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Abstract

The Point Spread Function (PSF) of an image forming optical sys-
tem is determined by the parameters of the optical system and the
distance or depth of the object being imaged. In this paper we con-
sider the depth information in the PSF of the optical system deter-
mined by paraxial wave optics under quasi-monochromatic incoherent
illumination. The spread parameter of a PSF 1s defined as the standard
deviation of the distribution of the PSF. If o, is the spread parameter
of the PSF of a defocused optical system corresponding to an object
at distance w, then it is shown that y/o2 — 02 ~ mu~! + ¢ where
o2, m, and ¢ are constants determined by the parameters of the opti-
cal system. This relation is useful in determining the distance u of the
object using its defocused image. Usually, o, >> 0¢, and therefore
the linear relation o, &~ mu~! + ¢ is obtained between ¢, and 1/u.
In this paper, we also compare the PSFs determined by paraxial wave
optics and paraxial geometric optics.



1 Introduction

The defocus information in the image of an object formed by a camera
system can be used to determine the distance or depth of the object from
the camera system [9, 3, 12, 13, 14, 15]. Here we present some results on
the relation between a measure of defocus and the distance of the object.

The Point Spread Function (PSF) of an image forming optical system
is the image of a point light source object. The PSF depends both on the
parameters of the optical system and the distance or depth of the point
light source object from the optical system. Here we consider the depth
information contained in the PSF corresponding to a quasi-monochromatic
and incoherent point light source object. The angle 8 between the direction
of location of the point object and the optical axis is assumed small so that
the paraxial approximation sin 8 & 6 is acceptable.

We characterize a PSF in terms of a spread parameter defined as the
standard deviation of the distribution of the PSF. The spread parameter
of the PSF of an optical system is a minimum when the optical system
is perfectly focused. For defocused optical systems, the spread parameter
increases with increasing defocus.

Let o, and o, be the spread parameters of PSFs corresponding to de-
focused and focused cases respectively where the PSFs are determined by
paraxial wave optics. Further, let o, be the spread parameter of the PSF
for defocused case when the PSF is determined by paraxial geometric op-
tics. In this paper we show that o2 = Ug2 + o. Consequently, we show that
V02 — 02 ~ mu~!+c where u is the distance from the optical system of the
object being imaged, and, m and ¢ are constants determined by the param-
eters of the optical system. For a given optical system, oq is a constant and
is usually small (approximately 1.0) in comaprison with o, and therefore
we get 0, ~ mu~! + c. This relation implies that the spread parameter
is a linear function of the reciprocal of distance w. This relation had been
derived earlier [15, 13] based on the principles of paraxial geometric optics;
now it has been derived from the principles of paraxial wave optics.

The results above also confirm an earlier hypothesis based on experi-
mental observations [15, 13] that the spread parameter of a PSF is approxi-
mately proportional to the diameter of the blur circle predicted by paraxial
geometric optics.

We also compare here the PSF determined by paraxial geometric op-
tics with that determined by paraxial wave optics for different amounts of
defocus through computer simulation. Such a comparative study has been



carried out earler by Lee [7]. Our comparative study shows that, as the
amount of defocus increases, the PSIF determined by paraxial wave optics
approaches that determined by paraxial geometric optics. This result is in
agreement with that obtained by Lee [7].

The derivations in this paper are based on a formula for the Optical
Transfer Function (OTF) of a defocused optical system derived by Hopkins
in his classic paper [5]. A very useful simplification of Hopkins’ formula was
given by Levi and Austing [8]. This simplified formula is the starting point
of one of our main derivations. However, Hopkins’ original derivations make
certain approximations (which are well accepted in optics literature) and
therefore, the formula for OTF used by us is not exact but only “almost
exact”. Because of this lack of exactness, the OTF formula implies that the
value of the spread parameter of a perfectly focused optical system is infinity.
This creates a problem in our derivation. We overcome this difficulty by
showing through computer simulation that the spread parameter of the PSF
of a perfectly focused optical system computed over a large but finite region
on the image detector plane has a finite value (approximately 1.0). Physical
arguments also can be made to support that the spread parameter has to
be finite in value.

2 Defocusing Model

The defocusing model used here follows from the models used by Hopkins
[5], Levi and Austing [8], and Stokseth [11] in particular.

