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An accurate and fast point-to-plane registration technique
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Abstract

This paper addresses a registration refinement problem and presents an accurate and fast point-to-(tangent) plane

technique. Point-to-plane approach is known to be very accurate for registration refinement of partial 3D surfaces.

However, the computation complexity for finding the intersection point on a destination surface from a source control

point is hindering the algorithm from real-time applications. We introduce a novel point-to-plane registration technique

by combining the high-speed advantage of point-to-projection technique. In order to find the intersection point fast and

accurately, we forward-project the source point to the destination surface and reproject the projection point to the

normal vector of the source point. We show that iterative projections of the projected destination point to the normal

vector converge to the intersection point. By assuming the destination surface to be a monotonic function in a new 2D

coordinate system, we show contraction mapping properties of our iterative projection technique. Experimental results

for several objects are presented for both pair-wise and multi-view registrations.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Registration refinement of multiple range im-
ages is an essential step in multi-view 3D model-

ing. When the range images are coarsely registered

by a priori knowledge of registration parameters,

registration refines the rigid transformation pa-

rameters to minimize alignment error between

overlapping range surfaces. There have been many
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investigations on the refinement problem (Camp-

bell and Flynn, 2001; Rusinkiewicz and Levoy,

2001). For a pair-wise registration, the registra-
tion problem can be considered to be an error

minimization of the rigid body transformation

between control point sets (Arun et al., 1987) on

the pair of surfaces. Control point sets are decided

by matching either geometric (Besl and McKay,

1992), photometric (Lensch et al., 2000; Weik,

1997), or geometric and photometric (Bernadini

et al., 2001; Johnson and Kang, 1997) structures
of the range surfaces. In this paper, we address a

registration problem in the first category, which

considers only geometric structure for control

point matching.
ed.
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Based on the method of control point matching,

three approaches can be considered in general.

Point-to-point, e.g. iterative closest point (ICP)

algorithm (Besl and McKay, 1992), point-to-(tan-

gent) plane (Chen and Medioni, 1992; Bergevin

et al., 1996), and point-to-projection (Blais and
Levine, 1995) techniques are well-known registra-

tion techniques. The ICP algorithm is one of the

common techniques for refinement of partial 3D

surfaces (or models) and many variant techniques

have been investigated. However, searching the

closest point in the ICP algorithm is a computa-

tionally expensive task. In order to accelerate the

speed of closest point searching, some searching
techniques are commonly employed, for example a

kd-tree searching, z-buffering, or a closest-point

caching (Nishino and Ikeuchi, 2002; Benjemaa and

Schmitt, 1999).

In contrast, point-to-projection approach finds

the correspondence of a source control point by

projecting the source point onto a destination

surface from the point of view of the destination
(Blais and Levine, 1995; Neugebauer, 1997). When

the source point is backward projected to the im-

age plane of the destination surface, the destina-

tion control point is the forward projection of the

image point. This approach makes registration

very fast, because it does not involve any searching

step to find the correspondence. However, one of

its disadvantages is that the result of registration
is not as accurate as those of the others (Rusin-

kiewicz and Levoy, 2001).

Among three approaches, point-to-(tangent)-

plane technique is known to be the most accurate

(Pulli, 1999; Rusinkiewicz and Levoy, 2001). From

a source control point, the matching control point

is the projection of the source point onto the

tangent plane at a destination surface point which
is the intersection of the normal vector of the

source point (Bergevin et al., 1996; Chen and

Medioni, 1992; Gagnon et al., 1994). However,

finding the intersection on the destination sur-

face is also computationally expensive. One of

the acceleration techniques is first searching the

closest point, and finding the intersecting surface

(or the triangle) from its neighboring triangles
(Rusinkiewicz and Levoy, 2001). Gagnon (Gagnon

et al., 1994) tries to find the intersection on a 2D
grid of range images along the projection of the

normal vector of the source point.

