and
the second view index is j, then a vertex Pi should satisfy the following conditions.

� Angle between vertex normal P̂i and view normal ẑi is less than
�

3
.

� Angles between vertex normal P̂i and face normal vectors of K surrounding

triangles n̂k with k=0,...K, are less than �

3
.

Finding an intersecting triangle and an intersecting point with a vertex normal P̂i

requires a lot of computations. In order to reduce computation complexity, we reject

triangles on the second view during search procedures, which satisfy the following

conditions.

� Angle between face normal n̂j and view normal ẑi is greater than
�

2
.

� Angle between n̂j and view normal ẑj is greater than
�

3
.

� Angles between vertex normal P̂i and face normal n̂j is greater than
�

2
.

� Distance from Pi to a vertex of the second view Qj is greater than a prede�ned
threshold, dTH.

Two control points sets fPig and fQjg are used for estimating the rigid transfor-

mation matrix between two surfaces. After �nding all control points, we compute the

transformation matrix R and t using a least-squares-minimization technique through
the singular value decomposition (SVD) [4]. SVD �nds a least-squares solution for R

and t, which minimizes en overlapping error � such that

� =

KX
k=1

kQk � (R̂Pk + T̂)k
2
: (5.4)

Registration error � is measured every iteration to check the convergence of two

surfaces. In real experiments we de�ne two thresholds for each rotation and transla-

tion errors, �R and �t respectively. If the errors are less than the de�ned thresholds,
we stop the re�nement.

It is well-known that registration errors accumulate if multi-view partial shapes
are registered in pairwise. Therefore, it is necessary to register all multiple partial

shapes together in order to evenly distribute the registration error in all overlapping

regions. We set the �rst view V0 as the reference frame of multi-view registration
[7]. Bergevin et al. search all overlapping partial shapes to �nd intersecting planes

from a control point. In our approach we do not search all partial shapes, because

of computation time, but search adjacent partial shapes. For example, in order to
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Figure 5.3: Multi-view registration strategy. From a control point in view point Vi,

we search only surfaces of views Vi�1 and Vi+1

register a partial shape Si, we search intersecting points only on the partial shapes

Si�1 and Si+1 as shown in Figure 5.3. This approach works �ne because a view point
Vi has most overlappings with its adjacent views Vi�1 and Vi+1.

Registration errors � between all overlapping shapes decrease while the multi-
view registration re�nes all partial shapes iteratively. In our experiments, after about
5 or 6 iterations, registration errors reduce below of the prede�ned thresholds for �R
and �t. Then we stop the registration re�nement.

5.2.2 Calibration Parameter Optimization

As mentioned earlier, we initially register all partial shapes into the common

coordinate system V0 according to their calibrated transformations. Therefore, the

calibration parameters are very important for initial registration. If the initial pa-

rameters are very close to the optimal values, re�nement procedure will run fast.

Equation 5.2 shows that there are two transformation matrices for partial shape

registration. Ri0 is the rotation matrix from Vi to V0. Because rotation angle of the

turntable is accurately controllable, we can consider the initial parameters of RS are

reliable. However let us consider the translation vector ts from the camera's origin to

the rotation center. We know the step number of the linear translation stage, which

corresponds to the position of aligning the origin of the camera coordinate system

with the origin of the rotation stage coordinates. However, it was determined by

aligning the center of image coordinates with the rotation center manually. And we
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know that this parameters ts is the main source of registration error. Therefore, we
re�ne the translation matrix ts to �nd the optimum.

Figure 5.4 shows a 2D plot of partial shapes between V0 and V1. Let ts be a

calibrated vector from the origin of V0 to the rotation center. If this is the ideal

vector to the rotation center, a registered vector to V1 , ts
(1) should be the same as

ts with respect to the common coordinate system. However, in real situation, there

may be an error between ts and ts
(1). If a vector ts

0 is the ideal vector to the center

of rotation, then

ts
(1) = R0

1
(ts � ts

0) + ts
0

ts
0 = (ID �R

1

0
)
�1
(ts

(1) �R1

0
); (5.5)

where; ts
(1) = T1

0
ts;

and ID is the identity matrix. Using this equation, we estimate ts
0 between V0 and

V1. For the other views, we also estimate ts
0 and average all of them for the next

iteration. After several experiments, we estimate the optimal value of the ts and use
it in all other experiments.

tsts'

V0

V1

V1'

ts
(1)

Ti0

S0 S1

S1'

Figure 5.4: Rotation center re�nement
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5.3 Multi-view Integration

A volumetric integration technique is employed to reconstruct a 3D model of an
object. Volumetric technique for shape integration is widely used in 3D modeling. It

is topologically simple and robust compared to surface-based integration techniques.

Converting volumetric space to a surface model is implemented by a surface polygo-

nizing algorithm. Given multiple partial shapes which are registered as described in

previous section, we �nd the iso-surface of the object in a grid of voxels, and convert

it to a 3D mesh model using the Marching Cubes algorithm [11, 56]. In order to
save memory space, we introduce a continuation approach of the algorithm through a

classi�cation of the voxel space into multiple regions based on signed distances from

a voxel to its overlapping surfaces.

As presented in an earlier chapter, range images of an object are acquired by a
stereo vision technique. However, stereo vision has inherent problems such as stereo

mismatching and occlusion. In order to remove and reduce the distortion caused
by erroneous points, we combine a shape-from-silhouettes technique. Shape-from-

silhouettes technique is used to remove erroneous points outside of the object's visual

hull, because silhouettes are very dominant image features and are reliable.

5.3.1 Surface Representation

Implicit surface representation is widely used for volumetric shape reconstruction
[18, 34, 103]. An object is represented by the signed distances from a grid of voxels
to the object's surface. Suppose a voxel P in 3D space as shown in Figure 5.5, the

signed distance f(P) from the voxel to the object's surface is computed by taking the

dot product of two vectors

f(P) = (P�PS) � n̂ (5.6)

where PS is the range of the voxel from the origin of a view point Vi to a 3D point on
the object's surface S. Here, the point is on the same projection line with the vector

P. And n̂ is a unit normal vector of the object surface at Ps. According to Equation

(5.6), the sign of a voxel is positive when it is outside of an object, but it is negative

otherwise.

In order to get the vector Ps, we use a range image which is obtained from

ith view point. However, because the range image is a discrete range of the object

surface, we have to use an interpolation technique to get an accurate range to Ps.

For example in this �gure, we project back the point P to an image point ps on 2D

range image by using the perspective projection matrixM of the camera system such

that

ps �=MP: (5.7)
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Figure 5.5: Signed distance from a voxel P to a object's surface point Ps is computed

by the dot product of (P�Ps) and the surface normal n̂

The image point ps should be in a triangle which encloses the point. Let us the three

vertices be ps1,ps2, and ps3. And Let us three vectors associated with the vertices

be Ps1,Ps2, and Ps3. Then we can compute the vector Ps by interpolating the other
vectors such that

Ps = d1Ps1 + d2Ps2 + d3Ps3; (5.8)

where di =
kpsi � pskP
j
kpsj � psk

:

For integration of partial shapes, the signed distance from a voxel to the object's

surface is estimated by averaging weighted signed distances to all overlapping shapes.

If there are No overlapping surfaces from the voxel, No signed distances from the
voxel to all overlapping surfaces are measured and the weighted signed distance is

estimated by averaging all of them. Suppose there is a voxel P in a 3D grid of voxels

as in Figure 5.6. From the voxel, if three surfaces are very close in distance, the

weight of depth measure for Si surface is de�ned as wi(P) = P̂i � n̂i, where Pi is

the representation of the voxel P by the coordinate system of view Vi and P̂i is its
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normal. And the signed distance of the voxel is

F (P) =

P
wi(P)fi(P)P
wi(P)

(5.9)

where fi(P) is the signed distance from the voxel P to the ith partial shape.

s1
s2

V0

V2

V1
s1

s2

0

2

1

P

s1
s2

cos θ0

s0

n2

n1

n
0

Figure 5.6: Overlapping surfaces from a voxel P. The signed distance of the voxel is
computed by a weighted averaging of the distances to all surfaces.

If a vision system has N multiple views, N signed distances from a voxel to

all partial shapes can be measured and the weighted signed distance is estimated by
averaging all of them. However, if the signed distances from the voxel to some surfaces

are too long or if there are inconsistency of the signs of the voxel, the distances to

those surfaces should not be involved for computing the weighted average. A graphical

example is shown in Figure 5.7. In this �gure a voxel P has some neighboring surfaces.

However, distances to some surfaces, for example d2 and di in the �gure, are too long

for the surfaces to be considered as overlapping ones. This means those surfaces

should not contribute to distance averaging.

When a voxel is in an overlapping area where some surfaces overlap each other,
the magnitude of signed distances from the voxel to the overlapping surfaces are usu-

ally very small. But it is not to other surfaces which are far from the voxel. Therefore,

it is necessary to threshold signed distance to decide overlapping surfaces from the

voxel. As in Figure 5.7, we set a threshold dTH to compute the �nal signed distance

F (P) only using the overlapping shapes. However, if there are some erroneous points
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d1

F(p)
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S
2

S1

Si

S0

dTH

Figure 5.7: Selecting valid partial surface for signed-distance averaging. From a voxel

P, some surfaces to which the signed distance should not be involved for distance

averaging, if their distance is too long.

on partial surfaces, computation of the signed distance may not be an accurate dis-
tance to the 3D model. An e�ective method to avoid this problem is to apply a shape
from silhouettes technique to remove erroneous voxels by volume intersections.

5.3.2 Volume Intersection

Volume intersection technique using multiple silhouettes of an object is very

useful for removing erroneous voxels in volumetric reconstruction. This is because

silhouettes are often dominant image features and reliable. An example of silhouette

generation is in Figure 5.8(a). From a camera's view point, the silhouette of the view
is a 2D binary image which consists of two regions, object area and background. If all

multiple view points are outside of the convex hull of the object O, intersections of

all cones of views generate the object's visual hull VH(O) as shown in Figure 5.8(b).

In order to reconstruct VH(O) as accurate as possible to the object O, it usually

needs a lot of object's silhouettes. However, because we have a limited number of
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silhouettes, the reconstructed visual hull contains not only the object O but also
�OjVH such that

�O
��
VH

= fpjp 2 VH(O) \ �Og; (5.10)

where �O is space outside of the object O. In our integration step, all partial surfaces

are considered to be within overlapping range L as shown in the �gure. It is inside of

the visual hullVH(O), however it contains both voxels P 2 �O andP 2 O. Therefore,

it is necessary to �nd the exact object's surface O by integrating the partial shapes.

In this thesis, volume intersection is mainly used for removing erroneous surface due

to stereo mismatches which lie outside of VH(O). This technique is also used for the
integration of two 3D pose models of the object, which will be described later.

5.3.3 Partial Shapes Integration

Integration of partial shapes begins with �nding a seed voxel which is a starting
point of the Marching Cubes (MC) algorithm [56]. From the seed voxel, the algorithm
computes the weighted signed distances of all voxels which are close to the model's

surface, approximately in the region L in Figure 5.8(b). The algorithm automatically
converts a grid of voxels to triangle meshes based on signed distances. In this thesis,

we suppose that voxels outside of object have (+) sign and inside voxels have (-) sign.
If a voxel is outside of visual hull, we assign a arbitrary positive number as its signed

distance. Therefore, it only needs to compute the signed distance of voxels inside of

VH(O).