The properties of an image forming optical system can be described by
specifying the electro-magnetic field distribution at the entrance pupil and
the exit pupil of the optical system ([2], Section 6-1; [1]). In this paper
we will consider only circularly symmetric optical systems, and therefore
circular entrance and exit pupils.

Figure 1 shows a defocused imaging system. Here, O is a point object and
WO is a diverging spherical wavefront emanating from O and incident on
the entrance pupil ENP. The incident spherical wavefront WO is converted
by the optical system into a new spherical wavefront WI emerging from the
exit pupil EXP. The emerging wavefront WI converges toward an ideal image
point I in the image space. If an image detector such as a photographic film
is placed at I, then a “focused image” of the object point O is recorded by
the film. If, however, the image detector (ID in Fig. 1) is placed at a different
point such as P, then a “defocused image” or “blurred image” is recorded



by the film.

Let WP be a hypothetical spherical wavefront at the exit pupil which
converges to point P. We refer to WP as the reference wavefront. The path
difference between the actual wave front WI and the reference wavefront
WP as a function of angle 6 (see Fig. 1) is called the wavefront aberration
function W. The function W has its maximum value W, (equal to length
AB in Fig. 1) at the edge of the exit pupil. This maximum value is a measure
of the defect of focus. Rayleigh’s tolerance on defocusing is A/4, and hence
is taken as the unit of defocus. The value of focus defect (or the amount of

defocus) is denoted by A and is defined by

L (1)
A4

In Figure 1, let 8 be the half-angle of the cone subtended by the exit
pupil at the focused image point I. We will restrict our analysis to only
defocus aberration. Other aberrations will be assumed to be negligible.
Therefore 8 will be assumed to be small so that the approximation sin § ~ 6
is acceptable. Let R be the radius of the exit pupil, v the radius of wavefront
WI, s the radius of wavefront WP, é the distance between the focused image
point I and the image detector position P.

All quantities will be expressed in reduced units so that the results can
be stated independent of wavelength and the f-number of the optical system.
First, geometrical lengths are normalized by the radius R of the exit pupil.
Next, the distances measured on the image detector plane are normalized by
half the distance of the image detector from the exit pupil ( s/2in Fig. 1) and
the wavelength A. This has the effect of normalizing the image magnification
and then normalizing with respect to A. As a consequence of these three
normalization steps, if r’ is the geometrical length measured on the image
detector and r is the reduced length, then

A =

T/ T/

= = 2
(s/2R)X  F A 2)
where Fis the f-number of the imaging system defined by
S
F=—.
5R (3)

Also, if p’ is the actual spatial frequency of an image pattern measured on
the image detector plane, then the reduced spatial frequency p is given by

p=Ap F. (4)



3 Defocus A

For triangle IPB in Fig. 1, noting that cos(m — #) = — cos# and using the
cosine law of triangles, we have
BP? = v? + 6% + 206 cosb . (5)
For paraxial optics, @ is small, and therefore
R
l ~ —. 6
. (6)

In addtition, by ignoring fourth and higher order terms in the series expan-
sion of cos @ , we obtian

cos ~ 1— — . (7)

From equations (5) and (7) we obtain

6R2 1/2

Assuming || << 1 in equation (8) we get

6R?
BP = |l - ——
(v+9) [ 20(v + 5)2] )
In Fig. 1,
Wiaw = AB = AP — BP = v +6 — BP . (10)
From equations (10), (9 ), (1), and noting that s = v 4 ¢, we obtain
2 2 _ 2
A~ 2R 0 _ 2R (8 v) _ 2R (l_l) ‘ (1)
A v(v+9) A v s A \v s
According to the well-known lens makers formula, we have
1 1 1
=4, 12
7=ty (12)
From equations (11) and (12) we get
2R2 /1 1 1
Ay — |————-— . 1
A (f U 5) (13)

Relation (13) gives an expression for the focus defect A in terms of the
parameters s, f, R of the optical system, and the distance u of the object.



4 Relation between A and o,

According to paraxial geometric optics, the defocused image of a point is
a circular disc of constant brightness called blur circle. In Fig. 1, the blur
circle corresponding to object point O is centered at P on the image detector
plane ID and has a radius 7/, = PQ. An expression for r/ can be obtained
by noting that, for small values of 8, triangles C'O2I and ¢ PI are similar.

