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Abstract

This paper addresses a registration refinement problem
and presents an accurate and fast Point-to-(Tangent) Plane
technique. Point-to-Plane approach is known to be very ac-
curate for registration refinement of partial 3D surfaces.
However, the computation complexity for finding the inter-
section point on a destination surface from a source con-
trol point is hindering the algorithm from real-time applica-
tions. We introduce a novel Point-to-Plane registration tech-
nique by combining the high-speed advantage of Point-to-
Projection technique. In order to find the intersection point
fast and accurately, we forward-project the source point to
the destination surface and reproject the projection point to
the normal vector of the source point. We show that itera-
tive projections of the projected destination point to the nor-
mal vector converge to the intersection point. By assuming
the destination surface to be a monotonic function in a new
2D coordinate system, we show contraction mapping prop-
erties of our iterative projection technique. Experimental
results for several objects are presented for both pair-wise
and multi-view registrations.

1. Introduction

Registration refinement of multiple range images is an
essential step in multi-view 3D modeling. When the range
images are coarsely registered by a priori knowledge of
registration parameters, registration refines the rigid trans-
formation parameters to minimize alignment error between
overlapping range surfaces. There have been many investi-
gations on the refinement problem [7, 17]. For a pair-wise
registration, the registration problem can be considered to
be an error minimization of the rigid body transformation
between control point sets [1] on the pair of surfaces. Con-
trol point sets are decided by matching either geometric [5],
photometric [12, 18], or geometric and photometric [4, 11]
structures of the range surfaces. In this paper, we address
a registration problem in the first category, which considers

only geometric structure for control point matching.
Based on the method of control point matching, three

approaches can be considered in general. Point-to-Point,
e.g. Iterative Closest Point (ICP) algorithm [5], Point-to-
(Tangent) Plane [8, 3], and Point-to-Projection [6] tech-
niques are well-known registration techniques. The ICP al-
gorithm is one of the common techniques for refinement
of partial 3D surfaces (or models) and many variant tech-
niques have been investigated. However, searching the clos-
est point in the ICP algorithm is a computationally expen-
sive task. In order to accelerate the speed of closest point
searching, some searching techniques are commonly em-
ployed, for example a kd-tree searching, z-buffering, or a
closest-point caching [2, 10, 16].

In contrast, Point-to-Projection approach finds the corre-
spondence of a source control point by projecting the source
point onto a destination surface from the point of view of the
destination [6, 15]. When the source point is backward pro-
jected to the image plane of the destination surface, the des-
tination control point is the forward projection of the image
point. This approach makes registration very fast, because
it does not involve any searching step to find the correspon-
dence. However, one of its disadvantages is that the result
of registration is not as accurate as those of the others [17].

Among three approaches, Point-to-(Tangent) Plane tech-
nique is known to be the most accurate [13, 17]. From a
source control point, the matching control point is the pro-
jection of the source point onto the tangent plant at a des-
tination surface point which is the intersection of the nor-
mal vector of the source point [3, 8, 9]. However, finding
the intersection on the destination surface is also compu-
tationally expensive. One of the acceleration techniques is
first searching the closest point, and finding the intersect-
ing surface (or the triangle) from its neighboring triangles
[17]. Gagnon [9] tries to find the intersection on a 2D grid
of range images along the projection of the normal vector
of the source point.

In this paper, we address the registration problem to re-
fine a pair of range surfaces as well as multi-view range
surfaces. We propose an accurate and fast point-to-plane



registration technique. We combine advantages of point-
to-plane and point-to-projection techniques for fast control
point searching. We employ the accuracy from the point-to-
plane technique and the speed from the point-to-projection
technique. In order to find the intersecting control point, we
project a source point to the destination surface, re-project
the projection point to the normal vector of the source point.
We show that iterative normal projections converge to the
intersection point. By assuming the destination surface as
a monotonic function in a new 2D coordinate system, we
show a contraction mapping property of our registration
technique [14]. Therefore, we call our technique as Con-
tractive Projection Point (CPP) algorithm. Experimental
results for several 3D models are presented for many sin-
gle pair registrations as well as a multi-view registration.