In this paper, we address the registration prob-

lem to refine a pair of range surfaces as well as

multi-view range surfaces. We propose an accurate

and fast point-to-plane registration technique. We
combine advantages of point-to-plane and point-

to-projection techniques for fast control point

searching. We employ the accuracy from the point-

to-plane technique and the speed from the point-

to-projection technique. In order to find the

intersecting control point, we project a source point

to the destination surface, re-project the projection

point to the normal vector of the source point. We
show that iterative normal projections converge to

the intersection point. By assuming the destination

surface as a monotonic function in a new 2D co-

ordinate system, we show a contraction mapping

property of our registration technique (Naylor and

Sell, 1982). Therefore, we call our technique as

contractive projection point (CPP) algorithm. Ex-

perimental results for several 3D models are pre-
sented for many pair registrations as well as a

multi-view registration.
2. Description of registration techniques

In this section, we briefly describe the basic

principle of three registration refinement tech-
niques. Suppose there is a control point set P on a

source surfaceSP , and another control point set Q
on a destination surface SQ. If we have K control

points on each surface and k ¼ 0; . . . ;K � 1, then

the registration problem is estimating a rigid body

transformation T ¼ ½Rjt� which minimizes an

alignment error measure � such that

� ¼
XK

k¼1

kQk � ðRPk þ tÞk2: ð1Þ

In general, source control point set P is selected

by sampling the source surface-randomly or uni-

formly, and filtered by some constraints to delete

unreliable control points. The destination control

point set Q is the conjugate of the source point set,
which is determined by a matching criterion.

Point-to-point technique (or ICP technique) is

the most common technique. From a source con-
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trol point p on the source surface, the ICP algo-

rithm searches the closest point q on the destina-

tion surface. Fig. 1(a) shows a basic diagram of the

ICP algorithm. An error metric ds is the distance

between two control points. In order to search the

closest point, a searching technique, e.g. kd-tree,
is commonly used. However, when a multi-view

registration concerned, we need to rebuild kd-trees

of the multiple surfaces at every iteration of regis-

tration.

Point-to-plane registration is another common

technique. It searches the intersection on the des-

tination surface from the normal vector of the

source point. As shown in the Fig. 1(b), the des-
tination control point q0 is the projection of p onto

the tangent plane at q which is the intersection

from the normal of p. One of the previous inves-

tigations is done by Chen and Medioni (Chen and

Medioni, 1992). To find control points, they use

a root searching technique similar to Newton–

Raphson technique in an orthographic coordinate

system. Bergevin et al. (1996) also use a similar
technique with that of Chen and Medioni. They

employ an image-based control point searching

technique to reduce searching time.

Point-to-projection approach is known to be a

fast registration technique. As shown in the Fig.

1(c), this approach determines a point q which is

the conjugate of a source point p, by forward-

projecting p from the point of view of the desti-
nation OQ. In order to determine the projection

point, p is first backward-projected to a 2D point

pQ on the range image plane of the destination

surface, and then pQ is forward-projected to the

destination surface to get q. This algorithm is very

fast because it does not include any searching step

to find the correspondence. However, one of its
p
q ds

p
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q' p

q
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O
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O
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Fig. 1. Three common registration techniques: (a) point-to-

point, (b) point-to-plane, (c) point-to-projection.
disadvantages is that the result of registration is

not as accurate as those of the others (Rusin-

kiewicz and Levoy, 2001).
3. Contractive projection point (CPP) technique

3.1. Combining point-to-plane and point-to-projec-

tion techniques

In this section, we propose a novel point-to-

plane registration technique by combining the fast

searching property of the point-to-projection tech-

nique. Suppose there are two partial surfaces SP

and SQ as shown in Fig. 2. They are assumed to

be acquired from two different views P and Q of

an object and coarsely registered to a common

(world) coordinate system through transformation

matrices TP and TQ, respectively. Let us also

suppose there is a source control point p0 on SP .

Then the problem in the point-to-plane registration

is finding the intersection point qs on SQ as shown
in the figure. The point qs is an intersection on SQ

by the normal vector p̂p of p0.
One of the typical methods of searching the

intersection is first finding a triangle (when the

surface consists of triangles) which is intersected

by p̂p. Then the intersection point qs can be inter-

polated by three vertices on the triangle. However,

this is a computationally expensive task and it may
take several minutes to find all conjugates of
p0

pq

IQ

VQ

SQ

SP

p1

Tangent plane

Fig. 2. Finding the intersecting point qs from p0 by the pro-

posed algorithm.
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hundreds of control points. On the contrary, the

point-to-projection technique can find a matching

destination point from a source point within a

millisecond on a typical personal computer, be-

cause it directly employs the parametric surface of

the destination range image.
We consider a new point-to-plane registration

technique by employing advantages from both

techniques. The main idea is using iterative point-

to-projections to determine the intersection on the

destination surface. Let us back-project p0 in Fig. 2

to a 2D image point

pq ¼ MQT
�1
Q p0; ð2Þ

where MQ is the perspective projection matrix of
view Q to the image plane IQ, and TQ is the

transformation matrix from the camera coordinate

system of view Q to the world coordinate system.

