
Automatic 3D model reconstruction based on novel pose

estimation and integration techniques

Soon-Yong Park*, Murali Subbarao

Department of Electrical and Computer Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2350, USA

Received 20 September 2002; received in revised form 22 December 2003; accepted 14 January 2004

Abstract

An automatic three-dimensional (3D) model reconstruction technique is presented to acquire complete and closed 3D models of real

objects. The technique is based on novel approaches to pose estimation and integration. Two different poses of an object are used because a

single pose often hides some surfaces from a range sensor. A second pose is used to expose such surfaces to the sensor. Two partial 3D

models are reconstructed for two different poses of the object using a multi-view 3D modeling technique. The two 3D models are then

registered in two steps—coarse registration, and its refinement. Coarse registration is facilitated by a novel pose estimation technique, which

estimates a rigid transformation between two models. The pose is estimated by matching a stable tangent plane (STP) of each pose-model

with the base tangent plane, which is invariant for a vision system. We employ geometric constraints to find the STP. After registration

refinement, two models are integrated to a complete 3D model based on voxel classification defined in multi-view integration. Texture

mapping is done to obtain a photo-realistic reconstruction of the object. Reconstruction results and error analysis are presented for several

real objects.

q 2004 Elsevier B.V. All rights reserved.

Keywords: 3D reconstruction; Range image; Registration; Pose estimation; Pose integration

1. Introduction

Three-dimensional (3D) model reconstruction of real

objects is a topic of much interest in Computer Vision and

Computer Graphics. Its application areas range from Virtual

Reality and Computer Animation to E-Commerce. One topic

of research interest today in 3D model reconstruction is the

acquisition of a complete 3D model from multiple views of

an object. There have been two major approaches in this

topic. The first approach is based on merging multiple range

images (or 3D partial surfaces) into a complete 3D model

[3,5,7,22]. Range images can be acquired by several

techniques such as Laser-ranging or Stereo Vision. The

other approach is based on processing photographic images

using volumetric modeling techniques such as Voxel

Coloring or Shape-from-Silhouettes [6,17,18].

In this paper, we present a photo-realistic 3D model

reconstruction technique based on merging of multi-view

(or n-view) range images of an object. Multi-view range

images can be acquired by either moving a range sensor or a

target object. A moving object on a turntable with a fixed

sensor [5,6], or a moving sensor with a fixed object [1,17,25,26]

has been used by researchers, in addition to other variations

[8,13,24]. Our approach also employs a turntable stage to

obtain multi-view images of the object. Calibration

parameters of the turntable are used for coarse registration

of multi-view range images.

Most investigations on 3D model reconstruction are

limited to using a single pose of an object. For example, an

object is placed on a turntable in a fixed pose, while a range

sensor obtains multi-view images of the object. However,

for many real objects, using a single pose yields only a

partial 3D model because some surfaces of the object

remain hidden from the range sensor for any given pose due

to occlusion, concavities, etc. For example, a tea cup placed

upright on a turntable hidden the bottom surface of the cup

from the range sensor. A 3D model of such hidden surfaces

could be reconstructed by placing the object in a different

suitable pose (e.g. by placing the tea cup on its side) and

sensing the visible shape. This yields a second partial 3D

0262-8856/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.imavis.2004.01.002

Image and Vision Computing 22 (2004) 623–635

www.elsevier.com/locate/imavis

* Corresponding author.

E-mail addresses: parksy@ece.sunysb.edu (S.-Y. Park); murali@ece.

sunysb.edu (M. Subbarao).

http://www.elsevier.com/locate/imavis

model of the object for the new pose. In order to obtain a

complete 3D model, the two 3D models reconstructed from

the two different poses need to be registered and integrated.

However, registration and integration of two partial 3D

models is a difficult problem. For this reason, only a few

researchers have considered this problem.

Allen and Yang [1] stitch a bottom surface of an object

by matching edge features of the object’s 3D model with

an edge image of the bottom. They acquire multi-view

range images of a fixed object using a moving range

finder. After reconstructing a 3D model, they acquire a

partial shape of the bottom surface and stitch its shape and

texture to the 3D model using a feature matching

technique. Wong and Cipolla [28] employ the shape-

from-silhouettes technique for 3D model generation and

combine a structure-from-motion technique to estimate

registration parameters between multiple views. However,

they manually register top and bottom surfaces of the

object. Niem [17] also reconstructs complete 3D models

using the shape-from-silhouettes technique, registers, and

integrates top and bottom surfaces manually. Lensch et al.

[14] and Iwakiri and Kaneko [10] use silhouette matching

techniques to register and stitch an object’s textures to its

3D model. Huber [8] also presents a 3D reconstruction

technique using an unconstrained registration of multi-

view partial shapes. He registers the partial shapes using

Spin images and a graph searching technique. Rusinkie-

wicz et al. [24] use a structured light pattern and a real-

time registration technique to merge partial 3D point sets

in real-time.

A schematic diagram of our 3D modeling system is

shown in Fig. 1. First, we generate two 3D models (let us

call them pose-models) from two different poses of an

object. Each 3D pose-model is reconstructed by a

volumetric modeling technique, which is similar to Ref.

[5]. We use turntable parameters to coarsely register n-view

range images and refine them using a point-to-plane

registration technique [2]. Marching cubes (MCs) algorithm

is employed to polygonize volumetric space into triangle

meshes [2,15].