Signed distance of a voxel is computed by averaging weighted signed distances

to all overlapping shapes from the voxel. Determining overlapping shapes from the
voxel is based on the distances to the shapes. If there are N partial shapes, we
can measure the signed distances of the voxel for all N surfaces. However, only

some of them contribute to computing the signed distance. In order to select partial

shapes to compute the signed distance of a voxel, we introduce a voxel code which

is consistent and reliable with the system geometry. Let's �rst de�ne the maximum

number of overlapping shapes and the corresponding views. Because we use a rotation
stage which rotates an object by 360=N angle, we set the number of the maximum

overlapping shapes to No = N=2.

Each voxel which is inside of VH(O) is coded by a N bit binary code as shown

in Figure 5.9. We assign one bit to each view. If a signed distance f(P) of a voxel

P to Si is negative, we assign 0 to the corresponding bit, otherwise, we assign 1.
Therefore, 0 at the ith bit means the voxel is behind Si and 1 means it is between Si
and Vi. According to the voxel code V C(P) of a voxel P, we determine N0 number

of signed distances to compute the weighted signed distance of the voxel. Because
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Silhouette from
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multiviews
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O|VH

Oinside  = O    L

(b)

Figure 5.8: Reconstruction using Shape-from-silhouettes technique. (a) An example

of a silhouette from a single view. (b) Visual hull of an object reconstructed by
volume intersections.
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i
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i
(p) < 0

bi = 1   if    f i(p) > 0

Figure 5.9: Binary voxel code for 8 multi-views

when we estimate the weighted distance from the voxel to object's surface, we have

to reject some distances which are extensions of other surfaces.

Selecting reliable signed distance from a voxel is based on the voxel code of P.
Let's de�ne reliable signed distance di(P), where i = 0 � � �N0�1. Since two distances

fi(P) and fi+N0
(P) are measured always from two opposite viewing directions, se-

lecting one of them as a signed distance is very reliable. Therefore, distance di(P) is

selected from one of them according to the condition of two bits bi and bi+N0
. The two

bits can has total 4 conditions as shown in Figure 5.10. The �gure shows 4 di�erent
conditions of two bits of voxel code. According to the �gure, we make three strategies

for selecting the reliable distance.

� Both bi and bi+N0
are 1: select the shorter distance.

� Either bi or bi+N0
is 1: select the distance with positive sign, because positive

distance is more reliable than negative one.

� Both bi and bi+N0
are 0: select the shorter distance.

When either bi or bi+N0
is 1, we select the positive distance, because positive

distance to surface means that it is seen directly from the view point, but not for
negative one. For negative distance, sometimes it is due to occlusion of a surface.

Therefore, positive distance is more reliable.

Let us have N0 reliable signed distances of the voxel by the technique above. Next

step is computing the weighted signed distance of the voxel. In order to compute the

weighted distance, we classify the voxel space into four regions, as shown in Figure

5.11, based on distances d(P) from a voxel P to partial shapes.

� If at least two distances jdi(P)j are shorter than dTH , where i = 0; : : : ; N0 � 1,

a voxel P is considered to be in an overlapping region L, and P 2 Poverlap.

� If all di(P) have positive sign and jdi(P)j > dTH for N0 distances, the voxel is

totally outside of object, and P 2 Poutside.
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Figure 5.10: Examples of combinations of two bits voxel code.

� If all di(P) have negative sign and jdi(P)j > dTH for N0 distances, the voxel is

totally inside of object, and P 2 Pinside.

� Else, we assume that the voxel is in non-overlapping area, and P 2 Pnonoverlap.

+

+ +
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Figure 5.11: Voxel classi�cation. Arrows from each voxel correspond to vectors from

the voxel to visible view origins

Most voxels which are close to model's surface are in Poverlap. Therefore, they

can have all possible signs as their distances. On the contrary, Pinside can have

only negative sign and Poutside can have only positive sign as shown in Figure 5.11.

Continuation approach of the MC algorithm computes weighted distances of voxels,
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which are usually in Poverlap. However, if there are some occlusions or errors on partial
shapes, a voxel can be classi�ed as Pinside or Pnonoverlap. Based on the description

above, we compute the weighted signed distance D(P) of a voxel P. Below is a

pseudo-code of the algorithm. where, wdi(P) is the weight value corresponding to

Pseudo-codes for registration re�nement

for i = 0 to N0 � 1;

if (bi jj bi+N0
)

if (bi) di  fi;

else di  fi+N0
;

else

if (jfij < jfi+N0
j) di  fi;

else di  fi+N0
;

for i = 0 to N0 � 1;

if (di < dTH)

W (P) + = wdi(P);

D(P) + = wdi(P)di(P);

overlap cnt ++;

if (P 2 Poverlapping)

D(P) = D(P)

W (P)

else if ((P 2 Pinside)or(P 2 Poutside))

D(P) = minifjdi(P)jg

else

D(P) = minifjdi(P)jg ; if wdi(P) > 0:4

the distance di(P) and dTH is the threshold of the magnitude of signed distance.
When P is neither in Poverlapping, Pinside, nor Poutside, partial shapes do not form a

surface. Therefore, we set a threshold for weight value to get a more reliable surface.

After the integration, we get a 3D model of the object which is represented by a

closed triangle mesh.

5.4 Experimental Results

We have tested our registration and integration techniques on several real and

complex objects. Each object is placed on a turntable and N = 8 di�erent range im-

ages are obtained by the SVIS-2 vision system. We use a Pentium-III 1GHz processor.
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Range image has 320�240 resolution and it is converted to a triangle-mesh model by
a simple polygonization algorithm. For every unit square region in the range image,

which consists of 4 pixels on its corners, 2 triangles are reconstructed by dividing

the square. The square is divided by a common edge that connects two diagonal

pixels. By comparing length of two possible edges in the square, two triangles are

reconstructed by the shorter edge.

Figure 5.12 shows all test objects in this chapter. The actual size of image

is 1280�960 in TIFF image format. If an object has high contrast texture on its

surface, we use texture images for stereo matching. Otherwise, we picture another
set of images for stereo matching while projecting a random dot pattern on the surface

to introduce high contrast texture.

5.4.1 Registration Results

The multi-view registration technique described in the earlier section is applied
to register all objects. Translation error is measured by averaging distance ds as in

Figure 5.2 for all control points. Control points are selected uniformly on a partial

shape and their validities are checked as described in section 5.2.1.

Figure 5.13 shows all 8 partial views of the 'Monkey' object. There are some
errors on each surface due to stereo mismatching. This test shows 20 iterations of

registration, but usually we stop the registration when it is less than 10 iterations.
The main problem of registration is computation complexity. From a control point

on a partial surface, we �nd an intersecting triangle on another surface by testing
all triangles on the surface. Without any fast-searching technique, 10 iterations take

about 2 minutes for a pairwise registration and about 15 minutes for multi-view

registration. Registration step takes most time in our 3D model reconstruction. To
reduce the time for 3D reconstruction, we introduce a fast registration technique in

Chapter 8.

Figure 5.15 shows registration errors in 'Monkey' object. Translation error is

average of the distance ds between control point sets P and Q. Rotation error is

measured by summation of each elements of the matrix I�R, where I is the identity

matrix. After 7 or 8 iteration, all average errors on multi-views surfaces become close

to zero.

Results for all other objects are also shown in Figure 5.16 and 5.17. In all objects,

partial surfaces are fairly registered to a common coordinate system. The translation

and the rotation errors show the robustness of our registration algorithm. Practically

speaking, we stop the iteration of registration when the translation error is smaller

than 0.3 mm and the rotation error is smaller than 1� 10�4. Otherwise, we stop the

registration if the number of iterations is more than 10.
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5.4.2 Integration Results

Integration of partial surfaces into a complete 3D models is accomplished by

computing the signed distance of objects and using Marching Cubes algorithm. De-

pending on the size of voxel, output 3D mesh models have di�erent resolutions. Figure

5.18 shows the results of meshes for di�erent sizes of voxel. If its size is too large, we
lose some details of the objects, or if the size is too small, the number of vertices and

triangles of the results are too many. We usually reconstruct 3D models for voxel size

3 or 4 mm.
Table 5.1 shows the number of vertices and triangles on each mesh model. When

voxel size is 4 mm, it takes about 1 minute to integrate the 'Monkey' object into a

single mesh. Results of all other objects are shown in Figure 5.19 and 5.20.

Table 5.1: Statistics for the results of 'Monkey'

Voxel size (mm) 2 3 4 6 8

Vertices 17348 7406 4162 1804 978

Triangles 34624 14804 8324 3608 1940

Time (sec) 315 134 76 33 18
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.12: Test objects for volumetric 3D model reconstruction. (a) Monkey (b)

Pokemon (c) Duck (d) Nikon775 (e) Polarbear1 (f) Polarbear2 (g) Potatohead (h)

Dog
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Figure 5.13: Partial shapes of 8 views of 'Monkey'. From the upper left, they are

obtained at 0,45,� � �, and 315 degree.

Figure 5.14: Registered partial shapes of 'Monkey'. All shapes are represented with

di�erent colors of point clouds.
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Figure 5.15: Registration errors of 'Monkey' Object (a) Average of translation error

(b) Average of rotation error
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Figure 5.16: Registration errors (translation and rotation) of objects 'Pokemon' and
'Nikon775' (a) Pokemon (b) Duck (c) Nikon775
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Figure 5.17: Registration (translation and rotation) errors of objects (a) Polarbear1

(b) Polarbear2 (c) Potatohead (d) Dog
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(a)

(b)

(c)

(d)

Figure 5.18: Reconstructed 3D models of 'Monkey' with di�erent voxel size. (a) 2mm

(b) 3mm (c) 4mm (d) 6mm
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(a)

(b)

(c)

(d)

Figure 5.19: Mesh and shading results for test objects (a) Pokemon (b) Duck (c)

Nikon775 (d) Polarbear1
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(a)

(b)

(c)

Figure 5.20: Mesh and shading results for test objects (a) Polarbear2 (b) Potatohead

(c) Dog
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5.5 Error Analysis

In order to analyze the accuracy of our reconstruction technique, we reconstruct

3D models of some simple objects. We reconstruct two test objects as shown in Figure

5.21 and Figure 5.22. One object is a rectangular parallelepiped and the other one

is a cylinder. We reconstruct 3D models of the objects and measure dimensions of
the models to compare with those of the real objects. We choose these two objects

because it is easy to measure their dimensions.

The dimension of the �rst object 'Cubes' is 60�60�90 (mm3) forW�D�H. The
radius R of the second object 'Cylinder' is 50:04 mm and the height H is 138:2 mm.

We reconstructed the 3D models of the object under the same conditions used in

experiments in the previous sections.

H = 90

D = 60

W = 60

(a) (b)

Figure 5.21: Test object 'Cubes' for error analysis(a) Picture (b) Dimension in mm

In order to measure errors of the reconstructed 3D model, we use an ICP-based
registration technique to �rst register point clouds of reconstructed 3D model to that

of the ground truth. Then dimensional errors are measured between all points on

the model and their closest conjugates on the ground truth. Figure 5.24(a) shows all
points on the ground truth of the object 'Cubes'. Figure 5.24(b) shows overlapped

points of the ground truth and the reconstructed model after the registration. The
blue-colored (dark-grey) points are on ground truth model and the green-colored

(light-grey) points on the reconstructed model. The small red-colored line segments

are errors between two control point sets. Figure 5.24(c) and (d) also show point
clouds of all vertices on the 'Cylinder' object.

We iteratively register a 3D model to its ground truth until an error metric

between the 3D model and the ground truth converge to a constant value. The error
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H = 138.2 mm

R = 52.04 mm

(a) (b)

Figure 5.22: Test object 'Cylinder' for error analysis (a) Picture (b) Dimension

between two models is measured by the RMS error between two control point sets of

the models. Figure 5.23 shows the results of registration of two objects. We use 392
control points for the 'Cubes' object and 104 points for 'Cylinder'.

