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Abstract

New methods for determining the distance of a simple class of objects from a cam-

era system are presented. The methods use the defocus or blur information in the images

formed by an optical system such as a convex lens. Paraxial geometric optics forms the

theoretical basis of these methods. The class of objects includes bright points, lines, step

edges, blobs, stripes, and smooth edges. Only one defocused image is used. The methods

are general in the sense that no restrictions are imposed on the form of the point spread

function of the camera system. Computational methods are presented for determining the

distance of objects, focal length of the camera system, and the size of the camera’s aper-

ture. Methods are also presented for finding the point spread function, line spread func-

tion, and the edge spread function of the camera system. The methods for determining

distance have been implemented and verified experimentally. The experimental results

suggest that useful depth information can be obtained from defocus information. Both

experimental and theoretical error analyses are presented.

1. Introduction

The image of a scene formed by an optical system such as a convex lens contains

information about the distance (or depth) of objects in the scene. Objects at a particular

distance are focused whereas other objects are defocused or blurred by different degrees

depending on their distance. The depth information inherent in defocus has recently
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drawn the attention of some researchers (Pentland, ’87, ’89; Grossman, 1987; Subbarao,

1987a,b,c, 1988, 1989; Subbarao and Natarajan, 1988; T. Hwang, J. J. Clark, and A. L.

Yuille, 1989). For a camera with a lens of focal length f the relation between the position

of a point close to the optical axis in the scene and the position of its focused image is

given by the well known lens formula

(1.1)
f
1� � =

u
1� � +

v
1� � ,

where u is the distance of the object, and v is the distance of the image (see Figure 1).

Therefore, in the image formed by a camera, only objects at a certain distance are in

focus; other objects are blurred by varying degrees depending on their distance. The dis-

tance of an object that is in focus can be recovered easily using the lens formula (e.g.:

Horn, 1968; Tenenbaum, 1970; Jarvis, 1983; Schlag et al, 1983; Krotkov, 1986). Here

we consider the more general problem of finding the distance of an object that may or

may not be in focus.

2. Previous work

Pentland (1987) and Grossman (1987) both addressed the problem of recovering

depth from blurred edges. Pentland modeled a blurred edge as the result of convolving a

focused image with a Gaussian point spread function. He showed that if C(x,y) is the

laplacian of the observed image then the spread σ of the Gaussian is related to C (x,y) by

(2.1)ln

��
� √� ���2π σ3

b� ����������� 	 
� −
2σ2

x 2� ����� = ln

x

C(x,y)� ������������� ,
where b is the magnitude (or ‘‘height’’) of the step edge and x,y the image coordinate

system with its origin on the edge and x-axis perpendicular to the edge. In the above

equation b and σ are the only unknowns. He solved for these unknowns by formulating

the above equation as a linear regression in x 2 . The depth was then computed from σ.

Pentland applied his method to an image of a natural scene and showed that depth of

edges could be classified as being small, medium, or large.

Grossman (1987) showed experimentally that useful depth information can be

obtained from blurred edges. He considers, in addition to step-edges, edges of finite

width (e.g.: ramp edge). Grossman however does not provide a theoretical justification
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for his method.

Subbarao and Gurumoorthy (1987) presented a new approach for finding the dis-

tance of step edges. The computational method of this approach was much simpler than

that of Pentland’s. The solution for the edge height b and the spread σ in equation (2.1)

were given in closed-form. More importantly, the new method assumed only that the

point spread function of the camera was rotationally symmetric. It was not restricted to

the case where the point spread function was a Gaussian as in Pentland’s method. The

method was verified experimentally and shown to provide useful depth information.

3. New developments

In this paper we develop a formal theoretical frame-work for determining distance.

The frame-work is based on paraxial geometric optics (cf. Hecht and Zajac, 1979; Born

and Wolf, 1975; Gaskill, 1978). While the previous work deals only with step edges, here

we present methods for finding the distance of a larger class of objects. The objects

include points, blobs (e.g. spot patterns of finite size), lines, stripes (elongated bar-like

patterns of finite width), step edges, and smoothly rising edges (e.g. ramp edges). Further,

no restrictions are imposed on the form of the point spread function of the camera sys-

tem. In particular, the point spread function is not restricted to be of a Gaussian form or a

rotationally symmetric form, as is the case in previous work. In addition to describing

computational methods for determining the distance of the objects, this paper also sug-

gests methods for finding certain camera parameters such as the focal length and the

aperture size of the camera system. Methods are also presented for finding the point

spread function, line spread function, and the edge spread function of the camera system.