2. Description of Registration Techniques

In this section, we briefly describe the basic principle of
three registration refinement techniques. Suppose there is a
control point set P on a source surface SP , and another con-
trol point set Q on a destination surface SQ. If we have K
control points on each surface and k = 0, . . . ,K − 1, then
the registration problem is estimating a rigid body trans-
formation T = [R|t] which minimizes an alignment error
measure ε such that

ε =
K∑

k=1

‖Qk − (RPk + t)‖2
. (1)

In general, source control point set P is selected by sam-
pling the source surface-randomly or uniformly, and filtered
by some constraints to delete unreliable control points. The
destination control point set Q is the conjugate of the source
point set, which is determined by a matching criterion.

Point-to-point technique (or ICP technique) is the most
common technique. From a source control point p on the
source surface, the ICP algorithm searches the closest point
q on the destination surface. Figure 1(a) shows a basic di-
agram of the ICP algorithm. An error metric ds is the dis-
tance between two control points. In order to search the
closest point, a searching technique, e.g. kd-tree, is com-
monly used. However, when a multi-view registration con-
cerned, we need to rebuild kd-trees of the multiple surfaces
at every iteration of registration.

Point-to-plane registration is another common tech-
nique. It searches the intersection on the destination surface
from the normal vector of the source point. As shown in the
Figure 1(b), the destination control point q ′ is the projection
of p onto the tangent plane at q which is the intersection
from the normal of p. One of the previous investigations is
done by Chen and Medioni [8]. To find control points, they
use a root searching technqiue similar to Newton-Raphson
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Figure 1. Three common registration tech-
niques. (a) Point-to-point (b) Point-to-plane
(c) Point-to-projection

technique in an orthographic coordinate system. Bergevin
et al. [3] also use a similar technique with that of Chen
and Medioni. They employ an image-based control point
searching technique to reduce searching time.

Point-to-projection approach is known to be a fast reg-
istration technique. As shown in the Figure 1(c), this ap-
proach determines a point q which is the conjugate of a
source point p, by forward-projecting p from the point of
view of the destination OQ. In order to determine the pro-
jection point, p is first backward-projected to a 2D point pQ

on the range image plane of the destination surface, and then
pQ is forward-projected to the destination surface to get q.
This algorithm is very fast because it does not include any
searching step to find the correspondence. However, one of
its disadvantages is that the result of registration is not as
accurate as those of the others [17].

3. Contractive Projection Point (CPP) Tech-
nique

3.1. Combinig point-to-plane and point-to-
projection techniques

In this section, we propose a novel point-to-plane regis-
tration technique by combining the fast registration property
of the point-to-projection technique. Suppose there are two
partial surfaces SP and SQ as shown in Figure 2. They are
assumed to be acquired from two different views P and Q
of an object and coarsely registered to a common (world)
coordinate system through transformation matrices TP and
TQ, respectively. Let us also suppose there is a source con-
trol point p0 on SP . Then the problem in the point-to-plane
registration is finding the intersection point qs on SQ as
shown in the figure. The point qs is an intersection on SQ

by the normal vector p̂ of p0.
One of the typical methods of searching the intersection

is first finding a triangle (when the surface consists of tri-



angles) which is intersected by p̂. Then the intersection
point qs can be interpolated by three vertices on the tri-
angle. However, this is a computationally expensive task
and it may take several minutes to find all conjugates of
hundreds of control points. On the contrary, the point-to-
projection technique can find a matching destination point
from a source point within a millisecond on a typical per-
sonal computer, because it directly employs the parametric
surface of the destination range image.

We consider a new point-to-plane registration technique
by employing advantages from both techniques. The main
idea is using iterative point-to-projections to determine the
intersection on the destination surface. Let us back-project
p0 in Figure 2 to a 2D image point

pq = MQTQ
−1p0, (2)

where MQ is the perspective projection matrix of view Q
to the image plane IQ, and TQ is the transformation matrix
from the camera coordinate system of view Q to the world
coordinate system. Then let us forward-project pq to a new
3D point qp0. Forward-projection qp0 is the range of the
parametric surface at the destination image point pq. The
point qp0 is computed by interpolating a grid of destination
image plane and transformed back to the world coordinate
system. Now let us consider another projection of qp0 to
the normal vector p̂ at p0. Then we obtain a new 3D point
p1, such that

α = (qp0 − p0) · p̂,
p1 = p0 + αp̂. (3)

