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Abstract

This paper presents a range image refinement technique
for generating accurate 3D computer models of real ob-
jects. Range images obtained from a stereo-vision system
typically experience geometric distortions on reconstructed
3D surfaces due to the inherent stereo matching problems
such as occlusions or mismatchings. This paper introduces
a range image refinement technique to correct such erro-
neous ranges by employing epipolar geometry of a multi-
view modeling system and the visual hull of an object. After
registering multiple range images into a common coordi-
nate system, we first determine if a 3D point in a range im-
age is erroneous, by measuring registration of the point with
its correspondences in other range images. The correspon-
dences are determined on 3D contours which are inverse-
projections of epipolar lines in other 2D silhouette images.
Then the range of the point is refined onto the object’s sur-
face, if it is erroneous. We employ two techniques to search
the correspondences fast. In case that there is no corre-
spondence for an erroneous point, we refine the point onto
the visual hull of the object. We show that refined range im-
ages yield better geometric structures in reconstructed 3D
models.

1. Introduction

Generating 3D computer models of real objects is of
much interest in Computer Vision and Computer Graphics.
One of the recent research interests is generating a com-
plete and closed 3D model by merging multiple images of
an object. One common technique is employing a single or
multiple ranging sensors to acquire and merge multi-view
range images [1, 4]. There is a variety of ranging techniques
to obtain range images of a scene of interest. In order to
generate accurate 3D models, most investigations employ
active ranging techniques such as laser ranging, structured

light pattern, space-time coded pattern, etc.
In contrast, passive techniques work only on naturally

formed images produced by reflected light from the ob-
ject. A common technique is Stereo Image Analysis (SIA).
However, due to inherent stereo problems, relatively fewer
number of researchers have employed stereoscopic imaging
sensors to generate complete 3D models [3, 5, 14]. Range
images obtained from a stereo ranging sensor typically ex-
perience erroneous points on reconstructed 3D partial sur-
faces. In order to obtain accurate range images using SIA,
some researchers project random dot patterns onto object’s
surfaces to enhance contrast on them [9]. Others employ
multi-baseline or multi-resolution [14] technique to reduce
the number of stereo mismatchings. Even using these tech-
niques, obtaining accurate range images is still difficult in
some portions of the object’s surfaces.

One simple approach of removing erroneous points is
employing a linear low-pass filter or a non-linear filter
[4, 5, 12]. However, it is not easy for these approaches to re-
move some erroneous regions where the errors are dominant
within a filtering mask. Another simple approach is obtain-
ing a large number of range images to average out the errors
[4, 10, 13]. However, acquiring multiple range images using
SIA is a computationally expensive task. Another approach
is employing a range image registration technique, such as
Iterative Closest Point (ICP), to reduce noises in range im-
ages [11]. Some researchers try to remove these errors using
the visual hull of the object [7, 8]. However, this technique
can remove only those outside the visual hull but not inside.

In this paper, we present a range image refinement tech-
nique to reconstruct accurate 3D models of real objects. Af-
ter registration of multi-view range images, we first deter-
mine if a 3D point in a range image is erroneous, by mea-
suring the registration of the point with its conjugates in
other range images. The conjugate points are searched on
3D contours which are inverse-projections of epipolar lines
in other 2D silhouette images. When the 3D point is decided
as erroneous or it is outside the visual hull of the object, we
refine the range of the point to the mean of the conjugates or



onto the surface of the visual hull. In order to make search-
ing and refinement fast, we employ two techniques, point-
to-projection search and ordering constraint. Experimental
results on a ground truth object and real objects show that
3D models from refined range images yield better geomet-
ric structures.

2. Range Error due to Stereo Mismatching

Range images obtained by a stereo camera could experi-
ence some erroneous points on their surfaces due to stereo
mismatching. An example of erroneous range surface is
shown in Figure 1. Figure 1(a) shows a picture of an ob-
ject and Figure 1(b) shows a reconstructed mesh model of
the front partial surface of the object, which is seen from
the top. As in the figure, stereo mismatching errors appear
as sharp peaks on the partial shape.