Then let us forward-project pq to a new 3D point

qp0. Forward-projection qp0 is the range of the

parametric surface at the destination image point

pq. The point qp0 is computed by interpolating a

grid of destination image plane and transformed
back to the world coordinate system. Now let us

consider another projection of qp0 to the normal

vector p̂p at p0. Then we obtain a new 3D point p1,
such that

a ¼ ðqp0 � p0Þ � p̂p;
p1 ¼ p0 þ ap̂p:

ð3Þ

If we iterate the same projections above using the

new control point p1, then we get the next source

point p2, and so on. If there is an intersection on

SQ by p̂p, then a point qpi (or pi) for the ith pro-

jection will converge to qs when i goes to infinity,

such that

lim
i!1

kpi � qpik ! 0: ð4Þ

However in real situation, only small number of
projections can make a convergence measure

�c ¼ kpi � qpik ð5Þ

become close to zero. If we find all convergence

points fqsg for all corresponding source fp0g, we
can find all projection points fq0sg on tangent

planes at fqsg and use them as control point sets in

the point-to-plane registration.
3.2. Contraction mapping property of CPP

In order to show the validity of the proposed

algorithm, we show contraction mapping proper-

ties of the algorithm. When a source control point
converges to an intersection, the proposed tech-

nique shows contraction mapping properties such

that the convergence measure �c becomes close to

zero after a couple of normal projections. The

definition of the contraction mapping is as follows.

Definition 3.1. Let ðX ; dÞ be a metric space and

f : X ! X . We say a contraction mapping, if there
is a real number k; 06 k < 1, such that

dðf ðxÞ; f ðyÞÞ6 kdðx; yÞ
for all x and y in X .

Let us consider a 2D coordinate system as

shown in Fig. 3. When there are two different view
points P and Q, the new axes consist of the viewing

vector V̂VQ of Q and the normal vector p̂p of the

source control point p0. And the point p0 becomes

the origin of the coordinate system. Now the sur-

face SQ becomes a contour on the 2D plane,

which is the intersection of the surface with the 2D

plane. As shown in the figure, the proposed algo-

rithm projects pi to a new point piþ1, iteratively
until the convergence measure in Eq. (5) becomes

very small.

Practically speaking, distance from p0 to the

contour is very small, because two surfaces are

assumed to be registered coarsely at the beginning.

Therefore we can consider that all forward-pro-

jecting lines from the view origin of Q to all control

point pi are almost parallel. Then the following
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theorem shows contraction mapping properties of

the proposed algorithm.

Theorem 3.1

(1) A surface SQ is a monotonic function with re-
spect to v̂vQ.

(2) A vector product v̂vQ � p̂p0 < 0, because we only
consider a source point which is seen from the
view Q. Therefore there is always a projection
of qpi to p̂p0.

(3) If there is an intersection qs, a function
f : pi ! piþ1 (or qpi ! qpiþ1

) is a contraction
mapping when kpiþ1; piþ2k < kkpi; piþ1k, where
06 k < 1.

(4) Then, there is a 3D point qs on the surface such
that f ðqsÞ ¼ qs.

3.3. Convergence condition

In the ideal situation, the CPP algorithm always

converges to a convergence point. However, in a

real situation, it may diverge or enter to a non-
convergence cycle. Therefore we need to find out

the convergence condition according to the con-

traction coefficient k. Three possible cases are

shown in the Fig. 4. In the Fig. 4(a), a source

control point is converging and the coefficient is

06 k < 1. In this case, we can use the convergence

point as a matching control point of its conjugate.

However, as shown in the Fig. 4(b), the control
point could diverge if the coefficient is k > 1. This

could happen when the tangent normal at a point

on the surface SQ has a high angle with respect to

V̂VQ. However, we reduce the effect of diverging

control points by discarding a destination point if

the convergence measure �c is greater than an ini-
p

V

SQ

S

(a) (

Fig. 4. Three cases of projection: (a) convergence (06 k <
tial measure kqp0 � p0k. The last case is when the

mapping enters into a non-convergence cycle and

k ¼ 0, as shown in the Fig. 4(c). This case could

happen when a segment of the destination curve is

overlapping with the projection line from qpi to

piþ1. We also remove this kind of points by
checking the error measure for 3 or 4 iterations. If

a measured value repeats for 3 or 4 iterations, we

consider the mapping enters a non-convergence

cycle and quit the mapping.
3.4. CPP algorithm

The proposed CPP algorithm can be easily im-
plemented by a recursive searching program. The

following function is a pseudo code of part of the

algorithm. The function searches a 3D point qp1,
the intersection of a control point p1 on the des-

tination surface Dest. Nc is the maximum normal

projections and Dc is threshold for the convergence

error �c.