If we iterate the same projections above using the new con-
trol point p1, then we get the next source point p2, and so
on. If there is an intersection on SQ by p̂, then a point qpi

(or pi) for the ith projection will converge to qs when i goes
to infinity, such that

lim
i→∞

‖pi − qpi‖ → 0. (4)

However in real situation, only small number of projec-
tions can make a convergence measure

εc = ‖pi − qpi‖ (5)

become close to zero. If we find all convergence points
{qs} for all corresponding source {p0}, we can find all pro-
jection points {q′

s} on tangent planes at {qs} and use them
as control point sets in the point-to-plane registration.

3.2. Contraction mapping property of CPP

In order to show the validity of the proposed algorithm,
we show contraction mapping properties of the algorithm.
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Figure 2. Finding the intersecting point qs

from p0 by the proposed algorithm.

When a source control point converges to an intersection,
the proposed technique shows contraction mapping proper-
ties such that the convergence measure εc becomes close to
zero after a couple of normal projections. The definition of
the contraction mapping is as follows.

Definition 3.1 Let d() be a metric or a distance function in
	 and f : 	 → 	. f is a contraction mapping, if there is a
real number k, 0 ≤ k < 1, such that

d(f(x), f(y)) ≤ kd(x, y)
for all x and y in 	.

Let us consider a 2D coordinate system as shown in Fig-
ure 3. When there are two different view points P and Q,
the new axes consist of the viewing vector V̂Q of Q and
the normal vector p̂ of the source control point p0. And
the point p0 becomes the origin of the coordinate system.
Now the surface SQ becomes a contour on the 2D plane,
which is the intersection of the surface with the 2D plane.
As shown in the figure, the proposed algorithm projects p i

to a new point pi+1, iteratively until the convergence mea-
sure in Equation (5) becomes very small.

Practically speaking, distance from p0 to the contour is
very small, because two surfaces are assumed to be regis-
tered coarsely at the beginning. Therefore we can consider
that all forward-projecting lines from the view origin of Q
to all control point pi are almost parallel. Then the follow-
ing shows contraction mapping properties of the proposed
algorithm.

1. A surface SQ is a monotonic function with respect to
v̂Q.

2. A vector product v̂Q · p̂0 < 0, because we only con-
sider a source point which is seen from the view Q.
Therefore there is always a projection of qpi to p̂0.
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Figure 3. Contraction mapping property of a
new 2D coordinate system.

3. If there is an intersection qs, a function f : pi →
pi+1 ( or qpi → qpi+1) is a contraction mapping when
‖pi+1,pi+2‖ < k‖pi,pi+1‖, where 0 ≤ k < 1.

4. Then, there is a 3D point qs on the surface such that
f(qs) = qs.

3.3. Convergence condition

In the ideal situation, the CPP algorithm always con-
verges to a convergence point. However, in a real situation,
it may diverge or enter to a non-convergence cycle. There-
fore we need to find out the convergence condition accord-
ing to the contraction coefficient k. Three possible cases are
shown in the Figure 4. In the Figure 4(a), a source control
point is converging and the coefficient is 0 ≤ k < 1. In
this case, we can use the convergence point as a matching
control point of its conjugate.

However, as shown in the Figure 4(b), the control point
could diverge if the coefficient is k > 1. This could happen
when the tangent normal at a point on the surface SQ has
a high angle with respect to V̂Q. However, we reduce the
effect of diverging control points by discarding a destination
point if the convergence measure εc is greater than an initial
measure ‖qp0 − p0‖. The last case is when the mapping
enters into a non-convergence cycle and k = 0, as shown
in the Figure 4(c). This case could happen when a segment
of the destination curve is overlapping with the projection
line from qpi to pi+1. We also remove this kind of points
by checking the error measure for 3 or 4 iterations. If a
measured value repeats for 3 or 4 iterations, we consider
the mapping enters a non-convergence cycle and quit the
mapping.

3.4. CPP algorithm

The proposed CPP algorithm can be easily implemented
by a recursive searching program. The following function
is a pseudo code of part of the algorithm. The function
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Figure 4. Three cases of projection. (a) Con-
vergence (0 ≤ k < 1) (b) Divergence (k > 1)
(c) Infinity loop (k = 1)

searches a 3D point qp1, the intersection of a control point
p1 on the destination surface Dest. Nc is the maximum
normal projections andDc is threshold for the convergence
error εc.