After two 3D models { the reconstructed model and the ground truth model { are

registered, we measure dimensional errors on the reconstructed model with respect to
the ground truth. For the 'Cubes' object, the RMS errors in W;H and D dimensions

are measured for all vertices on corresponding planes{ for example the top and the
bottom planes for H dimension{ with respect to the closest vertices on the ground
truth. Similarly for the 'Cylinder' object, errors in R and H dimensions are measured

using points on side surfaces, and top and bottom surfaces, respectively. Table 5.2
shows RMS and maximum errors in all dimensions of the 'Cubes' object. We also
measure the volume V of the reconstructed model using a volume measuring technique

described in a reference paper [60]. With respect to the volume of the ground truth,

the reconstructed model has 2.04 % error as shown in the table. Table 5.3 shows the

results of 'Cylinder' object.

5.6 Conclusions

Complete 3D model reconstruction through a volumetric integration of multi-

ple range images is presented. Multiple partial shapes are acquired by stereo vision
systems presented in the Chapter 2 or Chapter 3. The partial shapes are then regis-

tered to a common coordinate system according to the system calibration parameters.

And a multi-view registration technique re�nes and minimizes registration error in
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Figure 5.23: RMS registration error between the ground truth and the reconstructed

3D models. (a) Cubes (b) Cylinder
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Table 5.2: RMS and maximum errors of 'Cubes'

Dimension W (mm) D (mm) H (mm) V (mm3)

Size 60 60 90 324000

RMS error 1.06 0.90 0.85 330542

MAX error 2.99 3.03 2.17

(%) error (RMS) 1.76 1.50 0.94 2.04

Table 5.3: RMS and maximum errors of 'Cylinder'

Dimension H (mm) R (mm) V (mm3)

Size 138.2 52.04 1175797.4

RMS error 1.54 1.20 1179466.7

MAX error 4.56 4.42

(%) error (RMS) 1.11 2.29 0.31

overlapping regions.

We combine shape from silhouettes technique and voxel coding technique to re-

move erroneous data points due to stereo mismatchings. A novel voxel coding tech-
nique is introduced to select reliable partial shapes to compute the signed distance

of a voxel. Voxel coding not only removes erroneous voxels but also increases the ac-

curacy of reconstruction. We show the accuracy of our 3D reconstruction technique
through error analysis of ground truth objects. In the following chapters, we will
introduce a novel pose estimation and integration technique to reconstruct all visible

surfaces of an object. In this technique, we will also incorporate the voxel coding

technique to integrate two di�erent 3D models.
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(a) (b)

(a) (b)

Figure 5.24: Points clouds of registered 'Cylinder' model (a) Ground Truth (b) Over-

lapping with reconstructed model



Chapter 6

Pose Estimation

This chapter presents a pose estimation technique to determine coarse registra-
tion parameters between two 3D models of an object. The models are reconstructed

by merging multi-view range images of two di�erent poses of the object, which is arbi-
trarily placed on a turntable. The result of pose estimation will facilitate registration
re�nement and integration of two 3D models. We introduce a simple pose estimation

technique based on matching tangent planes of a 3D model with the Base Tangent

Plane (BTP) which is invariant for a vision system. In order to reduce computation

time, we employ geometric constraints to �nd consistent and Stable Tangent Planes
(STP). A STP is a plane on which the object can rest in a stable state on a turntable.

By matching the base tangent plane of one 3D model to a stable tangent plane of

the other model, we derive a pose transformation matrix and register the models to a
common coordinate system. We �nd the best-matching STPs which minimize a pose

error between two models.

6.1 Introduction

Most investigations on 3D model reconstruction are limited to using a single pose

of an object. However, for many real objects, using a single pose yields only a partial

3D model because some surfaces of the object remain hidden from the range sensor
for any given pose due to occlusion, concavities, etc. For example, a tea cup placed

upright on a turntable hides the bottom surface of the cup from the range sensor. A

3D model of such hidden surfaces could be reconstructed by placing the object in a

di�erent suitable pose (e.g. by placing the tea cup on its side) and sensing the visible

shape. This yields a second partial 3D model of the object for the new pose. In order

to obtain a complete 3D model, the two partial 3D models for the two di�erent poses

need to be registered and integrated. However, registration and integration of two

partial 3D models for two di�erent poses of an object is a very diÆcult problem. For

this reason, only a few researchers have considered this problem.

96
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P. Allen and R. Yang [2] stitch a bottom surface of an object by matching edge
features of the object's 3D model with an edge image of the bottom. They acquire

multi-view range images of a �xed object using a moving range �nder. After recon-

structing a 3D model, they acquire a partial shape of the bottom surface and stitch

the shape and texture of the bottom to the 3D model using a feature matching tech-

nique. K. Wong and R. Cipolla [105] employ a shape-from-silhouettes technique for

3D modeling and combine a structure-from-motion technique to estimate registration

parameters of multiple views. But they manually register the top and the bottom

surfaces of the object. W. Niem [65] also reconstructs complete 3D models using a

shape-from-silhouettes technique, registers, and integrates the top and the bottom

surfaces manually. H. Lensch et al. [52] and Y. Iwakiri and T. Kaneko [40] use sil-

houette matching techniques for registration and stitching of textures to a 3D model.

However, their investigations consider only registration and stitching of texture prop-
erties of an object, not geometric reconstruction of the object. D. Huber [36, 37] also
presents a 3D reconstruction technique using an unconstrained registration of n-view

partial shapes. He registers partial shapes using Spin images and a graph searching
technique.

A schematic diagram of our 3D modeling system is shown in Figure 6.1. The

3D model reconstruction for a single pose of an object is based on a volumetric

modeling technique which is presented in the previous chapter. Registration of two
pose models consists of two steps, coarse registration and its re�nement. Because we

place an object in two arbitrary poses, determining coarse registration parameters is
very diÆcult without a priori knowledge of the transformation between two poses.
We use a novel pose estimation technique of two 3D models to determine coarse

registration parameters [70]. The pose estimation technique �nds a stable tangent
plane (STP) on a 3D model which can be transformed to the base tangent plane

(BTP) of the other model and vice versa. For a rigid object, the BTP is a tangent

plane of the object's outer surface. Therefore, we match the BTP of the �rst pose to
a STP of the second pose, and simultaneously match the BTP of the second pose to

a STP of the �rst pose. The best matching plane from each model is used to estimate
the transformation matrix.

6.2 Methodology of Pose Estimation

6.2.1 Base Tangent Plane

There have been many investigations on pose estimation for multiple 3D models.

A useful survey on pose estimation techniques is presented in [14]. We employ a

novel pose estimation technique based on geometric constraints of our vision system
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First pose

Second pose

Multi-view
modeling

Multi-view
modeling

Pose estimation
and registration

Pose
integration1st model

2nd model

Complete
3D model

Figure 6.1: Schematic diagram of our 3D modeling

[70]. This technique �nds a stable tangent plane (STP) on a 3D model which can be

matched to the base tangent plane (BTP) of the other model. When we place a rigid
object on the 
at (planar) top of a turntable, the object rests with its outer surface
touching the table top. The planar table top will be a tangent plane of the object's

surface. We call the planar table top the BTP of the turntable. The BTP is a global

tangent plane in the sense that it will not intersect the object's volume anywhere (in

contrast, a local tangent plane may intersect the object's volume at a point far from
the point of tangency). The BTP is invariant with respect to the object's pose and

the world coordinate system. The following are some characteristics useful in pose

estimation.

1. The base tangent plane (BTP) of the turntable is a global tangent plane of the
object.

2. There exists a unique tangent plane of the �rst pose model which corresponds
to the BTP of the second pose, which is also a tangent plane of the second

model.

Suppose an object is placed on the turntable with two di�erent poses, Pose1 and

Pose2 as shown in Figure 6.2. Then there is a unique tangent plane T1 (its normal
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vector is n̂T1) in the �rst pose which matches the base tangent plane B (n̂B) in the
second pose. Similarly, there is a unique plane T2 (n̂T2) in Pose2, which matches B

(n̂B) in Pose1. Because n̂B is a common and invariant vector in the vision system,

we can estimate a rotation matrix using n̂T1 and n̂T2.

Let Q2 be an initial transformation matrix from Pose2 to Pose1 which aligns
n̂T2 with n̂B. After the alignment, two models are registered except one degree of

freedom along the axis of n̂B. Then, by aligning the transformed vector Q2n̂B with

n̂T1, we estimate the transformation matrix Q1
2. Translation between two models is

estimated by Center of Mass (CoM) of the models. We assign new coordinate systems

T1 and T2, for tangent plane T1 and T2 respectively. It will be described in the next

section. The rotation matrix is estimated by transforming the coordinate system T1

and T2 to the common coordinate system of the base B.

n
T1

n
B

n
T2

n
B

Q
1

Q2

Xw

Yw

Zw

T
1

T
2

Pose1 Pose2

B B

Figure 6.2: A tangent plane of the �rst pose n̂T1 uniquely matches the BTP of the

second pose n̂B, and vise versa.

Consequently, our technique �nds tangent plane coordinatesT1 and T2, one from

each model, which minimize a cost function, or a volumetric pose error, between two
models. The pose error is estimated in terms of SSD (Sum of Square Di�erence) error

between two models. Suppose a vertex P1i on Pose1 corresponds to another vertex
P2i on Pose2. If Q

1

2
is a transformation from Pose2 to Pose1, then the pose error is

measured by

X2

=

K�1X
i=0

kP1(i) �Q
1
2P2(i)k

2
; (6.1)
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where, K is the number of vertices in Pose1 or Pose2, but it is usually down-sampled
to increase computation speed.

6.2.2 Stability Constraints

The surfaces of the object are represented by a �nite number of triangle meshes

[56]. Therefore, there will be a �nite number of tangent planes on each mesh model.

Let a set of tangent planes of Pose1 be T1, and T2 be another set of tangent planes
of Pose2. If we assign a tangent plane for every vertex, however, measuring the cost

function for all combinations of two sets T1 and T2 is computationally expensive.

In order to reduce computational complexity, we remove some local or unstable

tangent planes by employing geometric constraints as the followings. A key idea for

employing the constraints is that the object is placed on the turntable in a stable
pose and the turntable is horizontal.

1. Base plane constraint : An object is placed on the BTP which is one of the
global tangent planes of the object. This BTP does not intersect the object's
volume.

2. Stability constraint : The BTP of the turntable is horizontal and the object is in

a stable pose. Therefore, the projection of the CoM to a STP is always inside

the convex hull of the projections of its supporting vertices.

3. Height constraint : If two pose models are correctly registered, their heights will
be very similar (It may not be the same, because of noise).

Based on the constraints above, we consider only stable tangent planes (STPs)

on the model. These constraints greatly reduce the number of tangent planes and the
computation time for pose matching.

6.3 Pose Estimation

First we list the steps in our pose estimation algorithm and then provide addi-
tional details.

1. For each pose model, obtain an Extended Gaussian Image (EGI) using vertex

normal vectors of the 3D model.
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2. For each face of the tessellated sphere, determine whether the tangent plane
corresponding to the face is a candidate for matching with the base plane of

the other pose. The tangent plane is a valid candidate in all cases except

the following. If the orientation histogram count of the face is zero, or the

angle between the face normal and the vertical axis is smaller than a threshold,

then the tangent plane is not a candidate. The latter condition is due to the

assumption that the relative rotation between the two poses is greater than a

threshold angle.