The results of experiments carried-out using an actual camera system are presented.

These results verify our theoretical frame-work and the computational approach. This

paper includes both experimental and theoretical error analyses. Such analyses are not

found in the previous work that we know of.

4. Example

The basic framework of our approach can be illustrated with the example of the

method of determining the distance of an object having a brightness step edge (see Figure
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2). The defocused edge image of the object is modeled as the result of convolving the

focused image of the object with a point spread function (Figure 2a). The point spread

function depends both on the camera parameters and the distance of the object from the

camera.

The derivative of the defocused image is computed along a direction perpendicular

to the edge (i.e. along the gradient direction). The height of the edge and line spread

function of the camera are computed from this derivative image (Figure 2b). The stan-

dard deviation (σl 0) of the distribution of the line spread function is then computed (Fig-

ure 2c). This quantity is called the spread parameter of the line spread function. It is a

measure of image blur or defocus. The distance of the object is then computed from this

spread parameter (Figure 2d). This last step requires the knowledge of some camera con-

stants which can be determined by measuring certain camera parameters. The camera

parameters are: size and shape of the camera’s aperture, focal length, and distance

between the lens and the image detector. The camera constants can also be determined

experimentally through a calibration procedure.

The calibration procedure involves the following steps. The edge image of the

object is recorded for several known distances of the object from the camera system. For

each image the spread parameter of the line spread function is computed. The camera

constants are then determined from a knowledge of both the distance and the correspond-

ing spread parameter.

Methods for determining the distance of other objects such as points, blobs, lines,

and stripes are similar to the above method.

5. Notation, Definitions, and Preliminaries

In this section we will describe the notation used in the remaining sections and

define terms and present results for subsequent usage.

5.1 Functions of one variable

Let ψ be any function of one variable, say x.

The zeroth moment of ψ is denoted by A ψ and is defined as

7/20/89 Submitted to IEEE Trans. on PAMI page 4



Murali Subbarao Determining Distance

(5.1.1)A ψ =
−∞
∫
∞

ψ(x) dx .

A ψ defined above can be interpreted as the area under the curve y = ψ(x) plotted on

a graph sheet. It can also be interpreted as the mass of a rod of infinite length whose den-

sity as a function of position is given by ψ(x).

The first normalized moment of ψ is denoted by x
�

ψ and is defined as

(5.1.2)x
�

ψ =
A ψ

1� �����
−∞
∫
∞

x ψ(x) dx .

x
�

ψ defined above can be interpreted as the mean of the distribution of the function

ψ. It can also be interpreted as the center of mass of a rod of infinite length whose den-

sity distribution is given by ψ(x).

The second central moment of ψ is denoted by σψ
2 and is defined as

(5.1.3)σψ
2 =

A ψ

1� �����
−∞
∫
∞

(x−x
�

ψ)2 ψ(x) dx .

σψ as defined above can be interpreted as the standard deviation of the distribution

of the function ψ. It can also be interpreted as the radius of gyration of a rod of infinite

length about its center of mass whose density distribution is given by ψ(x).

Fourier transforms of functions will be denoted by the respective capital letters.

The Fourier transform of ψ is denoted by Ψ and is defined as

(5.1.4)Ψ(ω) =
−∞
∫
∞

ψ(x) e − jωx dx ,

where j =√� ���−1 and ω is the spatial Fourier frequency expressed in radians per unit dis-

tance.

The first derivative of Ψ(ω) with respect to ω is denoted by Ψ′(ω). It can be shown

that

(5.1.5)Ψ′(ω) = − j
−∞
∫
∞

x ψ(x) e − jωx dx .
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The second derivative of Ψ(ω) with respect to ω is denoted by Ψ′′(ω). It can be

shown that

(5.1.6)Ψ′′(ω) = −
−∞
∫
∞

x 2 ψ(x) e − jωx dx .