Vec3d RecursiveProj(V ec3d &p1, V ec3d &p̂,
V ec3d &qp1,Mesh ∗Dest, int cnt)

{ if (cnt > Nc) return p1;
pq = Mqp1;
flag = OnObject(pq , p1, Dest, qp1);
if (!flag) return NULL;
α = (qp1 − p1) · p̂;
p2 = p1 + αp̂;
εc

′ = ‖p2 − qp1‖;
if (εc′ < Dc) return p2;
return RecursiveProj(p2, p̂, qp1, Dest, cnt+ 1);

}

After finding all matching control points, we use two
control point sets {p0} and {q′

s} for estimating a rigid
transformation T between two surfaces. The transforma-
tion is computed by a SVD (Singular Value Decomposition)
technique iteratively until two surfaces converge [1].

4. Experimental Results

4.1. Test objects

We test our algorithm for three objects. The test ob-
jects are shown in the Figure 5. The Wave object is a pair
of synthetic 3D sinusoidal surfaces. Two surfaces have 10
degree of phase difference in the XY range image plane
and 10mm of translation along the Z axis. Their height is
50mm and we add random noise to every image point with



maximum 12% of the height. The second object Angel is
a pair of range images obtained from a laser range finder.
This object is one of the models from the Ohio State Uni-
versity’s Range Image Database. The two images has 20
degree of rotation angle. For the third object Potatohead in
Figure 5(c), we test both pair-wise and multi-view registra-
tion. We obtain 8 range images of the object. Range images
of the object have some erroneous points on their surfaces.
The number of points and triangles on the test objects are
shown in the Table 1. They are the number of points and
triangles on the surface of the first view, but the numbers of
the others are also similar.

(a) (b) (c)

Figure 5. Point clouds models of test objects.
(a) Wave (b) Angel (c) Potatohead

Table 1. Number of vertices and triangles on
test objects

Objects Wave Angel Potatohead
Num points (V0) 22500 14089 13827
Num triangles (V0) 44402 27213 27144
No. of views 2 2 8

4.2. Registration error with respect to projection
numbers

In order to decide an appropriate number of normal pro-
jections – from qpi to pi+1 , we apply the CPP technique
to a noiseless Wave object to plot convergence error ε c with
respect to different numbers of projections. In Figure 6,
the convergence error is plotted for 50 iterations of regis-
tration. At each iteration, RMS errors of all control points
are plotted, for which we use about 300 pairs. As shown
in the figure, the convergence error decreases if the number
of projections increases. However, its decrease rate is satu-
rated after 5 or 6 projections. Therefore, we use 5 normal
projections for all following experiments.
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Figure 6. Comparison of convergence and
translation error with respect to different
number of projections. (Wave object) (a) Con-
vergence (b) RMS translation

4.3. Pair-wise registration

We compare our algorithm with the Point-to-Projection
and the ICP algorithm. We also use a kd-tree searching
technique for ICP. We test all three techniques in the same
registration condition on a Pentium III 1GHz personal com-
puter. As far as the Wave object is concerned, we know the
real conjugate points between two range surfaces. There-
fore, we measure RMS distance error between two ground
truth point sets. For the other objects, we measure ds dis-
tance shown in the Figure 1. However, the distance error
in each approach cannot be compared directly because they
use different error metric. To fairly compare them, we nor-
malize each error by using its initial error. Because the
initial condition of all approaches is the same each other,
we normalize the RMS errors to watch the decrease rate of
them.