Vec3d Recursive ProjectionðVec3d&p1;Vec3d&p̂p;
Vec3d&qp1;Mesh �Dest;int cntÞ

{ if (cnt > Nc) return p1;
pq ¼ Mqp1;
flag ¼ OnObjectðpq; p1;Dest; qp1Þ;
if (! flag) return NULL;
a ¼ ðqp1 � p1Þ � p̂p;
p2 ¼ p1 þ ap̂p;
�0c ¼ kp2 � qp1k;
if (�0c < Dc) return p2;
return Recursive Projectionðp2; p̂p; qp1;
Dest; cnt þ 1Þ;

}

p

V

Q

p

V

SQ

b) (c)

1), (b) divergence (k > 1), (c) infinity loop (k ¼ 1).



Table 1

Test objects

Objects Wave Angel Potatohead

Number of points

(view 0)

22 500 14 089 13 827

Number of triangles

(view 0)

44 402 27 213 27 144
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After finding all matching control points, we use

two control point sets fp0g and fq0sg for estimat-

ing a rigid transformation T between two sur-

faces. The transformation is computed by a SVD

(Singular Value Decomposition) technique itera-
tively until two surfaces converge (Arun et al.,

1987).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

C
on

ve
rg

en
ce

 e
rr

or
 |P

_i
-Q

_i
| (

m
m

)

Iterations

1 projection
2 projections
5 projections

10 projections
20 projections

Fig. 6. Comparison of convergence error with respect to dif-
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4. Experimental results

4.1. Test objects

We test our algorithm for three objects. The test

objects are shown in the Fig. 5. The wave object is
a pair of synthetic 3D sinusoidal surfaces. Two

surfaces have 10 degree of phase difference in the

XY range image plane and 10 mm of translation

along the Z axis. Their height is 50 mm and we add

random noise to every image point with maximum

12% of the height. The second object angel is a pair
of range images obtained from a laser range finder.

This object is one of the models from the Ohio

State University�s Range Image Database. The

two images has 20� of rotation angle. For the third

object potatohead in Fig. 5(c), we test both pair-

wise and multi-view registration. We obtain eight

range images of the object. Range images of the

object have some erroneous points on their sur-
faces. The number of points and triangles on the

test objects are shown in the Table 1. They are the

number of points and triangles on the surface of

the first view, but the numbers of the others are

also similar.
Fig. 5. Point clouds models of test objects: (a) wave, (b) angel,

(c) potatohead.
4.2. Registration error with respect to projection

numbers

In order to decide an appropriate number of

normal projections––from qpi to piþ1, we apply the

CPP technique to a noiseless wave object to plot

convergence error �c with respect to different

numbers of projections. In Fig. 6, the convergence
error is plotted for 50 iterations of registration. At

each iteration, RMS errors of all control points are

plotted, for which we use about 300 pairs. As

shown in the figure, the convergence error de-

creases if the number of projections increases.

However, its decrease rate is saturated after 5 or 6

projections. Therefore, we use 5 normal projec-

tions for all following experiments.

4.3. Pair-wise registration

We compare our algorithm with the point-to-
projection and the ICP algorithm. We also use a

kd-tree searching technique for ICP. We test all

three techniques in the same registration condition

on a Pentium III 1 GHz personal computer. As far
as the wave object is concerned, we know the real

conjugate points between two range surfaces.
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Therefore, we measure RMS distance error be-

tween two ground truth point sets. For the other

objects, we measure ds distance shown in the Fig.

1. However, the distance error in each approach

cannot be compared directly because they use

different error metric. To fairly compare them, we

normalize each error by using its initial error.
Because the initial condition of all approaches is
Table 2

Registration error and processing time after 50 iterations (Nc ¼ 5, Dc

Method Point-projecti

Wave with Ground truth (mm) –

5% noise Time/Itr (ms) –

Wave with Ground truth (mm) –

10% noise Time/Itr (ms) –

Angel ds (mm) 0.73

Time/Itr (ms) 30.8

Potatohead ds (mm) 0.63

Time/Itr (ms) 26.4
the same each other, we normalize the RMS errors

to watch the decrease rate of them.

Registration results of CPP and ICP for wave
object are plotted in Fig. 7. We plot the results for
50 iterations, and for different noise rate on the

object�s surface. Two algorithms converge well

with low noise rate, however the ICP algorithm

fails to converge when noise rate is more than 9%.