(a)

Shape distortions due to
stereo matching errors

Camera coordinate system
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(b)

Figure 1. An example of stereo mismatching
(a) An object (b) A partial shape of the object
shows some erroneous surfaces

When we compute the depth of a 3D point P, which
maps to an image point p, the 3D point is on the ray of p.
Suppose an object is placed considerably far from the cam-
era, then the ray is almost parallel to the Zc axis (viewing
direction) of a camera coordinate system. Therefore, we
can estimate that the coordinates of mismatching errors, be-
tween a correct points set {P} and an erroneous points set
{P′}, distribute mostly on the Zc axis. An example of error
distribution between two partial surfaces in Figure 2(a) is
plotted in Figure 2(b). In Figure 2(a), the top range image
has some errors, and the bottom one has negligible errors
in contrast. As shown in Figure 2(b), most errors are dis-
tributed along the Zc axis, which coincides with the viewing
vector of the range image.

(a) (b)

Figure 2. Error distribution in 3D space. (a)
Top: A range image with erroneous surfaces.
Bottom: The same image without error. (b)
Most errors are distributed along the Zc axis
of the camera coordinate system

3. Refinement Methodology

3.1. Erroneous 3D points

As presented in the previous section, stereo mismatch-
ing errors in a range image occur mostly on such object’s
surfaces whose normal vectors are in a high angle with re-
spect to the viewing direction of the image. However, they
may be seen better from another viewing direction because
the object is scanned from multiple directions. Therefore, it
is possible to refine an erroneous 3D point, if we know its
correspondences on other view’s range images.

Suppose there is a 3D point P on an object’s surface and
two different views Vi and Vj can see the point. Then we
can write two representations of the point as Pi

i and Pi
j in

the corresponding range images Ri and Rj , based on the
view point of Vi. When the two points are registered to a
common coordinate system, their coordinates should coin-
cide in an ideal case. However, in a real case, they may not
coincide because of systematic or calibration error of the
vision system.

If the two points do not coincide in 3D space, a prob-
lem arises that how we can determine the correspondences
between multiple range images. We assume that all corre-
spondences occur on the ray of a 3D point. Considering R i

as a reference range image and Pi
i as a reference point, we

find all intersections in the other range images on the ray of
the reference point.

Suppose there are two range images Ri andRj as shown



in Figure 3(a) and they are registered to a common view V i.
Assuming registration of the range images is very accurate,
we know that Pi

i is very close to another point Pi
j , which

is on the line of sight of the point Pi
i from Vi. If the origin

of the view Vi is Oi, the correspondence of Pi
i on Rj is on

the ray L = αPi
i, α ∈ R. Therefore, we write

Pi
j = Rj ∩ L (1)

and Pi
j × L = 0. (2)

Therefore, the two matching points Pi
i and Pi

j in Figure
3(a) are very close and there is only a small registration er-
ror ε between them such that

ε = ‖Pi
i − Pi

j‖ ≈ 0. (3)

Let us consider another 3D point P ′i
i as shown in Figure

3(b). This point is considered as an erroneous point in the
range image Ri due to stereo mismatching, while its con-
jugate Pi

j on the Rj is a correct surface point. Then there
should be significant registration error between two points
as in the figure, which is larger than a threshold dT such that

ε = ‖P′i
i − Pi

j‖ > dT . (4)
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Figure 3. A typical error on a partial shape
due to stereo mismatching. (a) Two matching
3D points are very close (b) P′i

i is far from Pi
j

If multiple range images are intersected by the ray L,
it is possible to determine several correspondences in the
range images. Suppose there are K range images Rj for
j = 0, · · · ,K − 1, which are intersected by L. Then we
determine if the point Pi

i is

erroneous

{
true, if ‖Pi

i − Pi
k‖ > dT , ∀k, 0 ≤ k ≤ K − 1

false, if ‖Pi
i − Pi

k‖ < dT , ∃k, 0 ≤ k ≤ K − 1 .