3. Reject any tangent plane intersecting its own volume by checking the signed

distance from each voxel to the plane.

4. Reject any tangent plane T for which the projection of the CoM of the model

is outside the convex hull of its supporting vertices.

5. Reject any tangent plane T if the height di�erence between the model trans-
formed by Q1

2 and the �xed model is greater than a threshold ÆH .

6. Find two matching planes from both models by measuring the pose error be-
tween the two registered models.

6.3.1 Finding Tangent Planes

In the �rst step, an EGI of a pose model is constructed and tangent planes on

a tessellated Gaussian sphere are obtained [39, 45]. Suppose n̂f is the normal vector
of a tessellated polygon and n̂T is the normal vector of an associated tangent plane,
where T(P) = Ax + By + Cz +D. Because of the �rst constraint, we assume that

the tangent plane passes through a vertex whose projection distance to n̂f is the
maximum. We call this vertex Pm a frontier vertex. Then we initialize the plane

T(Pm) using the frontier vertex and the face normal.

However, because we search for a STP which can support the object as a base
plane, we re�ne the tangent plane T by employing some supporting vertices. Ideally

speaking, supporting vertices Pi should be on the tangent plane T, and it is necessary
that

T(Pi) = 0 (6.2)

n̂f � n̂p = 1; (6.3)

for the stability of the object [47]. However, our 3D model is not a physical object,

but a digitized and polygonized 3D model which has inherent noise on its surface.

Therefore, it is necessary to set thresholds for selecting supporting vertices. The
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normal vector of a supporting vertex must closely coincide with the normal of the
tangent plane. In addition, the vertices should be close to the plane. Therefore we

�nd some vertices whose normal vectors n̂p and their dot product, n̂p � n̂f are less

than a threshold cos(�G) as shown in Figure 6.3. And instead of searching vertices

on the tangent plane, we search for supporting vertices which are close to the plane

and re�ne the plane T.

Mesh model

Vertices with their normal vectors
are within selected area

nf

X

Y

Z

θG

Gaussian sphere

np

np

Figure 6.3: Initializing tangent plane and its supporting vertices

As shown in Figure 6.4(a), we select a vertex Pi as one of the supporting vertices,
if its relative distance to the plane, Di=Dmi, is less than a threshold. Here, Di is the

distance from Pi to the plane and Dmi is the distance from the frontier vertex to Pi.

In order to avoid selecting vertices only in a very small region (it may produce an

unstable plane), we pick only one vertex from a triangle face when multiple vertices

of the face meet the condition. After �nding a set of supporting vertices Ps, we move
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the origin of the plane to Pc, the centroid of Ps, and re�ne the normal vector n̂T 0 by
averaging normal vectors of Ps.

A new coordinate system is then generated for the tangent plane in order to
obtain a transformation matrix to the reference coordinate system. We set the normal

vector n̂T (let T denote a re�ned tangent plane from now on) to the Y axis as shown

in Figure 6.4(b), because it is convenient to match with the YW of the reference

coordinate system. YW is also the vector normal of the base plane. For X axis,

a vector from Pc to the projection of Pm to T is normalized. And the Z axis is

set according to the right hand coordinate system. In Figure 6.4(b), the coordinate

system of a tangent plane T is shown. A 3D model is represented as point clouds, the

green (light-grey) dots are vertices whose normal vectors are within angle �G from n̂f ,
and the red (dark-grey) dots are all supporting vertices selected from green vertices.

6.3.2 Finding Stable Tangent Planes

For two 3D models, we �nd all tangent planes using their EGIs. Each tangent
plane T consists of supporting vertices and has its own coordinate system. Using

tangent planes from each 3D model, we can estimate a pose transformation between

two models by �nding the best matching planes from two models. However, there
will be a �nite, but large number of tangent planes for each 3D mesh model. Let a

set of tangent planes of Pose1 be T1, and T2 be another tangent plane set for Pose2.
If we consider every tangent plane of a pose to be a candidate for matching the BTP
of the other pose, the matching becomes a computationally expensive step. In order

to reduce computation, we remove some local or unstable tangent planes from further
consideration by employing three geometric constraints.

The �rst constraint is Base plane constraint. The BTP is a global tangent plane

in the sense that it will not intersect the object's volume anywhere. Therefore we
check all vertices to determine if a tangent plane intersects the volume. If the dot
product of any vertex p with the plane normal n̂T is greater than the parameter D of

the plane, we remove the plane. Due to noise on model's surface, we use a threshold

D + ÆI instead of D.

Next constraint is Stability constraint. The BTP of the turntable is horizontal

and the object is in a stable pose. Therefore, given the center of mass (CoM) of

a 3D model, its projection to a STP, CoMT is always inside the convex hull of the
projections of all supporting vertices. The object will be unstable and fall over if

CoMT is outside the convex hull as shown in Figure 6.5.

The last constraint is Height constraint. It is a weak constraint. If two pose
models are correctly registered, their heights will be very similar (It may not be the

same, because of noise). We reject any tangent plane when the height di�erence is

greater than a threshold ÆH . Figure 6.6 shows an example of removing inconsistent
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Figure 6.4: Construction of a tangent plane on a 3D model. (a) Tangent plane T is

re�ned by their supporting vertices. (b) Green (light grey) dots are all vertices with
their normals within a threshold angle �G. But only red dots (dark grey) consist of

supporting points on the tangent plane.
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CoM

CoM TSupporting
vertices

Object

Tangent plane

Figure 6.5: An unstable tangent plane. The projection of CoM to the plane is outside

the convex hull of supporting vertices.

and unstable tangent planes. A 3D model is represented by a point clouds model and

a tangent plane is represented by a square-shaped polygon. Figure 6.6(a) shows all
tangent planes without using any constraint. Clouds of black-colored line show over-

lapping of all squares. Figure 6.6(b) is the result after rejecting volume-intersecting

planes, 6.6(c) is after rejecting unstable planes, and 6.6(d) is the result after height
comparison. It is clear that the number of candidates for the matching tangent plane

is greatly reduced by the three constraints.

6.3.3 Matching Tangent Planes

Rejection of unstable and local tangent planes signi�cantly reduces the number

of tangent planes. The last step in pose estimation is �nding two tangent planes, one

from each pose, which registers two 3D models with a minimum pose error. For every

STP in T1, we derive a transformation matrix Q1
2 using every STP in T2, measure

the pose error, and �nd two STPs which yield the best-matching. Let a STP in T1
be T1 and another STP in T2 be T2. The transformation matrix of the second pose
(vertex set P2) to the �rst pose (vertex set P1) is estimated by using T2 and T1. The

transformation matrix �rst aligns T2 with the coordinates of BTP B

B0 = T2
�1B; (6.4)
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(a) (b)

(c) (d)

Figure 6.6: Finding STPs based on geometric constraints (Pose1 of 'Monkey'). (a)

Initial tangent planes (186 planes) (b) After removing volume-intersecting planes (ÆI
= 3 mm, 141 planes) (c) After removing unstable planes (18 planes) (d) After height

comparison (ÆH = 3 mm, 9 planes)
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and T1 with B
0 by rotating the model along the Y axis

T1 = Ry

�1B0
: (6.5)

The coordinate system of B is the same as the world (or common) coordinate system.
A rotation matrix Ry aligns B

0 with the coordinate system T1. It is a rotation along

the Y axis and computed by

Ry =

0
BBB@

cos� 0 �sin� 0

0 1 0 0

sin� 0 cos� 0

0 0 0 1

1
CCCA

where;

�
cos�

sin�

�
=

�
B0
x
+B0

z
B0
z
�B0

x

B0
x
�B0

z
B0
x
+B0

z

��1�
T1x+T1z

T1x�T1z

�
:

Center of mass of a 3D model is computed by a mass-computation technique [60].

Let the translation from the origin of the common coordinate system to each CoM

beM1 andM2. Then the pose transformation matrix Q21 from P2 to P1 is computed

by

P 02 = M1Ry

�1T2
�1M2

�1P2 (6.6)

= Q1
2P2: (6.7)

The best matching pose transformation Q1
2 is estimated by minimizing a cost

function between two models,

min
fT12T1;T22T2g

f
X
kP1 �Q

1
2P2k

2
g: (6.8)

6.4 Experimental Results

We test the pose estimation technique on a Pentium III 1GHz personal computer.
We estimate the pose of several real and complex objects. Each object is placed on a

turntable and 8 stereo image pairs are taken for each pose. We place the object in a
normal upright pose for the �rst 3D model, and on its side for the second 3D model.

Figure 6.7(a) and 6.7(b) show images of two poses of an object \Monkey". Each

image is the �rst view of its respective multi-view images. Pose between two 3D

models is estimated by our technique and a matching STP on each 3D model is

shown in 6.7(c) and 6.7(d). The squares represent the matching planes. XYZ-axes of

a common coordinate system are shown with RGB-colored lines. Overlapping of the
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two models in their original poses are shown in Figure 6.7(e). After pose estimation,
the two models are coarsely registered and the result is shown in Figure 6.7(f).

The number of tangent planes at every rejection step in pose estimation is shown

in Table 6.1. The \Monkey" object is polygonized with a voxel size of 4mm [56].

Table 6.2 shows threshold angle �G, threshold distances ÆH and ÆI , average pose error

between two models, number of vertices, and total estimation time. For measuring

pose error, we use Equation 6.1. From a vertex P1(i) in P1, we �nd the closest vertex

P2(i) in P2 as the corresponding one. We sampled 50 vertices from each 3D model

for computing the error measure.

The second object is a small toy, \Pokemon". It's height is only 8 cm. Figure

6.8(c) and (d) show matched STPs on the object's surface. Figure 6.8(e) and (f)

show two 3D models before and after the pose estimation. Figure 6.9 shows results

of another object which is a plastic replica of a digital camera \Nikon775". Pose
estimation results are also shown in Figure 6.9(c), (d), (e), and (f). The last object

is \PolarBear" in Figure 6.10. Pose estimation time for all objects is shown in Table

6.2. We can estimate pose of each object in about 2 seconds.

Table 6.1: Number of tangent planes on 3D models. (a)Initial planes (b) Intersection

constraint (c) Stability constraint (d) Height constraint

Constraints (a) (b) (c) (d)

Object

Monkey pose1 186 141 18 8

pose2 171 154 21 4

PolarBear pose1 180 150 18 7

pose2 167 144 11 4

Pokemon pose1 205 173 8 2

pose2 185 173 17 9

6.5 Conclusions

Pose estimation between two 3D models is estimated by matching global tangent

planes with base planes. Two 3D models are reconstructed by multi-view modeling

of two di�erent poses of an object. In order to reconstruct a complete 3D model

by registering and integrating two pose models, we estimate the pose between two

models. Because the object always stands on one of its global tangent planes, we �nd
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Table 6.2: Pose estimation error and estimation time (Di=Dmi = 0:1)

Object Monkey Polarbear Pokemon

Voxel size (mm) 4 4 2

cos (�G) 0.8 0.5 0.5

ÆI ,ÆH (mm) 3.0 3.0 3.0

Avg. error (mm) 2.46 1.95 2.44

No. vertices 3294 5106 6180

Time (sec) 1.85 1.56 1.4

a tangent plane from the �rst model, which matches the base plane of the second

pose and vice versa.
Matching tangent plane with the BTP gives constraints that reject inconsistent

and unstable tangent planes. We employ three constraints- base plane constraint,

stability constraint, and object height constraint, to reject such tangent planes. Ex-
perimental results show a great decrease in the number of tangent planes and match-

ing complexity. In the next chapter, we will use our pose estimation technique for
an initial registration of two 3D models, which will be integrated to a complete 3D

model.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Pose estimation results of \Monkey" object. The object is placed on the

table in two poses shown in (a) Pose1 (b) Pose2. (c) Pose1 model and its matching

tangent plane to Pose2 (d) Pose2 model and its matching tangent plane to Pose1 (e)