The three theorems below follow from equations (5.1.4), (5.1.5), and (5.1.6).

Theorem 5.1.1a: A ψ = Ψ(0) �
Theorem 5.1.1b: If A ψ=1 then x� ψ = j Ψ′(0) �
Theorem 5.1.1c: If A ψ=1, and x

�
ψ=0, then Ψ′′(0) = − σψ

2 �
Let h (x), w (x), and z (x) be three functions. For these three functions, we define the

quantities Ah , Aw , Az , x� h , x� w , x
�

z , σh , σw , σz, H (ω), W (ω), Z (ω), H′(ω), W′(ω), Z′(ω), and

H′′(ω), W′′(ω), Z′′(ω), as we have done above for function ψ. Now we state and prove an

important theorem which will be used in determining the distance of defocused stripes

and smoothly rising edges.

Theorem 5.1.2: Let z (x) = h (x) ** w (x), where ‘**’ denotes convolution operation. Also,

let Ah=1, Aw=1, x h=0, and x! w = 0. Then the following results hold: Az=1, x
"

z = 0, and

σz
2 = σh

2 + σw
2 .

Proof: Convolution in the spatial domain is equivalent to multiplication in the Fourier

domain. Therefore

(5.1.7)Z (ω) = H (ω) W(ω) .

Consequently,

(5.1.8)Az = Z (0) = H (0) W (0) = Ah
. Aw = 1 . 1 = 1 .

Similarly,

(5.1.9)x
#

z = Z′(0) = H (0) W′(0) + H′(0) W (0) = Ahx
$

w + x
%

hAw = 0 ,

and
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(5.1.10)σz
2 = Z′′(0) = H (0) W′′(0) + 2H′(0)W′(0) + H′′(0) W (0)

= Ahσw
2 + 2x& hx

'
w + σh

2Aw

= σw
2 + σh

2 (

The above theorem implies that, under some weak conditions, the variance of the

distribution of the convolution of two functions is equal to the sum of the variances of the

distributions of the two individual functions. We suspect that the above result is not new.

It is probably known in probability theory and statistics. (It is known in probability

theory that the probability density function of the summation of two independent zero-

mean random variables is given by the convolution of the probability density functions of

the two individual random variables.) A similar result holds for functions of two vari-

ables. It is stated in the next section.

5.2 Functions of two variables

We now define a set of terms and present results for functions of two variables that

are analogous to those above for the case of functions of one variable.

Let γ be any function of two variables, say x and y.

The zeroth moment of γ is denoted by A γ and is defined as

(5.2.1)A γ =
−∞
∫
∞

−∞
∫
∞

γ(x,y) dx dy.

A γ defined above can be interpreted as the volume under the surface z = γ(x,y). It

can also be interpreted as the mass of a plate of infinite area whose density as a function

of position is given by γ(x,y).

The first normalized moment of γ about the y −axis is denoted by x
)

γ and is defined

as

(5.2.2)x
*

γ =
A γ

1+ +�+
−∞
∫
∞

−∞
∫
∞

x γ(x,y) dx dy.

7/20/89 Submitted to IEEE Trans. on PAMI page 7



Murali Subbarao Determining Distance

The first normalized moment of γ about the x −axis is denoted by y
,

γ and is defined

as

(5.2.3)y
-

γ =
A γ

1. .�.
−∞
∫
∞

−∞
∫
∞

y γ(x,y) dx dy.

The point (x
/

γ ,y0 γ) as defined above can be interpreted as the center of mass of a

plate of infinite area whose density distribution is given by γ(x,y).

The second central moment of γ parallel to the y −axis is denoted by σxγ
2 and is

defined as

(5.2.4)σxγ
2 =

A γ

11 1�1
−∞
∫
∞

−∞
∫
∞

(x−x
2

γ)2 γ(x,y) dx dy.

The second central moment of γ parallel to the x −axis is denoted by σyγ
2 and is

defined as

(5.2.5)σyγ
2 =

A γ

13 3�3
−∞
∫
∞

−∞
∫
∞

(y−y
4

γ)2 γ(x,y) dx dy.