Registration of two pose-models consists of two steps,

coarse registration and its refinement. We use a novel pose

estimation technique of the 3D pose-models to determine

coarse parameters [20]. The pose estimation technique finds

stable tangent planes (STPs) on a 3D model, which are

candidates for the base tangent plane (BTP) of the other

model and vice versa. When we place a rigid object on the

flat top of a turntable, the object rests with its outer surface

touching the table top. The planar table top will be a tangent

plane of the object’s surface. We call the planar table top the

BTP. The BTP is invariant with respect to the object’s pose

and the world coordinate system. STPs are obtained on a

pose-model using three geometric constraints, which are

given in Section 3. We match the BTP of the first pose-

model to a STP of the second pose-model, and simul-

taneously match the BTP of the second pose-model to a STP

of the first pose-model. The best-matching planes from two

models are used to estimate the transformation between

them.

A novel pose integration technique is presented to merge

two pose-models into an accurate and complete 3D model.

The novelty of our technique is integration of two

incomplete iso-surfaces, which represent the two pose-

models. Since the two pose-models are available after

integration of n-view images, we integrate two iso-surfaces

rather than 2 £ n-view range images. The integration

technique merges the pose-models by heuristically combin-

ing the signed distance and the class of a voxel from each

pose. Error analysis using two ground truth objects is

presented to show the geometric accuracy of our technique.

3D reconstruction of photo-realistic 3D models is presented

on several real objects.

2. Reconstruction of a single pose-model

2.1. Range image acquisition

We use a stereo vision camera to obtain range images

and a turntable to change viewing direction to an object.

Fig. 1. Schematic diagram of our 3D modeling.

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635624

Both stereo camera and turntable are calibrated by the Tsai’s

calibration algorithm [27]. In order to introduce contrast on

object’s surface for stereo matching, we project a random

dot pattern using a slide projector. For each pair of stereo

image, we obtain a range image using a multi-resolution

stereo matching technique based on a Gaussian Pyramid. A

correlation based stereo matching is used at each level of the

Gaussian pyramid. Normalized Gaussian low-pass filter

with standard deviation of 1.0 is then applied to the range

image to obtain sub-pixel accuracy. Object’s multiple

silhouettes are also segmented by a blue screen technique,

and they are used later to carve out nonobject space in a

volumetric integration step [19].

2.2. Multi-view registration

Calibration parameters of the vision system are used for

coarse registration of multiple range images obtained from

n-view directions. In order to refine the registration, a point-

to-plane registration technique is employed to minimize

transformation errors between all overlapping shapes [2,4].

Our approach is similar to Ref. [2]. To register a pair of

overlapping range images, we search a triangle in the

destination image, which is intersected by a vertex normal

in the source image. The intersection point on the

destination triangle is computed by interpolating three

vertices of the triangle.

It is well known that registration errors accumulate if

partial shapes are registered pairwise. Therefore, a multi-

view registration technique, which evenly distributes the

registration error in all overlapping regions, is needed. We

set 0th view V0 as the reference frame of multi-view

registration. To register a partial shape Si; where i is a view

number, we search intersecting points only on the partial

shapes Si21 and Siþ1: This approach works well because a

view point Vi has more overlapping shapes with its adjacent

views Vi21 and Viþ1 than others.

2.3. Multi-view integration

A volumetric integration technique is widely used for 3D

reconstruction. Given multiple partial shapes of an object,

we find the iso-surface of a 3D model in a grid of voxel

space, and convert it to a mesh model using the MCs

algorithm [15]. Because our vision system uses a stereo

camera for range image acquisition, there are inherent

mismatching errors on the range image. In order to

accurately integrate partial shapes, we classify the voxel

space into multiple regions based on signed distances diðpÞ;

which is the distance from a voxel p to the ith range image

Si: Let us assume there are N-view range images in total

and N0ð# N=2Þ views are overlapping each other. If there

are at least two surfaces in Si; i ¼ 0;…;N 2 1; whose

signed distance diðpÞ from p is less than a threshold dTH;

then we consider they are overlapping surfaces. In this

paper, we assume there are N=2 overlapping surfaces in

maximum, which is 3608=2 in angle. In practice, the number

of overlapping surfaces is determined by the distance and

angle from a voxel to candidates of overlapping surfaces

[19]. According to the sign of diðpÞ; we divide the grid of

voxel space into four regions as follows (see Fig. 2):

† If at least two distances ldiðpÞl are shorter than a

threshold dTH; where i ¼ 0;…;N 2 1; a voxel p is

considered to be in an overlapping region and

p [Poverlap:

† If all diðpÞ have positive sign and ldiðpÞl . dTH for at

least N 2 1 distances, the voxel is outside the object and

p [Poutside:

† If all diðpÞ have negative sign and ldiðpÞl . dTH for at

least N 2 1 distances, the voxel is inside the object and

p [Pinside:

† Else, we assume that the voxel is in nonoverlapping area

and p [Pnonoverlap:

The threshold changes the smoothness of an integrated

surface. We usually set dTH as the double of the voxel size.