We therefore have

r R

If 7/ is the radius of the blur circle expressed in reduced units, then from

relation (2) we obtain

T/

T, = 7/\(5/02}2) . (15)

From equations (11),(14), and (15) we obtain
o = A . (16)

Therefore, the defocus parameter A is equal to the radius of the correspond-
ing blur circle expressed in reduced units. The blur circle is indeed the PSF
determined by the paraxial geometric optics. If hy(r) denotes this PSF, then
we have

1
hy(r) = 2 for 0<r<A (17)
= 0 for 7> A

For any circularly symmetric PSF h(r), the spread o of the PSF is defined
as

o? = 21 /OO P h(r)dr . (18)

If 0, is the spread parameter of h,(r), then from equations (17) and (18) we
obtain

o, = — . (19)

Above we have a relation between o, and A. From equations (13) and (19)
we have

o, = mu~l + ¢ (20)
where ) )
2 2 1 1
m= — \/_/\R and ¢ = \/_/\R <? - g) . (21)



Equations (20) and (21) imply that o, is linearly related to the reciprocal
of distance for a given set of parameters s, f, R of the optical system and
wavelength A.

5 Relation between o, and o,

Let hy(r) and h,(r) be the PSFs of the optical system determined by parax-
ial wave optics, where h,,(r) corresponds to the defocused case (i.e. A >0 ),
and h,(r) corresponds to the perfectly focused case (i.e. A =0 ). Let g,
and o, be the spread parameters of h,(r) and h,(r) respectively. We shall
now show that o2 = 03 + o2,

let h(2,y) be the PSF and H(w,v) be the corresponding optical transfer
function, i.e. H(w,v)is the Fourier transform of h,(z,y) given by

oo ptoo .
H(w,v)= / / h(z,y) e=I2m(@Etvy) g0 dy (22)
Assuming h,(z,y) to be circularly symmetric, the spread parameter o, is
given by
+oo +oo
oy = / / (2® + y*)h(z, y) de dy . (23)
From equations (22) and (23) it can be shown that
[Vzﬂ(w,y)] o T —4r?o? (24)

where V? is the Laplacian operator defined by

d? d?

2—_ -
v _8w2+81/2'

(25)
Because the PSF h,(z,y) is circularly symmetric, the OTF H(w,v) is also
circularly symmetric. Therefore we will denote the PSF by hy(r) where
r = a2+ y? and OTF by H(p) where p = vVw? + v?2. According to Levi
and Austing [8] !, the OTF corresponding to a focus defect A is given by

Hip,A) = %/1 VI cos[2nAp(t— p)) di . (26)

P

!There is a typographic error in the Levi and Austing [8] paper; the factor% should
be £

T



In polar coordinates, equations (24) and (25) can be written as

V2 H(p,A)] = —ar?al (27)
p:
and 52 5
1
2 e — _—
\Y =57+ 59, (28)

To find the Laplacian of H(p,A), we need to take derivatives of the right
hand side (RHS) of equation (26) with respect to p. Taking derivatives is
not striaghtforward since p appears both in the integration limit and in
the function to be integrated . However, the following trick % can be used.
Consider two functions pi(p) and pa(p) given by

pi(p)=p and pap)=p. (29)
Now equation (26) can be written as

4 1
H(p1,p2;A) = ;/ V1 —t2cos[2n Apy(t — pg)]dt . (30)
p1

Now we can use chain rule to find the derivatives of H with respect to p.
For example,

om _ ofdpy O dp
dp — Op1 dp  Dpy dp
o o0H
= 4. 31
dp1 dp2 ( )

Similarliy we can show that

0*H B 82H_|_ 0*H . 0*H +82H
apr dpt  9p10py  0p20m dp3

(32)

From equations (30), (31), and (32) we can derive

oH 4 2
3—,01 = — 7V L —py (33)
*H

= 0 34
dp10p2 ( )

2This approach was suggested by Mr. Peter Meigom at S.U.N.Y Stony Brook.