Original poses of the two models (f) Coarsely registered models
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Pose estimation result of \Pokemon" object. (a) Pose1 (b) Pose2 (c) Pose1

model and its matching tangent plane to Pose2 (d) Pose2 model and its matching

tangent plane to Pose1 (e) Original poses of the two models (f) Coarsely registered
models
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Pose estimation result of \Nikon775" object (a) Pose1 (b) Pose2 (c) Pose1

model and its matching tangent plane to Pose2 (d) Pose2 model and its matching

tangent plane to Pose1 (e) Original poses of the two models (f) Coarsely registered
models
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Pose estimation result of \PolarBear" object (a) Pose1 (b) Pose2 (c)

Pose1 model and its matching tangent plane to Pose2 (d) Pose2 model and its match-

ing tangent plane to Pose1 (e) Original poses of the two models (f) Coarsely registered
models



Chapter 7

Pose Integration for Complete 3D Reconstruction

7.1 Introduction

In this chapter, we present a pose integration technique in order to merge two

partial 3D models into a complete and closed 3D model. The novelty of the pose
integration technique is merging two incomplete iso-surfaces which represent two dif-
ferent models. Since the two 3D models are reconstructed through integration of

n-view range images in each pose, we integrate two iso-surfaces rather than 2�n-
view range images. Voxel classi�cation introduced in n-view integration presented in

Chapter 5 is also employed. To solve a hidden surface problem, pose integration al-
gorithm combines signed distance and class of a voxel in each pose. Texture mapping

for photo-realistic 3D model is also presented for several real objects.

7.2 Pose Registration

Based on the estimated pose Q1

2
described in Chapter 6, we register and re�ne

two 3D models before integration. We �x the �rst pose model and bring the sec-

ond pose model (range image set) to the �rst. Re�nement algorithm is based on
a geometric registration technique which is similar to a multi-view registration [7].

Because registration for multi-view range images in a single pose is already re�ned,

we re�ne the pose between two range image sets. Because the two range image sets

are scanned from two di�erent poses of an object, their scans have overlapping areas

between Pose1 (horizontal) scan and Pose2 (vertical) scan as shown in Figure 7.1.

From all partial surfaces in Pose2, we sample some of the vertices as control points,

and �nd intersecting points from partial surfaces in Pose1. Pose1 is set to the refer-

ence pose and Pose2 is registered iteratively until registration error (translation and

rotation between two control point sets) is less than a pre-de�ned threshold.

114
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overlapping regions between
two poses

Pose2 scan

Pose1 scan

Figure 7.1: A schematic diagram of overlapping regions between two scans. Range

image sets are scanned in vertical (solid line) and horizontal (dotted line) directions.
Green (Light grey) and blue (dark grey) regions are overlapping.

7.3 Pose Integration

After pose registration, two 3D models are integrated into a complete 3D model.

The �nal 3D model is represented as an implicit surface in a 3D volumetric space
and converted to a triangular mesh model using Marching Cubes (MC) algorithm.
Therefore, the basic algorithm of the pose integration is similar to multi-view inte-

gration. Pose integration computes the �nal signed distance Df (P) of a voxel, which

is a function of signed distances in two poses,

Df (P) = f(D1(P); D2(P)); (7.1)

where;Di(P) = f(di0(P); � � � ; d
i

No
i(P)) for i = 1; 2;

and Di(P) is weighted signed distance of a voxel P in pose i, di
j
(P) is the signed

distance in pose i and view j, and No

i is the number of overlapping shapes in pose i.

Computing Df(P) of the voxel P is based on average of signed distance Di(P). If a

voxel P is seen from both poses, Df (P) is computed as a weighted average. However,

if there is any occlusion or concavity in either pose, Df(P) is estimated based on the

class of the voxel in both poses.
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Suppose there is a concavity on the object's surface as shown in Figure 7.2. As
shown in Figure 7.2(a), OP1 is a common coordinate system of the �rst pose and all

view points are almost on the XZ plane of the coordinate system. We see that no

view in the �rst pose can observe the concavity. But in Figure 7.2(b), some of the

views in the second pose can see the concavity. If a voxel P is inside of unseen surface

region as shown in Figure 7.2(a), it is classi�ed as P 2 Pinside at the �rst pose. And

a continuation approach of the MC algorithm closes a mesh model by following the

visual hull V H1(O) of the multi-view frustum as shown in the �gure. This means

there is a voxel P which is close to the visual hull and classi�ed as Pinside in the �rst

pose. However, because it is seen from the second pose, there is no possibility that

the MC algorithm marches on the same voxel. Instead, the algorithm follows the

object's surface, because P 2 Poverlap as in Figure 7.2(b).

The proposed pose integration technique is based on integration of two implicit
models. If there are two implicit models, A and B, the merged model C can be
represented simply as C = A \ B. In this case, a �nal signed distance Df(p) can

be represented as Df(P) = minfD1(P); D2(P)g, where Di(P) is a signed distance
of P in the pose i. But, in a real system, selecting the shorter distance may shrink

the volume of the �nal model. Rather than selecting the minimum, we average two
weighted signed distances, when P 2 P i

overlap
for j =1, 2. Otherwise, we heuristically

select one of the distances or the shorter one. Consequently, we select either the

shorter one Dshr, the average Davg, or one of the distances Di(P) according to the
results of multi-view integration as follows.

� Df(P) = Davg(P) =
P

Wi(P)Di(P)P
Wi(P)

, if P 2 P 1
overlap

and P 2 P 2
overlap

.

� Df(P) = Dshr = minfD1(P); D2(P)g, if P 2 P
1
inside

and P 2 P 2
inside

.

� Df(P) = D1(P), if P 2 P
2
inside

, or Df(P) = D2(P), if P 2 P
1
inside

.

However, in some situations, a voxel can be in both P
1
nonoverlapp

and P
2
nonoverlapp

.

A voxel in a concave region may be assigned in these classes. Consider an example

shown in Figure 7.3. In the �gure, the signed distance from voxel P to two pose
models are D1(P) and D2(P) and P 2 P

1
nonoverlap

and P 2 P
2
nonoverlap

. As shown in

the �gure, D1(P) has minus sign, even though the voxel is outside the object, because

it is not visible from pose1. If jD1(P)j < jD2(P)j, the MC algorithm may choose the
shorter one, then the voxel is considered to be inside the object. Typically, such

mistakes may happen near the visual hull and an example of some artifacts of on the
object's surface is shown in Figure 7.4(a).

Rather than selecting the shorter of the two distances in the two poses, we

compare visibility of the voxel from available views in each pose. In other words,



117

unseen surface
from pose 1
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p'

Mesh growing

(b)

Figure 7.2: Signed distance in a concave region: (a) MC algorithm follows the visual

hull V H1(O) to close the mesh model. (b) MC algorithm follows the real surface of
the object.
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Shape from pose 1

Shape from pose 2

D2(p)  > 0

D1(p) < 0

L
VH

1
(O)

p

Figure 7.3: Errors of mesh growing in a concave region. If jD1(P)j < jD2(P)j, voxel

P has a wrong distance sign.

we check if the voxel is in Pnonoverlap in both poses. If the voxel has many positive

implicit distances for the views, it implies high visibility (our implicit representation
assigns (+) sign when a voxel is outside an object). The visibility of the voxel can
be considered to be the number of positive distances in each pose. The number

can be easily determined by counting the number of positive distances of di
j
(P).

Therefore, we de�ne more conditions for computing Df (P) in Pnonoverlap. If a voxel

P 2 P 1
nonoverlap

and P 2 P 2
nonoverlap

,

� Df(P) = D1(P) if count
+(d1

j
(P)) > count

+(d2
j
(P)).

� Df(P) = D2(P) if count
+(d2

j
(P)) > count

+(d1
j
(P)).

where, count+() is the count of the number of positive distances in d
i

j
(P), where

j = 0; � � � ; No

i. After applying these conditions for distance selection, we obtain an

accurate reconstruction of the concave object's surface shown in Figure 7.4(b).

7.4 Texture Mapping

7.4.1 Texture Blending

Texture mapping is the last step of our 3D reconstruction. The reconstructed 3D

mesh model consists of numerous triangles on its surfaces. We map image textures on



119

(a) (b)

Figure 7.4: Artifacts in a concave region due to a reconstruction error. (a) Artifacts
are near the visual hull. (b) Correct pose integration.

the surfaces of the model. There are several view-dependent and view-independent
techniques for texture mapping [52, 58, 78]. We apply a general view-independent

texture mapping technique. For each vertex on the object's surface, we decide the
best-viewing point from all available views. The best view is selected based on the

cosine angle between the vertex normal and viewing vectors. Suppose there is a vertex

P on the surface, then the best view of the vertex V
B

p
is decided as

V
B

p
= argmin

V i

j

fV̂i

j
� P̂g (7.2)

, where 0 � j � N
i� 1; i 2 f1; 2g. If the three vertices of a triangle map to the same

view point, we texture the triangle using the image of the view. However, if they map

to di�erent view points, it is necessary to blend textures from di�erent views to reduce

the e�ect of texture blocking. Texture blocking may happen between two or more

adjacent triangles, when they are textured by di�erent view points. Because there
can be di�erence of brightness or re
ection between di�erent views, texture blocking

results in seams on the texture of a 3D model's surface. In order to reduce texture

blocking, we interpolate textures on the triangle using the barycentric coordinate

system [31, 80].

Suppose there is a triangle T on a meshM in 3D space as shown in Figure 7.5.

The triangle has three vertices, Pa;Pb, and Pc. Decided by the best-view criterion,

the vertices are supposed to map to the image of V0; V1, and V2, respectively. Then we

interpolate the texture inside the triangle T using the barycentric coordinate system

which consists of the images of three vertices.
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V0

V1

V2

Pa
Pb

Pc

p0(a)

T

t0

t1

t2

I0

I1

I2

p0(b)

p
0(c)

p1(a)

p
1(b)

p1(c)

p2(a)

p2(b)

p2(c)

M

Figure 7.5: Texture blending on a triangle mesh

Suppose the image of a vertex Pa is p0(a) on the image plane I0 of V0. Similarly,
p1(b) is the image of Pb and p2(c) is the image of Pc, on image plane I1 and I2,

respectively. Then the color of a point Px inside of the triangle T is determined by

the colors of the three vertices and the barycentric coordinates

C(Px) = waC(p0(a)) + wbC(p1(b)) + wcC(p2(c)); (7.3)

where; wa =
4PxPbPc

4PaPbPc;

wb =
4PxPaPc

4PaPbPc;

and wc =
4PxPaPb

4PaPbPc:

In the equation, C(p) is the RGB color at a 2D point p.
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pc

pa

pb

px

∆ pxpapb

∆ pxpapc ∆ pxpbpc

T

Figure 7.6: Barycentric coordinates for texture blending

7.4.2 Textures in Occlusion Area

The best-view criterion to decide the visibility of a vertex assumes that the vertex
is seen from all view points. The visibility of the vertex to a view point is measured

by the cosine angle between the vertex normal and the viewing vector. However,
although an angle between a vertex normal and a viewing vector is the smallest of

all available view points, there can be an occlusion from the vertex to the view point
by some object's surfaces. An example of occlusion is shown in Figure 7.7. For three
available views, V0, V1, and V2, the normal vector of a vertex Pa has the smallest

angle to the view point V1. However, it is also occluded by another surface. In this
case we have to select the next best view point to map the texture. Therefore, when

we decide the best-view from a vertex, we also need to check if the vertex is occluded

from any view point.