For example, if the length of an edge of a voxel is dx; then

dTH ¼ 2dx: This assumption mostly gives reasonable

results. The implicit distance DðpÞ of the voxel p is a

function of signed distances diðpÞ to all overlapping shapes,

i.e. DðpÞ ¼ f ðd0ðpÞ;…; dN0
ðpÞÞ: For example, when a voxel

Fig. 2. Voxel classification based on signed distance.

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635 625

is in Poverlap

DðpÞ ¼

P
wiðpÞdiðpÞP

wiðpÞ
;

where wiðpÞ is the weight of the voxel to ith view [5].

However, when the voxel is in one of the other classes, DðpÞ
is computed in different ways based on the voxel’s class.

See Ref. [19] for more details.

3. Pose estimation and registration

We reconstruct two 3D pose-models of an object by

employing the volumetric modeling technique described in

Section 2. We place the object in an upright pose for the first

pose-model and on its side for the second pose-model. This

section presents registration of two 3D pose-models.

3.1. Base tangent plane

We employ a novel pose estimation technique based on

geometric constraints of our vision system [20]. This

technique finds a STP on a 3D model, which can be

matched to the base tangent plane (BTP) of the other model.

The BTP is a global tangent plane in the sense that it will not

intersect the object’s volume anywhere (in contrast, a local

tangent plane may intersect the object’s volume at a point

far from the point of tangency). The BTP is invariant with

respect to the object’s pose and the world coordinate system.

From the definition of the BTP, we find that there exists a

unique tangent plane of the first pose-model, which

corresponds to the BTP of the second pose, which is also

a tangent plane of the second pose-model.

Suppose an object is placed on the turntable with two

different poses, Pose1 and Pose2 as shown in Fig. 3. Then

there is a unique tangent plane T1 (its normal is n̂T1) in the

first pose which matches the BTP Bðn̂BÞ in the second pose.

Similarly, there is a unique plane T2ðn̂T2Þ in Pose2, which

matches Bðn̂BÞ in Pose1. Because n̂B is a common and

invariant vector in this system, we can estimate a rotation

matrix using n̂T1 and n̂T2:

Let Q2 be an initial transformation matrix which aligns

n̂T2 with n̂B: After the alignment, two models are registered

except one degree of freedom along the axis of n̂B: Then, by

aligning the transformed vector Q2n̂B with n̂T1; we estimate

the transformation matrix Q21: Coarse translation between

two models is estimated by center of mass (CoM) of the

models. The translation and rotation parameters are later

refined in a pose refinement step in Section 3.4. Estimating

the translation using CoM is simple and accurate enough to

refine the parameters of two pose-models.

We assign a new coordinate system for each tangent

plane T1 and T2: Details on this will be described in

Section 3.2. Consequently, our technique finds tangent

planes T1 and T2 from two pose-models and the

transformation matrix Q21; which minimizes a cost

function between the two pose-models. The pose error is

estimated in terms of sum of square difference (SSD)

error between them. Suppose a vertex p1i in Pose1

corresponds to another vertex p2i in Pose2. In a point-to-

tangent plane registration, for example, p2i can be an

intersection point on a destination surface and p1i is its

conjugate on a source surface. Therefore, pose error ep is

measured by

ep ¼
XK
i¼0

kp1i 2 Q21p2ik
2
; ð1Þ

where K is the number of vertices in Pose1 or Pose2.

3.2. Stability constraints

The surface of a 3D model is represented by a finite

number of triangles [15]. Therefore, there will be a finite

number of tangent planes on each pose-model. Let a set of

tangent planes in Pose1 be {T1}; and {T2} be another set

of tangent planes in Pose2. If we assign a tangent plane to

every vertex, however, measuring the cost function for all

combinations of two sets {T1} and {T2} is computation-

ally expensive.

In order to reduce computational complexity, we remove

local or unstable tangent planes by employing geometric

constraints. A key idea for employing the constraints is that

the object is placed on the turntable in a stable pose and the

turntable is horizontal. Three constraints are as follows:

(1) Base plane constraint. An object is placed on the BTP,

which is one of the global tangent planes of the object.

This BTP does not intersect the object’s volume.

(2) Stability constraint. The BTP of the turntable is

horizontal and the object is in a stable pose. Therefore,

the projection of the CoM to a STP is always inside the

convex hull of its supporting vertices.

(3) Height constraint. If two pose-models are correctly

registered, their heights will be very similar. (It may

not be the same, because of noise).
Fig. 3. A tangent plane of the first pose n̂T1 uniquely matches the BTP of the

second pose n̂B; and vice versa.

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635626

Based on the constraints above, we consider only STPs

on the model. These constraints greatly reduce the number

of tangent planes and the computation time of pose

estimation.

3.3. Pose estimation

3.3.1. Finding tangent plane

As the first step of pose estimation, EGI (Extended

Gaussion Image)s of two pose-models are constructed and

all candidates of STPs on the tessellated Gaussian spheres

are obtained [9,11]. Suppose we construct an EGI (Extended

Gaussion Image) (Extended Gaussion Image) of a 3D mesh

model of an object as shown in Fig. 4. The EGI (Extended

Gaussion Image) consists of a set of tessellated polygons,

where each polygon f is represented by its normal n̂f and its

area. Area of the polygon is the number of such triangles of

the model that their normals are different in angle with

respect to n̂f by less than a tessellation angle

[9,11]. Let n̂T be the normal of a tangent plane T; and

TðpÞ ¼ 0 is the plane equation associated to T; where

p ¼ ðxp; yp; zpÞ is a vertex on the plane. Then, we initialize

the plane using n̂f such that TðpÞ ¼ n̂f ·p þ DT ; where DT is

the distance from the origin to the plane.