The second central moment of γ is denoted by σγ
2 and is defined as

(5.2.6)σγ
2 =

A γ

15 5�5
−∞
∫
∞

−∞
∫
∞

[(x−x
6

γ)2 + (y−y7 γ)2] γ(x,y) dx dy.

σγ as defined above can be interpreted as the standard deviation of the distribution

of the function γ. It can also be interpreted as the radius of gyration of a plate of infinite

area about its center of mass whose density distribution is given by γ(x,y).

From the above definitions we have

(5.2.7)σγ
2 = σxγ

2 + σyγ
2 .

The Fourier transform of γ is denoted by Γ and is defined as

(5.2.8)Γ(ω,ν) =
−∞
∫
∞

γ(x,y) e − j(ωx+νy) dx dy,

where and ω,ν are the spatial Fourier frequencies expressed in radians per unit distance.
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The first partial derivatives of Γ with respect to ω and ν are denoted by Γω and Γν

respectively. Similarly, the second partial derivatives will be denoted by Γωω , Γων, and

Γνν.

The six theorems stated below follow from the above definitions and notation.

Theorem 5.2.1a: A γ = Γ(0,0) 8
Theorem 5.2.1b: If A γ=1 then x9 γ = j Γω(0,0) :
Theorem 5.2.1c: If A γ=1 then y

;
γ = j Γν(0,0) <

Theorem 5.2.1d: If A γ=1, and x= γ=0, then Γωω(0,0) = − σxγ
2 >

Theorem 5.2.1e: If A γ=1, and y
?

γ=0, then Γνν(0,0) = − σyγ
2 @

Theorem 5.2.1f: If A γ=1, x
A

γ=0, and y
B

γ=0, then

Γωω(0,0) + Γνν(0,0) = − σγ
2 C

Theorem 5.2.2: If z (x,y) = h (x,y) ** w (x,y), Ah=Aw=1, x
D

h = x
E

w = 0, and y
F

h = y
G

w = 0,

then Az=1, xH z = 0, y
I

z = 0, and σz
2 = σh

2 + σw
2 J

The spread parameter of a function is defined as the standard deviation of the distri-

bution of the function. For example, σψ is the spread parameter of the function ψ and σγ

is the spread parameter of the function γ.

6. Point Spread Function

The point spread function of a camera system is the image brightness distribution

produced by a point light source when the light flux incident on the camera from the

point light source is one unit.

We will denote the point spread function by h (x,y). Following the notation in sec-

tion 5, we define the quantities Ah , xK h , y
L

h , σxh , σyh , and σh corresponding to the function

h.

Since the definition of the point spread function specifies the incident light flux to

be one unit, due to conservation of energy, we have
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(6.1)Ah = 1.

Let P be a point on a visible surface in the scene and p be its focused image (see

Figure 1). The relation between the positions of P and p is given by the lens formula

(1.1). If P is not in focus then it gives rise to a blurred image. According to geometric

optics, the blurred image of P has the same shape as the lens aperture but scaled by a fac-

tor. The scaling factor depends on the amount of blur. More the blur or defocus, larger

the scaling factor. When the image is in exact focus, according to geometric optics, the

scaling factor is zero and therefore the image is a point of intense brightness. If the

incident light energy on the camera system from P is b units, then the focused image can

be described by bδ(x −x
M

h ,y−y
N

h) where δ is the Dirac Delta function.

Without loss of generality, we will assume that the Cartesian coordinate system on

the image plane is defined with its origin at (xO h ,yP h), i.e.

(6.2)x
Q

h = 0 , and

(6.3)y
R

h = 0.

Therefore, h (x,y) can be thought of as the response of the camera system to the input sig-

nal δ(x,y)

6.1 Relation between σh and u: two examples

Usually camera systems have a circular aperture. In this case, the blurred image of

a point on the image detector is circular in shape and is called the blur circle. Let r be

the radius of this blur circle, R be the radius of the lens aperture, and s be the distance

from the lens to the image detector plane (see Figure 1). Also let q be the scaling factor

defined by

(6.4)q =
R
rS S .

In Figure 1, from similar triangles we have

(6.5)
R
rT T =

v
s − vU U�U�U�U = s

VW
X v

1Y Y −
s
1Z Z [ \] .