(5)

In addition to the error measure, we also use the visual
hull of an object to decide if a 3D point is erroneous. When
the 3D point is outside the visual hull of the object, we con-
sider it is erroneous. This technique is the same as what
the shape-from-silhouettes technique does. In summary, let
V H(O) be the visual hull of an objectO, then the 3D point
Pi

i is also

erroneous

{
true, if Pi

i /∈ V H(O)
not determined, if Pi

i ∈ V H(O) . (6)

We first check if the point is outside the visual hull. If the
point is outside, we consider it is erroneous and refine it. In
case that the point is inside the visual hull, we use Equation
(5) to check if it is erroneous.

3.2. Correspondence on Epipolar Contour

In order to refine a reference 3D point in a reference
range image, we search all its correspondences in the other
range images. Suppose again there is a reference 3D point
Pi (or Pi

i) on Ri as shown in Figure 4. The perspective
projection of the 3D point to the image plane of V i is a 2D
image point pi. Let us consider a problem to find the corre-
spondences of Pi in other range images, Rj and Rk in this
example. We employ the epipolar geometry of our system.
If we know the fundamental matrix between V i and Vj , we
can restrict searching of intersections on the epipolar line
uj which is

uj = Fijpi, (7)

where Fij is the fundamental matrix between Vi and Vj .
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Figure 4. Epipolar geometry of a multi-view
system

On the image plane Ij in the figure, the epipolar line uj

overlaps with a silhouette of the object, which is a binary



representation of the perspective projection of the object to
Vj . On the object’s silhouette, we determine a starting point
pj,s and an ending point pj,e on the epipolar line. From the
starting point to the ending point, we then inverse project all
2D image points on the epipolar line uj to corresponding
3D points from Pj,s to Pj,e on the surface of Rj . All the
3D points on the surface then form a 3D contour {U j}

Along the 3D contour {Uj}, we search all intersections
by the ray L, which satisfy Equation (1) and (2). Then from
these candidates we pick one of them as Pj,c, the correspon-
dence of the point Pi. The intersection point Pj,c satisfies
following equations.

{Uj} = {P|P ∈ Ti
jM

−1
j {pj,spj,e}} (8)

Pj,c × Pi = 0 and Pj,c ∈ {Uj}. (9)

, where Mj is the perspective transform matrix of the jth
view, and Ti

j is the transformation of coordinate system
from the jth view to the ith view. Because there could be
several intersections on the 3D contour by the ray, we find
all of them by checking signs of cross products of the vector
of L and other vectors to points on {Uj}. More details are
in the next section.

4. Range Image Refinement

4.1. Correspondence Search

In order to search all intersections on the 3D contour
Pj,sPj,e, we first find all zero crossings of the cross prod-
uct Pj ×Pi, where Pj ∈ Pj,sPj,e. Because the Ys axis of
the turntable’s coordinate system is almost parallel to the Yc

axis of the camera coordinate system, we check sign of the
Y component of the product to search zero crossings. If the
sign changes, we consider there happens a zero crossing.

Figure 5 shows an example of zero crossings on a 3D
contour. Of course there could be multiple (N c) intersec-
tions on the contour, for example in the figure from P j,c,0 to
Pj,c,Nc−1. However, from the point of ith view point, only
one intersection is visible, which is the closest to Pi. In this
figure therefore, we take Pj,c,0 as the correspondence Pj,c

on jth view’s contour {Uj}. To avoid false correspondence,
we test and remove some intersections

• whose normal vectors are in a high angle with respect
to their original view points,

• which are hidden from the reference view point,

• or which are outside the visual hull of the object.

L Pi

Uj

Pj,e

Pj,s

Pj,c,0

Pj,c,1

Pj,c,2

Pj,c,Nc-1

Oi Oj

Pj,h

Figure 5. Intersections on a 3D contour by a
reference vector

4.2. Fast Searching Technique

In this section, we consider computation time of inter-
section searching and introduce fast searching techniques.
Suppose there are Q points on a 3D contour and compu-
tation for intersection searching takes O(Q) operations. If
there are K overlapping ranges from a reference point, we
need to search intersections on K contours, thus O(KQ)
computations. In order to refine a range image, whose ob-
ject area is equivalent to MX × MY image size, then we
need to compute O(KQMXMY ) operations. To refine all
N range images, we finally needO(NKQMXMY ) opera-
tions. These computations are computationally very expen-
sive. In a typical Pentium-4 1.8GHz computer, it takes more
than 30 minutes to refine 16 range images with 320 × 240
resolution. In order to make the computation time fast, we
employ two techniques based on point-to-projection range
searching and ordering constraint.