Because we search for a STP which can support the

object as a BTP, we update TðpÞ by employing its

supporting vertices. In an ideal case, all supporting vertices

of TðpÞ lie on the plane. Therefore, it is necessary that

TðpiÞ ¼ 0 ð2Þ

and

n̂f ·n̂pi
¼ 1; ;i ¼ 0;…;Ns 2 1 ð3Þ

for the stability of the object [12], where Ns is the number of

supporting vertices. In a real situation, however, supporting

vertices are not always on the plane due to inherent noise on

the surface of the model. Therefore, we need to find some

vertices whose normal vectors n̂p and their dot product,

n̂p·n̂f are less than a threshold cosðuGÞ as shown in Fig. 4. In

this figure, the red-colored (dark-gray) vertices on the 3D

model have their normals from n̂f less than uG:

As a next step, we remove some of those vertices, which

are far from the plane. Ideally, only one vertex on a tangent

plane touches the surface of the model. However, by

considering noise and stable computation, we search

supporting vertices close to a reference vertex using the

following technique. Let us define a vertex pm whose

projection distance to n̂f is the maximum from the

coordinate origin. Suppose we move the initial tangent

Fig. 4. Initializing tangent plane and its supporting vertices.

Fig. 5. Construction of a tangent plane on a 3D model. (a) Tangent plane T is updated by their supporting vertices. (b) Green (light gray) dots are all vertices

with their normals within a threshold angle uG: However, only red dots (dark gray) consist of supporting points on the tangent plane.

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635 627

plane so that TðpmÞ touches pm: We call the vertex pm the

frontier vertex as shown in Fig. 5.

In Fig. 5(a), we select a vertex pi as one of the supporting

vertices, if its relative distance to the plane di=dmi is less than

a threshold. Here, di is the distance from pi to the plane and

dmi is the distance from the frontier vertex to pi: In this

paper, we fix the threshold of di=dmi to 0.1. If the threshold

increases, the more vertices will be involved to update the

tangent plane. However, too many vertices can cause a

deviation of n̂T from the original orientation n̂f : After

finding a set of supporting vertices Ps; we move the origin

of the plane to pc; the centroid of Ps; and change the normal

of n̂T by averaging the normals of Ps:

A new coordinate system is then generated for the

tangent plane in order to obtain a transformation matrix to

the reference coordinate system. Let T be the coordinate

system associated to T: We define the three axes of T as

follows

YT ¼ n̂T ;

XT ¼ p0
m 2 pc;

and

ZT ¼ XT £ YT ;

where p0
m is the projection of pm to T: In Fig. 5(b), the

coordinate system of T is shown.

3.3.2. Finding stable tangent plane

A tangent plane T consists of supporting vertices and its

own coordinate system. Let a set of tangent planes of Pose1

be {T1}; and {T2} be the other tangent plane set of Pose2.

To reduce computation complexity, we remove local

or unstable tangent planes from further consideration

by employing the three geometric constraints given in

Section 3.2.

The first constraint is Base plane constraint. We check all

vertices to determine if a tangent plane intersects the

volume. If the dot product of any vertex p with the plane

normal n̂T is greater than the parameter DT of the plane, we

remove the plane. Due to noise on model’s surface, we use a

threshold DT þ dI instead of DT :

Next constraint is Stability constraint. The BTP of the

turntable is horizontal and the object is in a stable pose.

Therefore, given the CoM of a 3D model, its projection to a

STP, CoMT is always inside the convex hull of the

projections of all supporting vertices. The object will be

unstable and fall over if CoMT is outside the convex hull as

shown in Fig. 6.

The last constraint is Height constraint. We reject any

tangent plane when the height difference is greater than a

threshold dH : Fig. 7 shows an example of removing

inconsistent and unstable tangent planes. A 3D model is

represented by a point clouds model and a tangent plane is

represented by a square-shaped polygon. It shows that

the number of candidates for the matching tangent plane is

greatly reduced by the three constraints.

3.3.3. Matching tangent planes

Rejection of unstable and local tangent planes signifi-

cantly reduces the number of tangent planes. The last step in

pose estimation is finding two matching tangent planes, one

from each pose, which registers two 3D models with a

minimum pose error. For every STP in {T1}; we derive a

transformation matrix Q21 using every STP in {T2};

measure the pose error ep; and find two STPs which yield

the best-matching. Let the coordinate of a STP in {T1} be

T1 and another STP in {T2} be T2: Similarly, let the

coordinate of the BTP be B: The transformation matrix of

Fig. 7. Finding STPs on a 3D model based on geometric constraints. (a)

Initial tangent planes (186 planes). (b) After removing volume-intersecting

planes (dI ¼ 3 mm; 141 planes). (c) After removing unstable planes (18

planes). (d) After height comparison (dH ¼ 3 mm; 9 planes).

Fig. 6. An unstable tangent plane. The projection of CoM to the plane is

outside the convex hull of supporting vertices.