Registration results of CPP and ICP for Wave object are
plotted in Figure 7. We plot the results for 50 iterations, and
for different noise rate on the object’s surface. Two algo-
rithms converge well with low noise rate, however the ICP
algorithm fails to converge when noise rate is more than
9%. The results of the other objects are shown in the Fig-
ure 8. Figure 8(a) shows the results for the object Angel.
The Point-to-projection result shows a bad registration re-
sult. The proposed technique shows better convergence rate
than other techniques. Figure 8(b) is the results for Potato-
head. This result only shows the registration of the first pair
of images. In this figure, we also plot the result of original
point-to-plane technique, which use a brute force searching
to find matching control points. The result of the proposed
technique is almost the same as that of the original tech-
nique.
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Figure 7. Registration error of Wave object (a)
CPP (b) ICP

Table 2 shows the results of registration error and pro-
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Figure 8. RMS error results of (a) Angel (b) Pota-
tohead

cessing time after 50 iterations. As shown in the previous
figure, our CPP technique has the smallest registration er-
ror. As far as the computation time is concerned, the point-
to-projection technique is faster than the other approaches
as we expected. The proposed technique and the point-
to-point technique show similar results but they depend on
types of objects. This is because we need some computa-
tions for searching intersection points as shown in the CPP
pseudo code.

4.4. Number of convergence

As described in an earlier section, we have three types of
convergence – Convergence, Divergence, and Infinity loop
– in searching of intersections. After some experiments, we
find that CPP searching converges well in most cases to in-
tersections on destination surface. However, sometimes it



Table 2. Registration error and processing
time after 50 iterations (Nc = 5, Dc = 0.1mm,
and ds is normalized.)

Method PP ICP CPP
Wave with ground truth(mm) - 0.63 0.63
5% noise Time/Itr(ms) - 42.8 43.8
Wave with ground truth(mm) - 6.86 2.25
10% noise Time/Itr(ms) - 44.0 42.8
Angel ds(mm) 0.73 0.34 0.27

Time/Itr(ms) 30.8 37.4 36.2
Potato- ds(mm) 0.63 0.63 0.47
head Time/Itr(ms) 26.4 30.6 30.8

PP: Point-Projection, ICP: ICP with kd-tree, CPP: Contrac-
tive Projection Point

diverges or enters to an infinity loop. Even though we have
some number of non-convergence points, we discard them
and use only convergent control points for deriving trans-
formation matrix. The numbers of converging and non-
converging points are different for every iteration. However,
Table 3 shows average numbers of them for 50 iterations on
each object.

Table 3. Average number of convergence and
non-convergence control points

Object
Conver-
gence

Diver-
gence

Infinity
loop

Wave(5% noise) 92.5 6.2 1.3
Angel 220.5 52.7 2.6
Potatohead 202.1 32.9 3.2

4.5. Multi-view registration

Multi-view registration is a more difficult problem than a
pair-wise registration, because registration error should be
evenly distributed on all overlapping surfaces. We regard
the first view of the Potatohead object as a reference view
and register all the other views to the reference view. In
order to find the matching control points from a source view,
we search on its neighboring view’s surfaces. For example,
if the ith view is concerned, we search the matching control
points on its neighborhoods, (i + 1)th view and (i − 1)th
view. After finding all matching points for every view point,
except the first view, we compute rigid transformations and
refine all surfaces simultaneously.

We test a multi-view registration for the 8 views of the
Potatohead object. The Figure 9 plots their results. In this
figure we do not normalize the error, because the results are

obvious to compare. Both the point-to-projection and the
ICP techniques show bad registration results. Both of them
fail to register the multi-view images. In contrast, the CPP
algorithm register all range images well. The table 4 shows
registration error and processing time for this experiment.
The ICP with kd-tree technique take more time, because it
needs to refine kd-trees of all surface (except the reference
view) for every iteration. The table shows that our CPP
technique has advantages over ICP and Point-to-projection
techniques for registration of multiple range images.

Table 4. Multi-view registration error and pro-
cessing time after 50 iterations. (Nc = 5, Dc =
0.1mm)

Method PP ICP CPP
RMS error ds (mm) 3.45 1.88 0.74
Time (sec) 9.61 46.57 12.63
Time/Itr (sec) 0.192 0.931 0.253

5. Conclusions

We address a registration refinement problem and
present an accurate and fast Point-to-(Tangent) Plane reg-
istration technique. In order to find an intersection point
on a destination surface, we project a source control point
to the destination surface, re-project the projection point to
the normal vector of the source point. We show that iterative
projections of the projected destination point to the normal
vector converge to the intersection point. By assuming the
destination surface to be a monotonic function in a new 2D
coordinate system, we show contraction mapping properties
of our Contractive Projection Point technique. Experimen-
tal results show that our approach is very accurate and fast
for both pair-wise registration and multi-view registration
problems.
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