The results of the other objects are shown in the

Fig. 8. Fig. 8(a) shows the results for the object
¼ 0:1 mm, and ds is normalized)

on ICP with kd-tree Proposed CPP

0.63 0.63

42.8 43.8

6.86 2.25

44.0 42.8

0.34 0.27

37.4 36.2

0.63 0.47

30.6 30.8
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angel. The point-to-projection result shows a bad

registration result. The proposed technique shows

better convergence rate than other techniques. Fig.

8(b) is the results for potatohead. This result only
shows the registration of the first pair of images.

In this figure, we also plot the result of original
point-to-plane technique, which use a brute force

searching to find matching control points. The

result of the proposed technique is almost the same

as that of the original technique.

Table 2 shows the results of registration error

and processing time after 50 iterations. As shown

in the previous figure, our CPP technique has the

smallest registration error. As far as the compu-
tation time is concerned, the point-to-projection

technique is faster than the other approaches as we

expected. The proposed technique and the point-

to-point technique show similar results but they

depend on types of objects. This is because we

need some computations for searching intersection

points as shown in the CPP pseudo code.

4.4. Number of convergence

As described in an earlier section, we have three

types of convergence––Convergence, Divergence,

and Infinity loop––in searching of intersections.

After some experiments, we find that CPP search-

ing converges well in most cases to intersections

on destination surface. However, sometimes it di-
verges or enters to an infinity loop. Even though

we have some number of non-convergence points,

we discard them and use only convergent control

points for deriving transformation matrix. The

numbers of converging and non-converging points

are different for every iteration. However, Table 3

shows average numbers of them for 50 iterations

on each object.
Table 3

Average number of convergence and non-convergence control

points

Object Convergence Divergence Infinity

loop

Wave (5% noise) 92.5 6.2 1.3

Angel 220.5 52.7 2.6

Potatohead 202.1 32.9 3.2
4.5. Multi-view registration

Multi-view registration is a more difficult

problem than a pair-wise registration, because

registration error should be evenly distributed on
all overlapping surfaces. We regard the first view
0
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Fig. 9. Results of multi-view registration for potatohead after

30 iterations. (a) Point-to-projection, (b) ICP with kd-tree, (c)

proposed (CPP).



Table 4

Multi-view registration error and processing time after 50 iter-

ations. (Nc ¼ 5, Dc ¼ 0:1 mm)

Method Point-projection ICP with

kd-tree

Proposed

RMS error

ds (mm)

3.45 1.88 0.74

Time (s) 9.61 46.57 12.63

Time/Itr (s) 0.192 0.931 0.253
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of the potatohead object as a reference view and

register all the other views to the reference view. In

order to find the matching control points from a

source view, we search on its neighboring view�s
surfaces. For example, if the ith view is concerned,

we search the matching control points on its

neighborhoods, ðiþ 1Þth view and ði� 1Þth view.

After finding all matching points for every view
point, except the first view, we compute rigid

transformations and refine all surfaces simulta-

neously.

We test a multi-view registration for the 8 views

of the potatohead object. Fig. 9 plots their results.

In this figure we do not normalize the error, be-

cause the results are obvious to compare. Both the

point-to-projection and the ICP techniques show
bad registration results. Both of them fail to reg-

ister the multi-view images. In contrast, the CPP

algorithm register all range images well. Table 4

shows registration error and processing time for

this experiment. The ICP with kd-tree technique

take more time, because it needs to refine kd-trees

of all surface (except the reference view) for every

iteration. Table 4 shows that our CPP technique
has advantages over ICP and point-to-projec-
tion techniques for registration of multiple range

images.
5. Conclusions

We address a registration refinement problem
and present an accurate and fast point-to-(tan-
gent)plane registration technique. In order to find

an intersection point on a destination surface, we

project a source control point to the destination

surface, re-project the projection point to the

normal vector of the source point. We show that
iterative projections of the projected destination

point to the normal vector converge to the inter-

section point. By assuming the destination surface

to be a monotonic function in a new 2D coordi-

nate system, we show contraction mapping prop-

erties of our contractive projection point technique.
In an alternative technique, finding convergence

point could be implemented by another method

such as the Newton–Raphson method. Instead of

projecting the destination control to the vector

normal, the tangent vector at the destination point

can be used to find the intersection with the vector

normal. Experimental results show that our ap-

proach is very accurate and fast for both pair-wise
registration and multi-view registration problems.
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