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635628

the second pose-model (a set of vertices P2) to the first

pose-model (a set of vertices P1) is estimated by using T2

and T1: The transformation matrix first aligns T2 with

the BTP is

B0 ¼ T21
2 B; ð4Þ

and then T1 with B0 by rotating the model along the Y axis

T1 ¼ R21
y B0

: ð5Þ

The coordinate system of B is the same as the world (or

common) coordinate system. A rotation matrix Ry aligns B0

with T1: It is a rotation along the Y axis and computed by

Ry ¼

cos u 0 2sin u 0

0 1 0 0

sin u 0 cos u 0

0 0 0 1

0
BBBBBB@

1
CCCCCCA

where

cos u

sin u

 !
¼

B0
x þ B0

zB
0
z 2 B0

x

B0
x 2 B0

zB
0
x þ B0

z

 !21
T1x þ T1z

T1x 2 T1z

 !
:

Let the translation from the origin of the common

coordinate system to each CoM be M1 and M2: Then the

pose transformation matrix Q21 from P2 to P1 is computed

by

P0
2 ¼ M1R21

y T21
2 M21

2 P2 ð6Þ

P0
2 ¼ Q21P2: ð7Þ

CoM of a 3D model is computed by a mass-computation

technique [16]. The best-matching pose transformation Q21

is estimated by minimizing a cost function between two

pose-models

min
{T1[{T1};T2[{T2}}

X
kP1 2 Q21P2k

2
n o

: ð8Þ

3.4. Pose registration

From the estimated pose Q21; we register and refine the

second pose-model (the second set of multi-view range

images) to the first pose-model. Refinement algorithm is

based on a geometric registration technique and it is similar

to that of multi-view registration [2]. Since registration

among multi-view range images of each pose-model is

already refined, we do the pose refinement only between two

range image sets. From all partial surfaces in Pose2, we

sample some of the vertices as control points, and find

intersecting points from partial surfaces in Pose1. The first

pose-model is fixed as a reference model and the second

pose-model is registered iteratively until a pose error

(translation and rotation between two control point sets)

becomes close to zero.

4. Pose integration

After pose registration, two models are integrated into a

complete 3D model. Pose integration computes final signed

distance of the model Df ðpÞ; which is a function of signed

distances to each pose

Df ðpÞ ¼ f ðD1ðpÞ;D2ðpÞÞ; ð9Þ

where

DiðpÞ ¼ f ðdi
0ðpÞ;…; di

N0iðpÞÞ for i ¼ 1; 2:

DiðpÞ is a weighted signed distance of a voxel p in pose i;

di
jðpÞ is the signed distance in pose i and view j; and Ni

0 is the

number of overlapping shapes in pose i: To derive the

function f ð Þ; we have to see which class p belongs to in each

pose. If p is seen from any view in both poses, Df ðpÞ can be

computed as a weighted average. However, if there is any

occlusion or concavity in either pose, Df ðpÞ is estimated

based on the class of p in both poses.

Let us consider situations that are more complex.

Suppose there is a concavity on the object’s surface as

shown in Fig. 8. In Fig. 8(a) for example, Op1 is the common

coordinate system of the first pose and all view points are

nearly on the XZ plane of the coordinate system. We see that

no view in the first pose can observe the concavity. But in

Fig. 8(b), some of the views in the second pose can see the

concavity. If a voxel p is inside of unseen surface region as

shown in Fig. 8(a), it is classified as p [Pinside in the first

pose. Then, the MC algorithm closes a mesh model by

following the visual hull VH1ðOÞ of the multi-view frustum

as shown in the figure. However, because it is seen from the

second pose, there is no possibility that the MC algorithm

marches on the same voxel p: Instead, the algorithm must

follow the object’s surface, such as a voxel p [Poverlap as in

Fig. 8(b).

A technique of integrating two pose-models is based on

the integration of two implicit models. If there are two

implicit models A and B; the merged model C can be

represented simply as C ¼ A > B: In this case, a final

signed distance Df ðpÞ can be represented as Df ðpÞ ¼
max{D1ðpÞ;D2ðpÞ}; where DiðpÞ is a signed distance of p

in the pose i and DiðpÞ , 0 when p is inside an object [21,

23]. But, in a real system, selecting the maximum distance

may shrink the volume of the final model. Rather than

selecting the maximum, we average two weighted signed

distances, when p [Pi
overlap for j ¼ 1 and 2. Otherwise, we

heuristically select one of the distances or the maximum.

Consequently, we select either the maximum Dmax; the

average Davg; or one of the distances DiðpÞ according to the

results of multi-view integration as follows.

† Df ðpÞ ¼DavgðpÞ ¼

P
WiðpÞDiðpÞP

WiðpÞ
; if p[P1

overlap and

p[P2
overlap:

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635 629

†
Df ðpÞ ¼Dmax ¼max{D1ðpÞ;D2ðpÞ}; if p[P1

inside and

p[P2
inside:

† Df ðpÞ ¼D1ðpÞ; if p[P2
inside; or Df ðpÞ ¼D2ðpÞ; if

p[P1
inside:

However, in some situations, a voxel will be in both

P1
nonoverlap and P2

nonoverlap: A voxel in a concave region

sometimes belongs to this class. Consider an example

shown in Fig. 9. In the figure, the signed distance from

voxel p to two pose-models are D1ðpÞ and D2ðpÞ and

p[P1
nonoverlap and p[P2

nonoverlap: As shown in the figure,

D1ðpÞ has (2) sign, even though the voxel is outside the

object, because it is not visible from pose1. If lD1ðpÞl,
lD2ðpÞl; the MC algorithm may choose the shorter one,

then the voxel is considered inside the object. Typically,

such errors happen near the visual hull and an example of

some artifacts of an object with a concave region is

shown in Fig. 10(a).