Substituting for 1/v from equation (1.1) in the above equation, we obtain
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(6.6)q = s

^_
` f

1a a −
u
1b b −

s
1c c d ef .

Therefore

(6.7)r = R q = Rs

gh
i f

1j j −
u
1k k −

s
1l l m no .

Note that q and therefore r can be either positive or negative depending on whether s≥v

or s <v. In the former case the image detector plane is behind the focused image of P and

in the latter case it is in front of the focused image of P. However, in practice, the sign of

r cannot be determined from a single image. This gives rise to a two-fold ambiguity in

the determination of distance. This ambiguity can be avoided by setting the distance

between the lens and the image detector to be equal to the focal length, i.e. s = f. In this

case q is always negative. Therefore a unique solution is obtained for distance.

According to geometric optics, the intensity within the blur circle is approximately

constant. Therefore, using equation (6.1) we get

(6.8)h 1(x,y) =

pq
r q
s 0

πr 2

1t t�t�t
otherwise.

if x 2+y 2≤r 2

But due to diffraction and non-idealities of lenses (Horn, 1986; Schreiber, 1986; Pent-

land, 1987; Subbarao, 1987a,b) an alternative model is suggested for the intensity distri-

bution given by a two-dimensional Gaussian

(6.9)h 2(x,y) =
2πσ2

1u u�u�u�u e
−

2
1v v

σ2

x 2+y 2w w w w w w

where σ is the spread parameter such that

(6.10)σ = k r for k >0 .

(k is a constant of proportionality characteristic of a given camera; it is determined exper-

imentally at the beginning once and for all as a calibration step).

Suppose that the radius r in equation (6.7) is a constant over some region on the

image plane because the distance u and the camera parameters s,R, and f all remain the

same. Then the camera acts as a linear shift-invariant system (cf. Rosenfeld and Kak,
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1982). Therefore the observed image g (x,y) is the result of convolving the correspond-

ing focused image f (x,y) with the camera’s point spread function h (x,y), i.e.

(6.11)g (x,y) = h (x,y) ** f (x,y)

where ** denotes the convolution operation.

The point spread functions h 1 and h 2 defined above are only two specific examples

used to clarify our method. In order to deal with other forms of point spread functions,

we use the spread parameter σh to characterize them. As mentioned earlier, σh is the

standard deviation of the distribution of the function h.

Using a polar coordinate system, it can be shown that the spread parameter σh 1

corresponding to h 1 is r /√x x2 . Therefore, from equation (6.7) we have

(6.12)σh 1 = m 1 u −1 + c 1 ,

where

(6.13)m 1 = −
√y y2Rsz z�z�z and c 1 =

√{ {2Rs| |�|�| }~
� f

1� � −
s
1� � � �� .

We see above that for a given camera setting (i.e. for a given value of the camera param-

eters s, f ,R) the spread parameter σh 1 depends linearly on inverse distance u −1 .

Using the results

(6.14)
−∞
∫
∞

e
−

2σ2

t 2� � � �
dt = √� ���2π σ , and

(6.15)
−∞
∫
∞

t 2 e
−

2σ2

t 2� � � �
dt = √� ���2π σ3 ,

it can be shown that the spread parameter σh 2 of h 2 is √� �2 σ. Therefore, from equations

(6.10) and (6.7) we can write

(6.16)σh 2 = m 2 u −1 + c 2 ,

where

7/20/89 Submitted to IEEE Trans. on PAMI page 12



Murali Subbarao Determining Distance

(6.17)m 2 = − √� �2 kRs and c 2 = √� �2 kRs

��
� f

1� � −
s
1� � � �� .

We see above that for a given camera setting (i.e. for a given value of the camera param-

eters k,s, f ,R) the spread parameter σh 2 depends linearly on inverse distance u −1 .

6.2 Relation between σh and u: the general case

We next proceed to show, based on geometric optics, that the spread parameter σh

of the point spread function h is linearly related to inverse distance u −1 even when the

camera’s aperture is non-circular.

Let P (x,y) be the pupil function defined in the plane of the camera’s aperture (we

shall use context to distinguish between the point source P in Figure 1 and the pupil func-

tion P (x,y)). P (x,y) is defined to be 1 for points inside the aperture and 0 outside the

aperture, i.e.