Suppose we have all range images for all view points. Then we can easily decide if
a vertex is occluded or not. For example, in Figure 7.7, let us consider the projection

of a vertex Pa to the image plane I0 of the view V0. Then we obtain a 2D image

point p0(a) and we know the back projected 3D points from the 2D point is

d(p0(a)) � Pa; (7.4)

where, d(p) is the range of a 2D point p. Because the object's surface is the weighted

average of all overlapping surfaces, d(p0(a)) will not be the same with the Pa, but

very close to it. In contrast, consider another projection to the image plane I1. Then
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Ov0

Pb

v0

v1

v2

Ov1

Ov2

p1(a)p0(a)

p2(a)

Object's surface

Figure 7.7: Visibility test for texture mapping

the range of the projected 2D point p1(a) will be

d(p1(a)) � Pb: (7.5)

Because there is an occlusion between the view point V1 and the pointPa, the distance

from Pa to d(p1(a)) should be greater than a threshold such that

kd(p0
a1
)�Pak > �occ: (7.6)

By measuring the distance from a vertex and a 3D point which is inverse-
projection of the image of the vertex, we decide the visibility of the vertex. The

texture-mapped 3D model is saved to a �le using Apple Computer's 3dmf �le for-

mat. The output �le is displayed using a 3D graphic �le viewer called Quickdraw 3D

Viewer.

7.5 Experimental Results

We generate 3D models of the real objects presented in the previous chapter.

Figure 7.8(a) and 7.8(b) are two 3D models of the \Monkey" object, reconstructed in
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Table 7.1: Processing time in sec for pose integration

Object Monkey Polar Bear Nikon775 Pokemon

Voxel size (mm) 4 4 4 3

No. of triangles 8096 5224 3128 5216

Time (sec) 7.0 6.0 5.1 6.2

two di�erent poses. Figure 7.8(c) shows the result of integration of the two models.

All surfaces of the object are reconstructed including the bottom surface as shown in

the �gure. Figure 7.8(d) shows some novel views of the integrated 3D model. The
texture mapping results show accurate reconstruction on the surface including the

top and the bottom.

Figure 7.9(a), (b), and (c) show 3D models of two poses and after integration
for the \Pokemon" object. There are some occlusions in the second pose as shown

in Figure 7.9(b), but the integrated 3D model in Figure 7.9(c) shows an accurate
reconstruction. Texture mapping results in Figure 7.9(d) show novel views of the

object. Figure 7.10(a), (b), and (c) show 3D models of the \Nikon775". Texture
mapping results are also shown in Figure 7.10(d). Figure 7.12 and Figure 7.13 are
results of another object \Potatohead". Figure 7.12 shows pictures of the �rst and

the second poses of the object, their mesh models, and an integrated model. Figure

7.13 shows the texture mapped 3D model from novel view points. The �gure shows

that our techniques are able to generate complete and photo-realistic 3D models.

Integration time depends on the number of vertices and triangles. When there are

about 4000 vertices and 8000 triangles on a 3D model, approximate computation time

is about 5 minutes for pose registration re�nement and 7 seconds for pose integration.

Table 7.1 shows computation time for pose integration of the objects. Table 7.2 shows

the number of hidden triangles after pose integration. Even after we integrate two
3D models for complete 3D model generation, there may be still hidden surfaces
from all available views. When we consider a triangle is hidden when cosine angle

of its surface normal is less than 0.0 degree with all viewing directions, for example,

4 triangles are still hidden in the \Pokemon" object. If we increase this angle for

the decision of hidden surface, the number also increases. We may employ a new

technique to reconstruct these hidden surfaces in the future.
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(a) (b) (c)

(d)

Figure 7.8: Pose integration and texture mapping results of 'Monkey' (a) Pose1 mesh

model (b) Pose2 mesh model (c) Integrated model (d) Novel views of the object

7.6 Conclusions

A pose integration technique is presented for automatic and complete 3D model

reconstruction. In order to avoid hidden surfaces that arise when only one pose

is used, two poses are used. We introduce a novel technique for integrating two
partial 3D models for two di�erent poses. The voxel classi�cation technique used

in n-view integration shown in Chapter 5 is also employed to reconstruct accurate
surface reconstruction. Because there can be a hidden surface from one view but

not from another, integration algorithm combines the signed distance and the class

of a voxel from each pose. Texture mapped 3D models of several real objects are
presented. We also blend textures between mesh triangles whose vertices map to

di�erent view points according to the best-view criterion. Texture blending reduces

blocking e�ect of brightness di�erence between di�erent view points. Experimental
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(a) (b) (c)

(d)

Figure 7.9: Pose integration and texture mapping results of 'Pokemon' (a) Pose1

mesh model (b) Pose2 mesh model (c) Integrated model (d) Novel views of the object

results for several real objects show our pose integration technique is very e�ective

for 3D model reconstruction.
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(a) (b) (c)

(d)

Figure 7.10: Pose integration and texture mapping results of 'Nikon775' (a) Pose1
mesh model (b) Pose2 mesh model (c) Integrated model (d) Novel views of the object

Table 7.2: Number of hidden surfaces after pose integration

Surface nor-

mal constraint for

hidden surface

Monkey Polar Bear Nikon775 Pokemon

No. of triangles 8096 5224 3128 5216

Hidden if cos(�) < 0.0 0 4 0 4

Hidden if cos(�) < 0.1 46 13 0 15

Hidden if cos(�) < 0.2 84 13 0 22
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(a) (b) (c)

(d)

Figure 7.11: Pose integration and texture mapping results of 'PolarBear' (a) Pose1
mesh model (b) Pose2 mesh model (c) Integrated model (d) Novel views of the object
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(a) (b)

(c) (d) (e)

Figure 7.12: Pose integration results of 'PolarBear' (a) Pose1 of the object (b) Pose2

of the object (c) Pose1 mesh model (d) Pose2 mesh model (e) Integrated model
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Figure 7.13: Texture mapped results of 'Potatohead'



Chapter 8

An EÆcient Point-to-Plane Registration Technique

In this chapter, we address a registration re�nement problem and present an
accurate and fast Point-to-(Tangent) Plane registration technique. We introduce

a novel Point-to-Plane registration technique by combining fast Point-to-Projection
approach.

8.1 Introduction

Registration re�nement of multiple range images is an essential step in multi-view

3D modeling. When the range images are coarsely registered by a priori knowledge

of registration parameters, registration re�nes the rigid transformation parameters to
minimize alignment error between overlapping range surfaces. There have been many

investigations on the re�nement problem [14, 81]. For a pair-wise registration, the
registration problem can be considered to be an error minimization of the rigid body
transformation between two control point sets [4]. Control point sets are determined

by matching either geometric [9], photometric [52, 101], or geometric and photometric
[8, 45] structures of the range surfaces. In this section, we address a registration

problem in the �rst category, which considers only geometric structure for control
point matching.

Based on the method of control point matching, three approaches can be con-
sidered in general. Point-to-Point, e.g. Iterative Closest Point (ICP) algorithm [9],

Point-to-(Tangent) Plane [17, 7], and Point-to-Projection [10] techniques are very
common. The ICP algorithm is one of the common techniques for re�nement of par-

tial 3D surfaces (or models) and many variant techniques have been investigated.

However, searching the closest point for the ICP algorithm is a computationally ex-
pensive task. In order to accelerate the speed of closest point searching, some search-

ing techniques are typically employed, for example kd-tree searching, z-bu�ering, or

closest-point caching [67, 6].

130
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In contrast, Point-to-Projection approach �nds the correspondence of a source
control point by projecting the source point onto a destination surface from the point

of view of the destination [10, 64]. The destination control point is a forward projec-

tion of a 2D point, which is an image of the source point to the image plane of the

destination surface. This approach makes registration very fast, because it does not

involve any step for correspondence searching. However, one disadvantage is that the

result of registration is not as accurate as those of the others [81].

Among the three approaches, Point-to-(Tangent) Plane technique is known to be

the most accurate [75, 81]. From a source control point, the matching control point

is the projection of the source point onto the tangent plane at a destination surface
point which is the intersection of the normal vector of the source point [7, 17, 30].

However, �nding the intersection on the destination surface is also computationally
expensive. One of the acceleration techniques is �rst searching the closest point, and
�nding the intersecting surface (or the triangle) from its neighboring triangles [81].

Gagnon [30] tries to �nd the intersection on a 2D grid of range images along the
projection of the normal vector of the source point.

In this section, we address the registration problem to re�ne a pair of range sur-
faces as well as multi-view range surfaces. We propose an accurate and fast point-to-

plane registration technique. We combine advantages of point-to-plane and point-to-

projection techniques simultaneously. We employ accuracy of point-to-plane technique
and speed of point-to-projection technique. In order to �nd the intersection control

point, we project a source point to the destination surface, re-project the projection
point to the normal vector of the source point. We present that iterative normal

projections converge to the intersection point. By assuming that the destination sur-
face is a monotonic function in a new 2D coordinate system, we show a contraction
mapping property of our registration technique [63]. Therefore, we call our technique

as Contractive Projection Point (CPP) algorithm. Experimental results for several
3D models are presented for many single pair registrations as well as a multi-view
registration.

8.2 Comparison of Registration Techniques

8.2.1 Description of Three Registration Techniques

In this section, we brie
y describe three registration re�nement techniques. There

have been many variants, but we present basic principle of each technique. Suppose

there is a control point set fPg on the source surface SP , and another control point

set fQg on the destination surface SQ. If we have K control points on each sur-

face and k = 0; : : : ; K � 1, then the registration problem is estimating a rigid body



132

transformation T = [Rjt] which minimizes an alignment error � such that

� =

K�1X
k=0

kQk � (RPk + t)k
2
: (8.1)

In general, the source control point set fPg are selected by sampling the source

surface-randomly or uniformly, and �ltered by some constraints to delete unreliable

control points. The destination control point set fQg is then the conjugate of the

source point set, which is determined by a matching criterion.

Point-to-point technique is the most common technique, and ICP is a well-known

registration algorithm. From a source control point P on the source surface, ICP al-

gorithm searches the closest point Q on the destination surface. Figure 8.1(a) shows
a basic diagram of ICP algorithm. Error metric for the ICP algorithm is the distance

ds between two control points. The most time-consuming task in ICP algorithm is
searching the closest point. Suppose there are total NP and NQ points on the source
and the destination surfaces, respectively. If there are K source control points on

the source surface, a brute force searching requires O(KNQ) computations. In order
to reduce the computation complexity, some high-speed searching techniques are em-

ployed such as kd-tree searching [81, 67]. Using a kd-tree searching, the computation
complexity can be reduced to O(K logNQ).

Point-to-plane registration is another common technique. It searches the inter-

section on the destination surface from the normal vector of the source point. As
shown in Figure 8.1(b), the destination control point q0 is the projection of p onto
the tangent plane at q which is the intersection from the normal of p.

Point-to-projection approach is known to be a fast registration technique. As
shown in Figure 8.1(c), this approach determines a point q which is the conjugate of

a source point p, by forward-projecting p from the point of view of the destination

OQ. In order to determine the projection point, p is �rst backward-projected to a
2D point pQ on the range image plane of the destination surface, and then pQ is

forward-projected to the destination surface to get q. This algorithm is very fast
because it does not include any correspondence searching step. However, one of its

disadvantages is that the result of registration is not as accurate as those of the others.