82H 4 P1

e VAR

1
g_H = 8A [ VT= (1 — 2p) sin[27 Aps(t — po)]dt (36)
P2 P1
021
- 0 37
dp20p1 (37)
(38)
and
020 ! )
T - —8A/ V=2 [[(t = 202)% cos2m Apa(t — p2)](27A)
2 P1
=2sin[2rApa(t — p2)]] dt . (39)

Using the above expressions (28-39), and the result

1
/ V1—12dt = f—6 ) (40)
0

we obtain
[VQH(,O)] 0= —272A% —4Ax?ol (41)
p:
where
1 1 2
ol = — lim i (42)
7T p—0 P

From equations (27), (41), and (19) we obtain

L =0.4 00 (43)

o
From equations (27) and (41), we see that when A =0, ¢, = 0,,. Therefore,
0, is the spread parameter of the PSF when the optical system is focused,
i.e. when the focus defect A is zero. However, according to equation (42),
0, is infinity.

On physical grounds, we believe that the spread parameter o, for a
focused PSF (i.e. A = 0) must be finite. The reason for o, becoming infinity
in equation (42) is because the original derivation of Hopkins [5] on which
equation (26) is based involves certain approximations, and therfore equation
(26) is not exact.

The intensity distribution produced by a point light source on the image
detector must decrease at least as the inverse of the squared radial distance (



inverse square law for light energy ) for sufficiently large distances. Further,
since a point light source produces only finite energy, equation (23) implies
that o, must be finite. Computer simulations show that when o, is computed
by carrying out the integration on the RHS of equation (23) over an area of
the image plane accounting for 95% of the energy in the PSF, the value of
0, is approximately 1.0. More details of the computer simulations are given
in Section 6.
From equations (43) and (20) we have

Vo2 —a2 ~ mu e, (44)

Above we have an equation relating the spread parameter o, to the distance
u of the object. Note that o2, m, and ¢ are constants for a given optical
system, and therefore, one can estimate the distance u from a knowledge of
Cop-

In practice it is found that ¢, ~ 1.0 and o, >> o¢,. In this case we have

ow ~ mu 4 (45)

which gives a direct linear relation between o, and u™'. Equation (45)
implies that
oy R Oy . (46)

Relations (46), (16), and (19) together confirm the earlier hypothesis of
Subbarao and Natarajan [15] based on experimental observations that the
spread parameter of a PSF is approximately proportional to the diameter
of the corresponding blur circle.

It is interesting to cross check equation (26) given by Levi and Austing
[8] with that in Goodman [2] when A = 0 (equation 6.31in [2]). Substituting
A =0 in the equation (26), we get

H(p,0) = %/pl Vi— . (47)

The RHS above can be integrated to obtain

Hp0)= 2|5 —sin~tp— /= p2] (48)

Noting that 7 — sin™! p = cos™! p, we obtain

X e A (49)

The above equation is exactly the same as that in [2].
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6 Comparison of PSFs for geometric optics and
wave optics

The PSF for paraxial geometric optics is given by equation (17). For paraxial
wave optics, the PSF is given by inverse Fourier-Bessel transform as below:

o0

hw(r, A) = 27r/0 H(p,AN)Jo(2mpr)pdp , (50)
where Jy is the zeroth order Bessel function of the first kind, and r is the
reduced radial distance on the image detector plane.

The OTF H(p,A) was computed for different amounts of defocus de-
fect (A =0,1,2,5,10,30,50, 70,100,200, 500,1000) using equation (26). A
numerical integration method (trapezoidal rule) was used to integrate equa-
tion (26). A plot of the OTFs thus computed is shown in Fig. 2. Such plots
of OTFs for defocusing can be found in many papers and books ([1] page
486-487 ; [5] ; [11]). We have included these plots for completeness.

The OTFs computed above were used to compute the corresponding
PSF's using eqaution (50). Again a numerical integration method was em-
ployed 3. A plot of the computed PSFs are showen in Fig. 3. We see that, for
small values of defocus A, the PSFs exhibit dark and bright rings predom-
inantly. As defocus A increases, the width of the rings become narrower,
and generally the contrast between dark and bright rings reduces. For large
values of defocus A, the rings become very narrow with reduced contrast
(thus becoming invisible) and the PSFs become very similar to the PSF's
predicted by geometric optics. In each plot, both diffraction PSF h,(r) and
geometric PSF hy(r) are plotted so that the two can be compared. We have
found such plots of PSFs only in the work of Lee [7] and nowhere else. These
plots are useful in gaining insight into the nature of the PSFs.