Rather than selecting the shorter of the two distances in

the two pose-models, we compare visibility of the voxel for

the views in each pose-model, i.e. check if the voxel is in

Pnonoverlap in both poses. If the voxel has many positive signs

from the view points, it implies high visibility (our implicit

representation assigns (þ) sign when a voxel is outside an

object). The visibility of the voxel can be considered the

number of positive distances to each pose. It can be easily

determined by counting the number of positive distances of

di
jðpÞ in each pose. Therefore, we define more conditions for

computing Df ðpÞ in Pnonoverlap: If a voxel p [P1
nonoverlap and

p [P2
nonoverlap

† Df ðpÞ ¼ D1ðpÞ if countþðd1
j ðpÞÞ . countþðd2

j ðpÞ:
† Df ðpÞ ¼ D2ðpÞ if countþðd2

j ðpÞÞ . countþðd1
j ðpÞÞ:

where countþð Þ is the count of the number of positive

distances in di
jðpÞ; where j ¼ 0;…;Ni

0: After applying these

conditions for distance selection, we obtain an accurate

reconstruction of the concave object’s surface shown in

Fig. 10(b).

5. Texture mapping

Texture mapping is the last step of our 3D reconstruction.

After integrating two pose-models into a new 3D model, we

Fig. 9. Errors of mesh growing in a concave region. If lD1ðpÞl , lD2ðpÞl;
voxel p has a wrong distance sign.

Fig. 8. Signed distance in a concave region. (a) MC algorithm follows the

visual hull VH1ðOÞ to close the mesh model. (b) MC algorithm follows the

actual surface of the object.

Fig. 10. Artifacts in a concave region. (a) Artifacts are near the visual hull.

(b) Correct pose integration.

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635630

map textures on the surfaces of the model. We apply a

general view-independent texture mapping technique. For

each vertex on the object’s surface, we find the best view

point from all viewing directions of two poses. The best

view is selected based on the cosine of the angle between the

vertex normal and different viewing directions. If three

vertices of a triangle face map to the same view point, we

texture the triangle face using the image of that same view.

If vertices on the triangle are mapped to different view

points, we interpolate textures on the triangle using the

barycentric coordinate system. We use range images of all

viewing directions as Z-buffers to decide if a vertex is

occluded from any view.

6. Experimental results

6.1. Error analysis

To analyze the accuracy of our 3D modeling technique,

two ground truth objects are employed. Figs. 11 and 12

show the two ground truth objects and their dimension. The

first object is a rectangular parallelepiped and the second

one is a cylinder. Dimension of the reconstructed 3D models

are measured and compared to those of the ground truth

models.

3D ground truth models are generated by a computer

simulation and represented by point clouds. Using an ICP

(Itesative Closest Point)-based registration technique, we

first register a ground truth model to its conjugate, which is

reconstructed by the pose integration technique. Then root

mean square (RMS) and maximum (MAX) dimensional

errors are measured between all points on the reconstructed

model and their closest conjugates on the ground truth. We

iteratively register the 3D model to its ground truth until the

registration errors (translation and rotation) converge close

to zero. We use about 400 control points for ‘Cubes’ and

about 300 points for ‘Cylinder’ objects. The registration

results of two objects are 1.03 mm (Cubes) and 1.61 mm

(Cylinder), respectively.

For the Cubes object, the RMS and MAX errors in W ;H

and D dimensions are measured for all vertices on

corresponding planes—for example the top and bottom

planes for H dimension—with respect to the closest vertices

on the ground truth. Similarly for the Cylinder object, errors

in R and H dimensions are measured using points on side

surfaces, and top and bottom surfaces, respectively. Table 1

shows RMS and MAX errors in all dimensions of the Cubes

object. We also measure a volumetric error ðVÞ of the

reconstructed model using a volume measuring technique

described in Ref. [16]. Compared to the volume of the

ground truth, the reconstructed model has 2.04% error as

shown in the table. Table 2 shows the results of the Cylinder

object.

6.2. Application to real objects

We have performed 3D modeling experiments on several

real and complex objects. We use a Pentium III 1 GHz

personal computer for the experiments. Each object is

placed on a turntable and eight stereo image pairs are taken

for each pose. A stereo image pair consists of two

1280 £ 960 color images. Range image is reconstructed

by a stereo matching technique with a resolution of

320 £ 240. We place the object in a normal upright pose

Table 1

RMS and maximum errors of ‘Cubes’

Dimension W (mm) D (mm) H (mm) V (mm3)

Size 60 60 90 324,000

RMS error 1.06 0.90 0.85 330,542

MAX error 2.99 3.03 2.17

(%) error (RMS) 1.76 1.50 0.94 2.04

Fig. 11. (a) Object ‘Cubes’ used in error analysis. (b) Dimension in mm.

Fig. 12. (a) Object ‘Cylinder’ used in error analysis. (b) Dimension in mm.