8.3 Contractive Projection Point (CPP) Technique

8.3.1 Combinig Point-to-Plane and Point-to-Projection Tech-

niques

In this section, we propose a novel point-to-plane registration technique by com-

bining fast searching property of point-to-projection technique. Suppose there are two
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Figure 8.1: Three common registration techniques. (a) Point-to-point (b)

Point-to-plane (c) Point-to-projection

partial surfaces SP and SQ as shown in Figure 8.2. We assume that they are acquired
from two di�erent views P and Q of an object and coarsely registered to the world
coordinate system by using the transformation matrices TP and TQ, respectively.

Let us also suppose there is a source control point P0 on the surface SP . Then the

problem in the point-to-plane registration is �nding the intersecting point Qs on the
surface SQ as shown in the �gure. The point Qs is an intersection on the surface SQ
by the normal vector p̂ of P0.

One of the typical methods of searching the intersection is �rst �nding a triangle
(when the surface consists of triangles) which is intersected by the normal vector p̂.

Then the intersection point Qs can be interpolated by three vertices on the triangle.

With a brute force searching for example, it takes about tens of seconds to �nd
the intersecting point among tens of thousands triangles using a typical personal

computer. In addition, if there are hundreds of control points on the source surface,

it will take about tens of minutes to �nd the all matching points. We may also use a
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fast searching algorithm to �rst �nd the closest point, and then to try its neighborhood
triangles to �nd the intersection triangle. However, it does not guarantee that there

is an intersection triangle on the neighborhoods.

We present a new point-to-plane registration technique by employing advantages

from both techniques. The core idea is using iterative point-to-projections to estimate

the position of the intersection on the destination surface as shown in Figure 8.2. Let

us backward-project the point P0 to a 2D image point

pq =MQTQ

�1P0; (8.2)

where MQ is the perspective projection matrix of view Q to the image plane IQ, and

TQ is the transformation matrix from the camera coordinate system of view Q to
the world coordinate system. Then let us forward-project pq to a new 3D point Qp0.

Forward-projection Qp0 is the range at the destination image point pq. The point
Qp0 is computed by interpolating a grid of destination image plane and transformed
back to the world coordinate system. This point is then the matching point of P0

in a typical point-to-projection technique. Now let us consider another projection of
Qp0 to the normal vector p̂ at P0. Then we obtain a new 3D point P1, such that

� = (Qp0 �P0) � p̂;

P1 = P0 + �p̂: (8.3)

If we iterate the same projections above using the new control point P1, then we get

the next source point P2, and so on. If there is an intersection on the surface SQ by
the normal vector p̂, then the point Qpi (or Pi) for the ith projection converges to

Qs when i goes to in�nity, such that

lim
i!1

kPi �Qpik ! 0: (8.4)

However in real situation, only small number of projections can make a conver-
gence measure

�c = kPi �Qpik (8.5)

become close to zero. If we �nd all convergence points for corresponding source

control points, we can �nd destination control points on their tangent planes to run

the point-to-plane registration technique.

8.3.2 Contraction Mapping Property of CPP

In order to show the validity of the algorithm presented in the previous section,

we present contraction mapping properties of the algorithm. When a source control
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Figure 8.2: Finding the intersecting point Qs from P0 by the proposed algorithm.

point converges, the proposed iterative projection has contraction mapping proper-

ties such that the convergence measure �c becomes close to zero after a couple of
iterations. Because we employ the contractive point-to-projection technique to esti-

mate the intersection, we call the proposed technique as Contractive Projection Point

(CPP) algorithm.

The de�nition of the contraction mapping is as the followings.

De�nition 1 Let (X;d) be a metric space and f : X ! X. We say a contraction
mapping, if there is a real number k; 0 � k < 1, such that

d(f(x); f(y)) � kd(x; y)

for all x and y in X.

Let us consider a 2D coordinate system as shown in Figure 8.3. When there

are two di�erent view points P and Q, the new axes consist of the viewing vector

V̂Q of Q and the normal vector p̂ of the source control point P0. And the point P0

becomes the origin of the coordinate system. Then surface SQ becomes a contour on

the 2D plane, which is the intersection of the surface with the 2D plane. As shown in



136

the �gure, the proposed algorithm projects the source point Pi to a new point Pi+1,
iteratively until the convergence measure in Equation (8.5) becomes close to zero.

p

VQ

P0
P1

Pn

Qp0

Qs

SQ

Figure 8.3: Contraction mapping property of a new 2D coordinate system.

In real case, distance from p0 to the contour is very small, because two surfaces

are coarsely registered before the re�nement. Therefore we consider that all forward-
projecting lines from the view origin of Q to all control point pi are almost parallel.
Let us then present the contraction mapping properties of the proposed algorithm by

the following theorem.

Theorem 1

1. A surface SQ is a monotonic function with respect to the viewing vector V̂Q.

2. A vector product V̂Q � P̂0 < 0, because we only consider a source point which

is seen from the view Q. Therefore there is always a projection of Qpi to the

normal vector P̂0.

3. If there is an intersection Qs, a function f : Pi ! Pi+1 ( or Qpi ! Qpi+1
) is

a contraction mapping when kPi+1;Pi+2k < kkPi;Pi+1k, where 0 � k < 1.

4. Then, there is a 3D point Qs on the surface such that f(Qs) = Qs.

8.3.3 Convergence Conditions

In an ideal situation, the CPP algorithm makes the source point always converge
to a convergence point. However, in a real situation, it may diverge or enter into a

non-convergent cycle. Therefore we need to �nd out convergence condition according

to the contraction coeÆcient k. Three possible cases are shown in Figure 8.4. In
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Figure 8.4(a), a source control point converges and the coeÆcient is 0 � k < 1.
In this case, we can use the convergence point as a matching control point of its

conjugate.

However, as shown in Figure 8.4(b), the control point could diverge if the coef-

�cient is k > 1. This could happen when the tangent normal at a point on surface

SQ has a high angle with respect to V̂Q. However, we can reduce the e�ect of di-

verging control points by restricting some source points which also have high angle
with respect to V̂Q. However, if the convergence measure �c is greater than the initial

measure kQp0 � P0k, then we discard the destination point. The last case is that

the projective mapping enters into a non-convergent cycle when k = 0, as shown in

Figure 8.4(c). This case could happen when a segment of the destination curve is

overlapping with the projection line from Qpi
to Pi+1. We also solve this problem by

checking the error measure over some iterations. If the measure is repeating for some

iterations, we consider the mapping enters into a non-convergent cycle and stop the
searching.

8.3.4 CPP Algorithm

The proposed CPP algorithm can be easily implemented by a recursive searching

program. A pseudo code of the CPP algorithm is written as follos. TheGetIntersection()
function searches a 3D point Qs, the intersection of a control point P on the desti-

nation surface Dest. The Dest surface has view transformation matrix Dest ! T

and the rotation Dest ! R with respect to a common coordinate system. The
RecursiveProjection() function is a recursive searching program to �nd the intersec-

tion. The Nc is the maximum iterations and Dc is the threshold for the convergence
error �c.

Int GetIntersection(V ertex �P; Vec3d &Qs; Mesh �Dest)

f P0 = (Dest! T)�1 (P! coord);

p̂ = (Dest! R)�1 (P! normal);
V ec3d Pc = RecursiveProjection(P0; p̂; Qs; Dest; 0);

if (Pc == NULL) return 0; ==Nointersection;

�c = kPc �Qsk;
if (�c > �0) return � 1; ==Diverge

Qs = (Dest! T) Qs; ==Intersection

return 1;

g

Vec3d RecursiveProjection(V ec3d &P1;Vec3d &p̂;Vec3d &Qp1;Mesh �Dest; int cnt)
f if (cnt > Nc) return P1;
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Figure 8.4: Three cases of projections to a normal vector. (a) Converge (0 � k < 1)

(b) Diverge (k > 1) (c) In�nity loop (k = 1)

pq =MqP1;
flag = OnObject(pq; P1; Dest; Qp1);
if (!flag) return NULL;

� = (Qp1 �P1) � p̂;

P2 = P1 + �p̂;
�c
0 = kP2 �Qp1k;

if (cnt == 0) �0 = �c
0;

if (�c
0
< Dc) return P2;

return RecursiveProjection(P2; p̂; Qp1; Dest; cnt + 1);

g

After �nding all matching control points, we use two control point sets P0 and

Qs for estimating the rigid transformation between two surfaces. The transformation
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T = [Rjt] is computed by a SVD (Singular Value Decomposition) technique [4].

8.4 Experimental Results

8.4.1 Test Objects

We have tested the proposed algorithm for three objects. The three test objects

are shown in Figure 8.5. The Wave object is a pair of 3D sinusoidal surfaces, which

is synthesized with 320�240 image resolution. Two surfaces have 10 degree of phase

di�erence in the XY image plane (Z axis is along the height of the object) and 10mm
of translation along the Z axis. The object's height is 50 mm and we add random

noise to every image point with maximum 10 % of the height. The second object
Angel is a pair of range images obtained from a laser range �nder. This object is one
of the models in the Ohio State University's Range Image Database. The two images

are obtained by rotating the object 20 degrees. Because two images are obtained
from a range sensor, it has little noise on the surfaces and little distortion between

overlapping part of surfaces. The third object Potatohead consists of multiple range
images. We obtain the range images from 8 di�erent views by rotating a real object
by 45 degrees as described in a previous chapter. We use a stereo camera and a

stereo matching technique to obtain the range images. Due to the inherent matching

problem, surfaces of the object show some high-peak noises in Figure 8.5(c). We have
8 partial surfaces for the object, but Figure 8.5(c) shows only the �rst two partial

views. The number of points and triangles on the test objects are shown in the Table

8.1. They are the number of points and triangles on the surface of the �rst view.

(a) (b) (c)

Figure 8.5: Point clouds models of test objects. (a) Wave (b) Angel (c) Potatohead
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Table 8.1: Test objects for IPP registration

Objects Wave Angel Potatohead

Num points (S0) 22500 14089 13827

Num triangles (S0) 44402 27213 27144

Ranging sensor Synthetic Laser Ranging Stereo camera

Noise 10 % little Very noisy

Distortion No No (Negligible) Yes

No. of views 2 2 8

8.4.2 Registration Error with respect to Iteration of Projec-

tions

We apply our CPP registration technique to theWave object to plot convergence
error �c with respect to di�erent numbers of normal projections. This number is the

count of projections from Qpi to Qi+1 { to the line of point normal p̂0{ in Equation
(8.5). It can be expected that the more projections result in the smaller convergence

error, because the error converges closer to zero with more projections. In Figure

8.6(a), convergence error is plotted for di�erent numbers of projections. We run the
CPP for 50 iterations. At each iteration, we plot the RMS convergence error of all

control points, where we use about 300 pairs. As shown in the �gure, the convergence
error decreases when the number of projections increases. However, the �gures shows
that the error does not decrease any more when the projection number is greater

than 5. This means that, in real situations, more projection numbers do not always
produce better results.

RMS error of translation between control point sets are plotted in Figure 8.6(b)

and (c). In Figure 8.6(b), we use the Wave object without adding random noise. As
shown in the �gure, even with small number of projections, two partial shapes are

registered very fast and accurately. In Figure 8.6(c), the translation error is plotted

for noisy Wave object. In this �gure, we �nd that only small number of projections

is enough to register the surfaces accurately. For the rest of experiments, we use the

CPP algorithm with 5 projections.