For the PSFs (hy(r)s) computed above, the corresponding spread pa-
rameters (o,8) were computed using equation (18). Here again, a numerical
integration method was used. The upper limit of the integration in equation
(18) was taken to be a finite value L such that the “volume” (or energy)
under the PSF h,,(r) within a region of radius L centered at the origin was
95% or more of the total volume (or energy). If V(L) denotes this volume,

then
L

V(L) = zﬂ/ » h(r)dr | (51)

®The upper limit of integration in equation (50) can be set to 1.0 because H(p, §) = 0
for p>1.0.

11



Note that, for all PSFs,
Llim V(L)=1.0. (52)

Therefore, L was such that V(L) > 0.95.

Table 1 shows the computed values of ¢, for various defocus amounts
A. In addition, the table also lists the corresponding values of V(L), o, (or
A/V?2), and /o2 — o2,

First we point out that o, has a finite value which is in fact relatively
small (approximately 1.0). All computed values of o, listed are less than
the actual values of o,, because V(L) < 1.0. Acoording to our theoretical
results in the earlier sections, \/o2, — 02 should be approximately equal o,.
We see that this is indeed true within computational approximations (i.e.
errors caused by V(L) < 1.0 and by numerical integration, and limited
precision of computations). Actual experimental verification of the relation
Vo2 — 02 =~ mu~! 4 ¢ can be found in [14]. A plot of \/02 — 02 vs A is
shown in Fig. 4 at three different scales. As predicted by theory, we see that
the plots are almost straight lines with slopes close to 1//2 at all scales.

7 PSF for broad-band illumination

Until now we have considered the PSF due to quasi-monochromatic illumi-
nation. For broad-band illumination, if I(\) is the illumination spectrum,
then the overall PSF is given by

h(r) = /OOO I(A) o (r, A) dA (53)

As a simple example, consider the PSF of human eyes under white light
illumination. Let A, = 10 for A, = 450 nm. A typical visibility curve for a
normal eye is shown in Fig. 5 (after [10]). A discrete approximation to the
overall PSF can be computed as follows. Let W; be the scaled value of the
visibility curve at A; = 450+ 7% 20 nm for ¢ = 0,1,2,---,10. From equation
(13) we compute the defocus A; for different A; as
A=A, 20 (54)
Ai
For each A;, we compute h;(r) using equation (50). The weights W; are
normalized such that they add to 1.0, i.e.

10
> Wi=10. (55)
1=0

12



Now the overall PSF can be estimated as
h(r)=>_ Wi hi(r) . (56)

This overall PSF can be compared with the PSF predicted by geometric
optics where the average defocus amount A is estimated by

A=) Wi A;. (57)

The results of these comptutations are shown in Fig. 6. Copmaring this over-
all PSF for white light illumination to the corresponding quasi-monochromatic
PSF in Fig. 3 (A = 10) we see that the two are different.

Another result of computing the overall PSF for white light illumination
is shown in Fig. 7. In this case A;s are the same as in the previous case, but
A, = 100, and W; = 7 for all 7 (i.e. uniform visibility). Again we see that
the overall PSF is different from the corresponding quasi-monochromatic
PSF in Fig. 3. Often, the overall PSF of a system under white light is
modeled as a two-dimensional Gaussian function (e.g. [10, 6, 9]). However,
our two examples here shows that the overall PSF can be quite different from
a two-dimensional Gaussian, and therefore Gaussian is not a satisfactory
model.

8 Conclusion

We have examined the relation between the distance of an object from an
image forming optical system, the parameters of the optical system, and
the PSFE of the optical system corresponding to the object. We have char-
acterized the PSF in terms of a spread parameter defined as the standard
deviation of the distribution of the PSF. An approximate equation where
the spread paramter is linearly related to the reciprocal of the distance of the
object has been derived. This equation has been verified through computer
simulation. This suggests that the spread parameter is a useful measure of
the distance of an object from a camera system. These results provide a
theoretical basis for some of our earlier experimental work on finding the
distance of objects from their blurred images. These results are also useful
in machine vision applications and research.
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