4.2.1 Point-to-Projection Searching

Instead of searching intersections on a 3D contour, we use
a point-to-projection technique to solve the correspondence
problem as shown in Figure 6. To find the jthe view’s cor-
respondence from a reference point P i, we project it to the
image plane of Vj to a 2D point pj

i , inversely project the 2D
point to jth range image Rj to get Pi

j . In other words,

Pi
j = Ti

jRj(MjT
j
iPi), (10)

where Rj(p) is the jth view’s range of a 2D point p.
By searching all inverse-projection points Pi

k, k =
0 · · ·K − 1 in other range images, we use Equation (5) to
determine if the reference point is erroneous or not. Inverse-
projection is not exactly an intersection point by the ray.
However, if two range surfaces are very closely registered,
we can approximate the point as an intersection. Once the
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Figure 6. Point-to-Projection searching

reference point is determined as erroneous, we then find the
real intersections on the ray of L using the technique pre-
sented in Section 3.2. Using this searching technique, we
refine all range images in about 5 or 10 minutes depending
on objects.

4.2.2 Ordering Constraint

The next fast searching technique is using ordering con-
straint in a pair of multi-view images. Once a reference
point Pi

i is determined as erroneous, we find its conjugates
on a 3D contour {Uj} , which is the inverse projection of a
2D segment on uj . In Section 3.2, we search the conjugates
along uj starting from pj,s to pj,e. However, instead of all
points on the epipolar line we use the ordering constraint
between a pair of multi-view images. Let us consider an ex-
ample in Figure 7. As in the figure, suppose a 2D reference
pixel pi(xi, yi) on Ii matches with its conjugate pj(xj , yj)
on Ij , where (xi, yi) and (xj , yj) are their coordinates on Ii

and Ij respectively. In other words, their 3D conjugates P i
i

and Pi
j match each other.

Now consider another reference point p i(xi + 1, yi) on
Ii, which is the next pixel of pi(xi, yi). Then we know
that its matching pixel on Ij is always on the right-side
of pj(xj , yj) according to the ordering constraint. There-
fore we search an intersection of the ray L on a 3D con-
tour along {Uj}, which is the inverse projection of a line
segment p′

j,sp
′
j,e rather than pj,spj,e. Based on the con-

straint, the x coordinate of the starting point could be the
same with that of pj(xj , yj), that is xj . However, in order
to find a zero crossing on the contour, we give a margin in
the left direction. As a result, we set the range of intersec-
tion searching along the x axis from xj −δ− to xj +δ+. By
assuming there is no sudden depth change on the object’s
surface, we set δ− to 2 and δ+ to 10 pixels.

4.3. Refinement onto Visual Hull

Some erroneous range points are outside the visual hull
(VH(O)) of an object. If a 3D point is outside of V H(O),
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Figure 7. Reducing search range using order-
ing constraint

we have to refine it to a correct 3D point on the object’s sur-
face. If there are enough matching points in other range im-
ages, we can refine it using the presented techniques. How-
ever, a problem arises if there is not enough or no matching
point. In this case, we decide to refine it onto the visual hull
of the object.

As shown in Figure 5, a visual hull point Pj,h can be
found by the intersection of two rays, L and P j,sOj . In-
tersection of two non-intersecting rays can be solved using
a simple linear equation. Because there are multiple views,
we acquire multiple visual hull points Pk,h, 0 ≤ k ≤ K−1.
Then the problem is now deciding which one is on V H(O)
of the object. Let us consider an example in Figure 8. On
the ray L from a view origin Oi, we acquire multiple visual
hull points from P0,h to P3,h. To determine which one is
on V H(O), we simply project every point to image planes
of all multiple views and check if it is on V H(O). In this
figure, P3,h is on the visual hull. Then we move Pi to P3,h.