(6.18)P(x,y) =

�� �
0

1

otherwise.

if point (x,y) is inside the aperture

Following the notation in section 5, we define the quantities Ap , x� p , y� p , σxp , σyp , and σp

for the pupil function P (x,y). We now define a polar coordinate system (ρ,θ) in the

aperture plane with its origin at (x� p ,y� p). We have

(6.19)x−x
�

p = ρ cosθ and y−y
�

p = ρ sinθ .

In this polar coordinate system, let the boundary of the aperture be given by

(6.20)ρ = R (θ) .

Therefore the the pupil function is given by

(6.21)P(ρ,θ) =

�� �
0

1

otherwise.

if ρ < R(θ)
.

Let another polar coordinate system be defined on the image detector with its origin at

(x  h ,y¡ h) and the x −axis along the same direction as that of the coordinate system in the

aperture plane. In this coordinate system we have

(6.22)x−x
¢

h = ρ cosθ and y−y
£

h = ρ sinθ .
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We noted earlier that the shape of the image of a point is a scaled replica of the shape of

the aperture, and that the image brightness is a constant inside the region covered by the

image. Therefore, in the new coordinate system, the boundary within which h is non-

zero can be given by ¤ q ¥ R (θ+iπ) where q is the scaling factor defined in equation (6.6)

and

(6.23)i =

¦§ ¨
0

1

otherwise.

if q≥0
.

When i =1, the shape of the image is the inverted (i.e. rotated by 1800) replica of the

aperture (see Figure 1).

Let A′h be the area of the region within the boundary defined by © q ª R (θ+iπ). Then

the image brightness within the region is 1/A′h . (Note A′h is not to be confused with Ah

defined by equation (5.2.1); Ah = 1 according to equation (6.1)).

The area Ap of the aperture is given by

(6.24)Ap =
0
∫

2π

0
∫

R (θ)

ρ dρ dθ =
2
1« «

0
∫

2π

R 2(θ) dθ .

The standard deviation σp of the pupil is given by

(6.25)σp
2 =

Ap

1¬ ¬�¬
0
∫

2π

0
∫

R (θ)

ρ3 dρ dθ =
4Ap

1­ ­�­�­
0
∫

2π

R 4(θ) dθ .

Having noted the above relations, it is now easy to derive the following relations which

relate the pupil function parameters to the point spread function parameters in terms of

the scaling factor q:

(6.26)A′h = q 2 Ap ,

(6.27)h(ρ,θ) =

®¯
° ¯
± 0

q 2Ap

1²³²�²³²�²
otherwise.

for ρ < ´ q µ R(θ+iπ)
.

(6.28)σh = q σp .

(6.29)σxh = q σxp .
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(6.30)σyh = q σyp .

Substituting for q from equation (6.6) in equation (6.28) we obtain

(6.31)σh = mh u −1 + ch

where mh and ch are camera constants given by

(6.32)mh = − s σp , and ch = s

¶·
¸ f

1¹ ¹ −
s
1º º » ¼½ σp .

For a given camera system, Ap and σp are fixed. Therefore, even for arbitrarily shaped

aperture, we see above that σh is linearly related to inverse distance u −1 .

In actuality, the relation between σh and u −1 will be close to linear, but not exactly

linear. The deviation from linearity is due to various effects such as diffraction, lens

aberrations, noise, etc. However, in our method of determining distance, what is impor-

tant is the fact that σh and u −1 are related. The fact that they may be linearly related is

not crucial, but this information is useful in in the computational implementation of the

method. We will describe this general method in section 13.5.

7. Line spread function

The line spread function of a camera system is the image brightness distribution

produced on the image plane by a line light source.

In order to simplify the presentation of our theory, we assume that the focused

image of the line source lies along the y −axis. A suitable translation and rotation of the

coordinate system can always be performed to satisfy this condition. When this condi-

tion is satisfied, the line source can be represented by δ(x). Let l (x) denote the line

spread function. Then we have

(7.1)l(x) = h (x,y) ** δ(x)

=
−∞
∫
∞

−∞
∫
∞

h(ξ,η) δ(x−ξ) dξdη
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=
−∞
∫
∞ ¾¿¿À

−∞
∫
∞

h(ξ,η) δ(x−ξ) dξ

Á ÂÂ
Ã dη

=
−∞
∫
∞

h(x,η) dη .