Table 2

RMS and maximum errors of ‘Cylinder’

Dimension H (mm) R (mm) V (mm3)

Size 138.2 52.04 1,175,797.4

RMS error 1.54 1.20 1,179,466.7

MAX error 4.56 4.42

(%) error (RMS) 1.11 2.29 0.31

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635 631

for the first 3D pose-model, and on its side for the second 3D

pose-model.

Fig. 13(a) and (b) shows images of two poses of a toy

object ‘Monkey’. We sprayed some color paint on its

surface to introduce contrast. Reconstructed surface models

are shown in Fig. 13(f) and (g), respectively. Pose between

two pose-models is estimated and a matching STP on each

pose-model is shown in Fig. 13(c) and (d). The squares

represent the matching planes. Overlapping of two models

after coarse registration is shown in Fig. 13(e). Fig. 13(h) is

the integration result of two pose-models. The size of voxel

used in this reconstruction is 4 mm. All surfaces of the

object are reasonably reconstructed including the bottom

Fig. 13. Results of ‘Monkey’ (a) Pose1. (b) Pose2. (c) Pose1 mesh model and its matching tangent plane to Pose2. (d) Pose2 mesh model and its matching

tangent plane to Pose1. (e) Coarsely registered models. (f) Pose1 mesh model. (g) Pose2 mesh model. (The bottom shape is accurately reconstructed, but some

artifacts in occluded area). (h) Integrated model. (i) Novel views of the object.

Table 3

Number of tangent planes

Object Constraints

(a) (b) (c) (d)

Monkey Pose1 186 141 18 8

Pose2 171 154 21 4

PolarBear Pose1 180 150 18 7

Pose2 167 144 11 4

Pokemon Pose1 205 173 8 2

Pose2 185 173 17 9

(a) Initial planes. (b) Intersection constraint. (c) Stability constraint. (d)

Height constraint.

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635632

surface as shown in the figure. Fig. 13(i) shows three novel

views of the integrated 3D model. The texture mapping

results show accurate reconstruction on the object’s surface

including top and bottom.

The number of tangent planes at every rejection step in

pose estimation is shown in Table 3. The Monkey object is

polygonized with a voxel size of 4 mm. Table 4 shows

threshold angle uG; threshold distances dH and dI ; average

pose error between two pose-models, number of vertices,

and total estimation time. For measuring pose error, we use

Eq. (1). From a vertex p1i in P1; we find the closest vertex

p2i in P2 as the corresponding one. We sampled 50 vertices

from each 3D model for computing the error measure.

The second object is a small toy, ‘Pokemon’. Its

height is only 8 cm. To introduce contrast on the object’s

surface, we project a random dot pattern using a slide

projector. Fig. 14(c)–(e) shows pose estimation results.

There are some occlusions in the second pose as shown

in Fig. 14(g), but an integrated 3D model in Fig. 14(h)

Table 4

Pose estimation error and estimation time ðDi=Dmi ¼ 0:1Þ

Object Monkey PolarBear Pokemon

Voxel size (mm) 4 4 2

cosðuGÞ 0.8 0.5 0.5

dI ; dH (mm) 3.0 3.0 3.0

Avg. error (mm) 2.46 1.95 2.44

No. of vertices 3294 5106 6180

Time (s) 22.8 24.3 27.5

Fig. 14. Reconstruction of ‘Pokemon’. (a) Pose1. (b) Pose2. (c) Pose1 mesh model and its matching tangent plane to Pose2. (d) Pose2 mesh model and its

matching tangent plane to Pose1. (e) Coarsely registered models. (f) Pose1 mesh model. (g) Pose2 mesh model. (There are some artifacts in occluded area). (h)

Integrated model. (i) Novel views of the object.

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635 633

shows an accurate reconstruction. Texture mapping

results in Fig. 14(i) show novel views of the object.

Results of the last object ‘PolarBear’ are in Fig. 15.

Reconstruction time depends on the number of vertices

and triangles. When there are about 4000 vertices and 8000

triangles on a 3D model, approximate computation time is

about 7 min for multi-view registration and integration.

Pose estimation takes about 20–30 s as shown in Table 3.

For integration of two pose-models, we need about 1 min for

pose refinement, 2 min for pose integration, and 1 min for

texture mapping.

7. Conclusions

A pose estimation and integration technique is presented

for automatic and complete 3D model reconstruction. In

order to avoid hidden surfaces that arise when only one pose

is used, two poses are used. We introduce a novel technique

for registering and integrating two partial 3D models for two

different poses. The technique is based on matching STPs of

one with the BTP of the other pose and vice versa. In the

matching step, some geometric constraints are used to

reduce computation and enhance accuracy. In the pose

integration step, a voxel classification technique is used for

accurate surface reconstruction. Texture mapped 3D models

of several real objects are presented. Experimental results

on real objects show that our novel pose registration and

integration technique is effective.

References

[1] P. Allen, R. Yang, Registering, integrating, and building CAD models

from range data, IEEE International Conference on Robotics and

Automation (1998) 3115–3120.

[2] R. Bergevin, M. Soucy, H. Gagnon, D. Laurendeau, Toward a general

multi-view registration technique, IEEE Transactions on Pattern

Analysis and Machine Intelligence 18 (5) (1996).

[3] F. Bernadini, I.M. Martin, H. Rushmeier, High-quality texture

reconstruction from multiple scans, IEEE Transactions on Visualiza-

tion and Computer Graphics 7 (4) (2001) 318–332.