On a line segment pj,spj,e on an epipolar line uj in Fig-
ure 4, we get two visual hull points using two rays Pj,sOj

and Pj,eOj . However, we take only one of them from
Pj,sOj , because the point Pi can see only the starting point
Pj,s. After acquiring all visual hull points fromK overlap-
ping views, we sort them according to distance from the
reference point and check if they are inside V H(O).

4.4. Refinement Steps

Range image refinement steps are as follows. For every
3D point in a range image, we first determine if it is erro-
neous or not using two methods. One is to determine if it is
outside of the visual hull and the other is to determine if it is
erroneous using the point-to-projection searching technique
presented in Section 4.2.1. If the point is erroneous, we
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search all intersections on surfaces of other range images.
If there are at least two intersections Pj,c, 0 ≤ j < K − 1,
we change the coordinates of the point to the mean Pm of
the all intersections if σ2

p < σ
2
T . Here Pm and σ2

p are mean
and variance of the points

∑
j Pi

j,c and σ2
T is a threshold for

the variance.
When there are not enough intersections or σ 2

p > σ2
T ,

but if the reference point is outside visual hull, we change
the coordinates of Pi to Pj,h as presented in Section 4.3.
In this case Pj,h should be also inside the visual hull of the
object.

5. Experimental Results

5.1. Range Image Acquisition

To generate multi-view range images, we use a stereo-
based range image acquisition system, which consists of a
stereo camera, a turntable stage, and a personal computer. A
range image is obtained from a pair of stereo images. In or-
der to find correspondence in the image pair, we use a multi-
resolution stereo matching technique [2, 8]. The stereo
pair is resampled to form a Gaussian image pyramid and a
simple SSD-based (Sum of Squared Difference) correlation
technique is performed at each pyramid level. Multi-view
range images are obtained by rotating the turntable with a
fixed rotation angle according to number of views. We ac-
quire range images of an object from 8 or 16 (N = 8, 16)
different view directions. We use a Pentium-4 1.8GHz per-
sonal computer for our vision system. A range image reso-
lution for each view is 320×240 in row and column direc-
tions. For every range image Ri, we refine it pixel by pixel
(or point-by-point). In order to refine an erroneous point,
we search its correspondences in range images from R−N

4

to R+ N
4

(K = N/2). We set the error threshold dT to 3

mm and the variance threshold σ2
T to 2mm.

5.2. Error Analysis

We generate 3D models of a ground truth object to ana-
lyze and compare reconstruction errors of before and after
refinement. Figure 9(a) shows a picture of a cylindrical ob-
ject for error analysis. Figure 9(b) is the dimension of the
object. We acquire range images of the object from 8 or 16
view points and register and integrate them to a 3D mesh
model. Then we measure dimensional and registration er-
rors between the 3D model and a ground truth model. To
generate the ground truth model, we reconstruct a 3D model
of dense point clouds. We synthesize the object’s surface for
every 1mm2 to produce about 50000 points to represent its
outer surface.

(a)

H = 105.7 mm

R = 37.59 mm

(b)

Figure 9. ’Cylinder’ object for error analysis
(a) Picture of the object (b) Dimension of the
object

The two 3D models, the reconstructed model and the
ground truth model, are registered into a common coordi-
nate system using ICP registration technique. After regis-
tration, we measure mean and variance of the radius of the
reconstructed model. Table 1 shows results of mean and
variance of the radius of the object. We compare errors of
two 3D models which are generated by merging original
range images and refined range images. We show the errors
when the models are merged from 8 views and 16 views.
To show the results with different size of voxel, we recon-
struct different 3D models by changing voxel size of 2mm,
2.5mm, and 3 mm. We also measure RMS and maximum
errors of closest distance between a 3D point on the recon-
structed model and the ground truth model. Table 2 shows
results of these errors. As shown in both tables, 3D models
generated from refined range images have better geometric
structures than those from originals.