8.4.3 Pair-wise Registration

Test Environment

We test our CPP algorithm for a pair of range image in each test object. We

also test the Point-to-Projection and the Point-to-Point (ICP with kd-tree searching)

approaches to the same objects to compare their results with ours. We test all three
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Figure 8.6: Comparison of convergence and translation errors with respect to di�erent

number of projections. (Wave object) (a) Convergence error (b) RMS translation

error without noise (c) RMS translation error with 10% noise
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approaches in the same registration condition using a Pentium III 1GHz personal
computer. In order to pick control points on both source and destination surfaces,

we

� uniformly sample a source surface to pick about 200 source control points,

� discard a source control point when the vector product of its normal and the

viewing vector of the source is greater than (-0.3) { the point normal is opposite
to the viewing vector,

� discard a destination control point when the magnitude of the vector product

of its normal and the viewing vector is greater than (-0.3),

� and discard a destination control point when the distance to its conjugate point

is greater than 10.0 mm.

Error Metric

Registration error of the test objects is measured by the distance error of ds shown

in Figure 8.1. RMS (Root Mean Squares) error of all control points is plotted at every
iteration. However, registration error in each approach can not be directly compared.

For example, the error metric of point-to-point approach is di�erent with that of point-
to-plane. In addition, because we use range images of real objects, we don't know true

matching pairs of the control points. In order to compare registration error between
all three approaches, we normalize the error using the initial error of each approach.
Because the initial condition of all approaches is the same, we normalize the RMS

errors to watch the decrease rate of them. We divide RMS error at each iteration by

the initial one.

Results

Results of registration re�nement for the Wave object are shown in Figure 8.7.

We register the second view's surface to the �rst view for 50 iterations. The RMS

error of ds, distance between control points, for the Wave object is plotted in Figure
8.7(a). Point-to-projection approach shows the worst result. The proposed registra-

tion technique shows better result than others.

Figure 8.7(b) shows the results for the object Angel. Point-to-projection result

also shows a bad registration result because the initial condition (20 degree rotation)

is too much for this approach to register the surfaces. The proposed technique also

shows better result than other techniques. Figure 8.7(c) is the result for Potatohead.

As mentioned in an earlier section, the range images are obtained from a stereo

camera. This result only shows the registration of a pair of images. We use the �rst
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and the second views of object out of 8 multiple views. In this �gure, we also plot a
result of original point-to-plane technique, which use a brute force searching to �nd

matching control points. The result of the proposed technique is almost the same

with that of the original technique.

Table 8.2 shows the results of registration error and processing time for 50 iter-

ations. As shown in the previous �gure, our CPP technique has the smallest regis-
tration error after re�nement. As far as computation time is concerned, the point-

to-projection technique is faster than other approaches. The proposed technique and

the point-to-point technique show similar results but the results depend on types of

objects. This is because we have some computations for �nding the matching control

point as mentioned in the previous section.

Table 8.2: Registration error and processing time after 50 iterations
(Nc = 5; Dc = 0:1mm)

Method
Point-

Projection
ICP with

kd-tree
Proposed

Wave Normalized ds (mm) 0.77 0.38 0.26

Time/Itr (ms) 38.4 40.6 38.4

Angel Normalized ds (mm) 0.73 0.34 0.27

Time/Itr (ms) 28.4 35.0 32.8

Potatohead Normalized ds (mm) 0.63 0.63 0.47

Time/Itr (ms) 24.2 27.6 28.4

8.4.4 Multi-view Registration

Multi-view registration is a more diÆcult problem than a pair-wise registration,
because registration error should be evenly distributed on all overlapping surfaces.

The multi-view registration problem is also an important research topic but we use

Bergevin's technique [7]. We set the �rst view of the Potatohead object as a reference

view and register all the other views to the reference view. In order to �nd the match-

ing control points from a source view, we search on its neighboring view's surfaces.

For example, if the ith view is concerned, we search the matching control points on its
neighborhoods, (i+1)th view and (i�1)th view. After �nding all matching points for

every view point, except the �rst view, we compute rigid transformations and re�ne

all surfaces simultaneously.

We test a multi-view registration for the 8 views of the Potatohead object. The

Figure 8.8 plots their results. In this �gure we do not normalize the errors, be-

cause their results are very clear for comparison. Both point-to-projection and ICP
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Figure 8.7: RMS error comparison of di�erent registration techniques (a) Wave with

noise (b)Angel (c) Potatohead
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techniques show bad registration results. Both of them diverge or do not properly
register the multi-view images. In contrast, our CPP technique shows better results.

The table 8.3 shows registration error and processing time for this experiment. In this

multi-registration, ICP (with kd-tree) technique takes more time, because it needs

to re�ne kd-trees of all surfaces (except the reference surface) for every iteration.

As a result, this table shows that our CPP technique has advantages over ICP and

Point-to-projection techniques for registration of multiple range images.

Table 8.3: Multi-view registration error and processing time after 50 iterations.

(Nc = 5; Dc = 0:1 mm)

Method Point-Projection ICP with kd-tree Proposed

Average ds (mm) 3.45 1.88 0.74

Time (sec) 10.05 47.29 16.04

Time/Itr (sec) 0.201 0.946 0.321

8.5 Conclusions

We address a registration re�nement problem and present an accurate and fast
Point-to-(Tangent) Plane registration technique. In order to �nd an intersection point

on a destination surface, we project a source control point to the destination surface,

re-project the projection point to the normal vector of the source point. We show that

iterative projections of the projected destination point to the normal vector converge
to the intersection point. By assuming the destination surface to be a monotonic
function in a new 2D coordinate system, we show contraction mapping properties

of our Contractive Projection Point technique. In an alternative technique, �nding
convergence point could be implemented by another method such as the Newton-

Raphson method. Instead of projecting the destination control point to the vector

normal, the tangent vector at the destination point can be used to �nd the intersection

with the vector normal. Experimental results show that our approach is very accurate

and fast for both pair-wise registration and multi-view registration problems.
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Figure 8.8: Results of multi-view registration for 'Potatohead' object after 50 itera-

tions. (a) Point-to-projection (b) ICP with kd-tree (c) Proposed (CPP)



Chapter 9

Conclusions

9.1 Summary

In this dissertation, we have presented stereo vision systems and computer vision
techniques for complete and photo-realistic 3D model generation. A complete 3D

model of a real object is reconstructed by merging multiple range images and two
pose models of the object. Multiple range images of the object are obtained by either
SVIS-2 or SVIS-3 stereo vision system. The SVIS-2 vision system consists of a parallel

stereo camera and a motion control stage to acquire range images and to change the
view of the object. The SVIS-3 system consists of a vergence stereo camera and

a motion stage. The two vision systems are calibrated to facilitate registration of
multi-view range images into a common coordinate system. Multiple pairs of stereo

images are acquired from di�erent views of the object and recti�ed according to

the calibration results of the camera systems. Corresponding range images are then
obtained by a stereo vision technique.

In Chapter 4, we presented new computer vision techniques for registration and

integration of multiple range images. The techniques exploit the epipolar geometry

between di�erent view points. Correspondence between 3D points is established by
projecting overlapping contour segments from one view to another view and �nding

the closest point on the epipolar line. A surface-based integration technique merges

the contours slice by slice using linked lists which represent points and segments of the

contours of an object's cross-sections. The linked lists for di�erent views are merged
based on two closeness criteria to obtain closed contours representing complete cross-

sections of the object.

Another multi-view integration technique is presented in Chapter 5. Integra-

tion of range images is accomplished by estimating the iso-surface of an object in a
volumetric 3D space. In order to remove erroneous points outside the visual hull of

the object, shape-from-silhouettes technique is used. A grid of 3D voxels is classi�ed

into several sub-regions according to the signed-distances of a voxel to adjacent range

147



148

images. The iso-surface of the object is reconstructed by applying a novel averaging
technique based on the class of a voxel. Then the iso-surface representation of the

object is converted into a 3D mesh model by applying the Marching Cubes algorithm.

In order to avoid hidden surfaces that arise when only one pose of an object is

used, we introduce a novel technique of integrating two 3D models which are recon-

structed in two di�erent poses of the object. Two 3D models are reconstructed by

the proposed multi-view modeling technique by placing the object on a planar surface

in two di�erent poses. Pose between two 3D models is estimated by matching sta-

ble tangent plane (STB) with base tangent plane (BTP). Because the object always

stands on one of its stable tangent planes, we �nd a STP from the �rst model, which

matches the BTP of the second plane and vice versa to estimate the pose.

A pose integration technique is presented in Chapter 7. We introduce a novel
technique to integrate two partial 3D models of an object's two di�erent poses. The
voxel classi�cation technique employed in multi-view integration in Chapter 5 is also

employed to reconstruct a closed 3D model. Pose integration algorithm combines

the signed distance and the class of a voxel from each pose. Photorealistic texture

mapping of 3D models of several real objects are presented. We blend textures on
mesh triangles whose vertices project onto di�erent view points according to the
best-view criterion. Texture blending reduces blocking e�ect of brightness di�erence

between di�erent view points.

In the last chapter, we addressed a registration re�nement problem and presented

an accurate and fast Point-to-(Tangent) Plane registration technique. In order to �nd

control point sets fast and accurately, we project a source control point to the des-
tination surface, re-project the projection point to the normal vector of the source

point. We show that iterative projections of the projected destination point onto the

normal vector converge to an intersection control point. By assuming the destina-

tion surface to be a monotonic function in a new 2D coordinate system, we show
contraction mapping properties of our Contractive Projection Point technique.

9.2 Future Work

This research can be extended and improved further. Some possible topics are
listed below as future research work.

Range image acquisition

In this dissertation, a complete 3D model of an object is reconstructed by merging

multiple range images. Therefore, the accuracy of our 3D reconstruction directly

depends on the accuracy of the range images. We have employed stereo camera
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systems to obtain multiple range images. This means that there could be some
erroneous points on range images due to inherent stereo matching problems. We can

improve the performance of our 3D reconstruction by adapting new stereo matching

techniques, such as multi-baseline stereo or rotational stereo matching technique.

Image-based registration

Registration of multiple range images is a very important step of our 3D recon-

struction. Unless range images of an object are accurately registered to a common

coordinate system, a 3D model merged from the range images may experience geo-

metric distortion or photographic texture blocking on its surfaces. One approach that

can overcome this problem is employing an image-based registration technique. By
matching features on texture images between di�erent views of an object, the range

images can be aligned so that their photometric structures between the di�erent views

are consistent.

Real-time 3D reconstruction

Real-time 3D reconstruction of real-world objects is another extension of this
research. The computational complexity of reconstructing a 3D model of a real object
is heavy. Using our techniques, for example, we can reconstruct a 3D model of

a simple object in a few of minutes. However, because the computation cost is

becoming cheaper, we may reconstruct it in a few seconds using high-speed techniques

or graphic accelerators. The major problems for real-time reconstruction are real-
time range image acquisition, real-time registration of multiple range images, and
real-time integration and texture mapping. We have already shown in Chapter 8

that the proposed point-to-plane registration technique is very fast and accurate for
multi-view modeling. If we have a fast range image acquisition technique or system,
we may reconstruct the 3D model in a very short time.

Unstructured 3D reconstruction

This dissertation presents calibration techniques of stereo vision systems to fa-

cilitate registration of multiple range images. However, in case that a vision system

cannot be calibrated, we need another technique to register them without a priori
knowledge of calibration parameters. This is a pose estimation problem between

multi-view range images. We may suggest two approaches to solve the problem.
One is employing an image-based feature matching technique that could �nd fea-

ture correspondences between di�erent views. The other approach is employing a

geometry-based pose estimation technique. When a range sensor changes its viewing
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direction to an object, the object's pose, from the point of the sensor's view, is also
changed. If we estimate the object's pose between di�erent views, using geometric

features and constraints, we could solve the rigid transformation to register 3D model

of the object.
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