[4] Y. Chen, G. Medioni, Object modeling by registration of multiple

range images, Image and Vision Computing 10 (3) (1992)

145–155.

Fig. 15. Reconstruction of ‘PolarBear’. (a) Pose1. (b) Pose2. (c) Pose1 mesh model and its matching tangent plane to Pose2. (d) Pose2 mesh model and its

matching tangent plane to Pose1. (e) Coarsely registered models. (f) Novel views of the object.

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635634

[5] B. Curless, M. Levoy, A volumetric method for building complex

models from range images, in: Proceedings of SIGGRAPH (1996)

303–312.

[6] A.W. Fitzgibbon, G. Cross, A. Zisserman, Automatic 3D model

construction for turn-table sequences, European Workshop SMILE’98,

Lecture Notes in Computer Science 1506, 1998, pp. 155–170.

[7] A. Hilton, A.J. Stoddart, J. Illingworth, T. Windeatt, Reliable surface

reconstruction from multiple range images, Proceedings of the

ECCV’96, Springer-Verlag, Berlin, 1996, pp. 117–126.

[8] D.F. Huber, Automatic 3D modeling using range images obtained

from unknown viewpoints, Proceedings of the Third International

Conference on 3-D Digital Imaging and Modeling, IEEE Computer

Society, Silver Spring, MD, 2001, pp. 153–160.

[9] K. Ikeuchi, M. Hebert, Spherical representations: from EGI (Extended

Gaussion Image) to SAI, Technical Report CMU-CS-95-197, 1995.

[10] Y. Iwakiri, T. Kaneko, PC-based real-time texture painting on real

world objects, Computer Graphics Forum 20 (3) (2001).

[11] S.B. Kang, K. Ikeuchi, 3D object pose determination using complex

EGI (Extended Gaussion Image), Technical Report CMU-RI-TR-90-

18, 1990.

[12] D.J. Kriegman, Computing stable poses of piecewise smooth objects,

Image Understanding 55 (2) (1992) 109–118.

[13] P. Lander, A multi-camera method for 3D digitization of dynamic, real-

world events, PhD Dissertation, Carnegie Mellon University, 1998.

[14] H. Lensch, W. Heidrich, H. Seidel, Automated texture registration and

stitching for real world models, in: Proceedings of Pacific Graphics

2000, IEEE Computer Society Press, Silver Spring, MD, 2000,

pp. 317–327.

[15] W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution

3D surface construction algorithm, Computer Graphics 21 (4) (1987).

[16] B. Mirtich, Fast and accurate computation of polyhedral mass

properties, Journal of Graphics Tools 1 (2) (1996) 31–50.

[17] W. Niem, Automatic reconstruction of 3D objects using

a mobile camera, Image and Vision Computing 17 (1999) 125–134.

[18] S.M. Seitz, C.R. Dyer, Photorealistic scene reconstruction by voxel

coloring, in: Proceedings of Computer Vision and Pattern Recognition

Conference, 1997, pp. 1067–1073.

[19] S. Park, M. Subbarao, Automatic 3D model reconstruction using

voxel coding and pose integration, International Conference on Image

Processing, 2002.

[20] S. Park, M. Subbarao, Pose estimation of two-pose 3D models using

the base tangent plane and stability constraints, Proceedings of Vision,

Modeling, and Visualization, 2002.

[21] A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, Function

representation in geometric modeling: concepts, implementation

and applications, The Visual Computer 11 (8) (1995) 429–446.

[22] K. Pulli, Surface reconstruction and display from range and color data,

PhD Dissertation, University of Washington, 1997.

[23] M.K. Reed, P.K. Allen, 3-D modeling from range imagery: an

incremental method with a planning component, Image and Vision

Computing 17 (1999) 99–111.

[24] S. Rusinkiewicz, O. Hall-Holt, M. Levoy, Real-time 3D model

acquisition, ACM Translations on Graphics (2002) (SIGGRAPH

2002).

[25] I. Stamos, P.K. Allen, Geometry and texture recovery of scenes of

large scale, Computer Vision and Image Understanding 88 (2) (2002)

94–118.

[26] I. Stamos, M. Leordeanu, Automated feature-based range registration

of urban scenes of large scale, Proceedings of Computer Vision and

Pattern Recognition 2 (2003) 555–561.

[27] R.Y. Tsai, A versatile camera calibration technique for high-accuracy

3D machine vision metrology using off-the-shelf TV camera and

lenses, IEEE Journal of Robotics and Automation 3 (4) (1987)

323–344.

[28] K. Wong, R. Cipolla, Structure and motion from silhouettes, in:

Proceedings of Eighth IEEE International Conference on Computer

Vision (ICCV01), Vancouver, Canada, vol. 2, 2001, pp. 217–222.

S.-Y. Park, M. Subbarao / Image and Vision Computing 22 (2004) 623–635 635

	Automatic 3D model reconstruction based on novel pose estimation and integration techniques
	Introduction
	Reconstruction of a single pose-model
	Range image acquisition
	Multi-view registration
	Multi-view integration

	Pose estimation and registration
	Base tangent plane
	Stability constraints
	Pose estimation
	Pose registration

	Pose integration
	Texture mapping
	Experimental results
	Error analysis
	Application to real objects

	Conclusions
	References