Table 1. Mean (m) and variance (v) error of the
radius of ’Cylinder’ object in mm

Original Range Refined Range
N voxel 2.0 2.5 3.0 2.0 2.5 3.0
8 m 36.32 36.32 36.33 36.35 36.35 36.36

v 0.416 0.438 0.40 0.316 0.307 0.313
16 m 36.40 36.39 36.41 36.41 36.41 36.41

v 0.280 0.296 0.317 0.232 0.253 0.252

Table 2. RMS and MAX error of the radius of
’Cylinder’ object in mm

Original Range Refined Range
N voxel 2.0 2.5 3.0 2.0 2.5 3.0
8 rms 1.33 1.33 1.32 1.27 1.27 1.26

max 3.56 3.60 3.37 3.58 3.14 3.32
16 rms 1.21 1.22 1.21 1.19 1.20 1.20

max 2.63 2.54 2.60 2.50 2.25 2.79

5.3. Real Objects

The proposed technique is also tested on real objects.
Figure 10 shows an example of a single line refinement
of ’Potatohead’ object shown in Figure 1(a). Figure 10(a)
shows the original front view (V0) of the object and a 3D
contour which corresponds to a single horizontal line on its
2D plane. In Figure 10(b), we plot all corresponding pro-
files from VN−N

4
to V+ N

4
on the XZ plane of the camera

coordinates. On the plot of V0, there are some erroneous
points as shown the contour in Figure 10(a). A refined range
image and all profiles for the same horizontal scan lines are
shown in Figure 10(b) and (d).

Some of original and refined range images of the object
are shown in Figure 11(b) and (c). Figure 11(b) shows there
are some artifacts in range images due to stereo mismatch-
ing. Some bright and dark portions on the object area repre-
sent shape distortions on surface. The refined range images
in Figure 11(c) show that their surface structures are refined
compared to their originals. Processing time of range re-
finement and number of range pixels on all 16 images are
shown in Table 3.

Table 3. Processing time of refining range im-
ages

Object Potatohead Soccerball
Number of vertices 264608 156662
Refinement time (sec) 510.0 122.0

Comparison of two 3D models is shown in Figure 12(a)
and (b). In this figure, the size of a voxel grid is 2.5 mm.
The shaded surface models show the back surface of the
object. The refined 3D model in Figure 12(b) shows better
surface structure than the original in Figure 12(a). Figure 13
shows reconstruction results of another object ’Soccerball’.
Figure 13(b) is the 3D model from original range images,
and Figure 13(c) is from refined images. The figure also
shows that refined range images yield better surface struc-
ture.
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Figure 10. An example of range refinement.
(a) A horizontal scan line is plotted on a orig-
inal partial shape. (b) The same line is plot-
ted on a refined shape (c) Profiles of all over-
lapping range contours before refinement (d)
Profiles of all overlapping range contours af-
ter refinement

6. Conclusions

We present a range image refinement technique to gener-
ate accurate 3D computer models. The proposed technique
employs the epipolar geometry of our vision system and the
visual hull of an object to refine erroneous 3D points. After
multi-view range images are registered to a common coor-
dinate system, we first determine if a reference 3D point in
a range image is erroneous by measuring registration error
of the point to its correspondences in the other overlapping
range images. The correspondences are intersections by the
ray of the reference point. Then the range of an erroneous
point is refined onto the object’s surface. Visual hull of the
object is also employed to decide if the point is erroneous



(a)

(b)

Figure 11. Refinement results of ’Potatohead’
object. (a) Some original range images (b)
Refined range images

(a) (b)

Figure 12. Reconstruction results of ’Potato-
head’ object. (a) A shaded surface on the
original 3D model (b) The same surface on
the refined 3D model

(a) (b) (c)

Figure 13. Reconstruction results of ’Soccer-
ball’ object. (a) Picture of the object (b) A
shaded surface on the original 3D model (c)
The same surface on the refined 3D model

and to refine it onto the visual hull. Experimental results
show the proposed technique yields better geometric struc-
tures on reconstructed 3D computer models.
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