The right hand side of the above expression is a line integral along a line parallel to the

y-axis. For convenience we reexpress it as

(7.2)l(x) =
−∞
∫
∞

h(x,y) dy.

The equations above imply that l is a function of only x and is independent of y

irrespective of the form of h (x,y). In the remaining part of this paper, whenever a func-

tion depends only on one of the coordinates, say x, we drop the other coordinate y from

notation.

Following the notation described in section 5 for functions of one variable, we

define Al , x
Ä

l , and σl corresponding to l (x).

From equations (6.1) and (7.2) we obtain

(7.3)Al = 1.

From equations (5.1.2), (7.2), (7.3), (5.2.2), (6.2), (6.1) we obtain

(7.4)x
Å

l = 0 .

The line spread function corresponding to the point spread function h 1(x,y) in equa-

tion (6.8) can be derived analytically using equation (7.2). This can be shown to be (see

Figure 3)

(7.5)l 1(x) =

ÆÇ
È Ç
É 0

πr 2

2Ê Ê�Ê�Ê √Ë Ë�Ë�Ë�Ë�Ër 2 − x 2

otherwise.

if Ìx Í≤r
.

Similarly we find that the line spread function corresponding to h 2 in equations (6.9),

(6.10) is
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(7.6)l 2(x) =
√Î Î�Î2π σ

1Ï Ï�Ï�Ï�Ï�Ï e
−

2
1Ð Ð

σ2

x 2Ñ Ñ Ñ
.

l 2(x) above is the one-dimensional Gaussian line spread function.

We charactarize a general line spread function l (x) by its spread parameter σl . It is

equal to the standard deviation of the distribution of the function l. Substituting for ψ in

equation (5.1.3) by l, substituting for γ in equation (5.2.4) by h, and using equations (7.2),

(7.3), (6.1), we obtain

(7.7)σl = σxh .

From equations (6.29) and (7.7) we obtain

(7.8)σl = qσxp .

In the above equation, σxp can be determined from the pupil function. Therefore it is a

known constant for a given camera system. Now, from equations (6.6), (7.8) we can

write

(7.9)σl = ml u −1 + cl

where ml and cl are camera constants given by

(7.10)ml = − s σxp , and cl = s

ÒÓ
Ô f

1Õ Õ −
s
1Ö Ö × ØÙ σxp .

We see above that σl is linearly related to inverse distance u −1 . If the pupil function

P (x,y) is circularly symmetric about (x
Ú

p ,y
Û

p), then σxp remains the same for all orienta-

tions of the x −axis. Therefore the constants ml and cl remain the same for all orientations

of the line source.

When the pupil function is circularly symmetric, we note that σxp = σyp , and there-

fore, from equation (5.2.7) we get

(7.11)σp = √Ü Ü2 σxp .

If the pupil function is circularly symmetric, then the point spread function is also circu-

larly symmetric. In this case, it can be shown that

(7.12)σh = √Ý Ý2 σl .
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Above results can be verified for the two line spread functions in equations (7.5)

and (7.6). We find that xÞ l 1
and x

ß
l 2

corresponding to l 1 and l 2 respectively are both equal

to zero (this can be easily verified from symmetry consideration). Therefore the spread

parameters can be shown to be σl 1
= r /2 and σl 2

= σ. Since r and σ are linearly related

to inverse distance u −1 (see equations (6.7) and (6.10)), σl 1
,σl 2

are also linearly related

to u −1 .

8. Edge Spread Function

Edge spread function is the image of a unit step edge.

A unit step edge along the y −axis can be described by the standard unit step func-

tion u (x). Therefore, if e (x) denotes the edge spread function corresponding to an edge

along the y −axis, then we have

(8.1)e(x) = h (x,y) ** u (x) .

e (x) above gives the image brightness distribution produced by an edge whose brightness

is zero to the left of y axis and one unit to the right of y axis.

It is shown in Appendix that the edge spread function e 1(x) corresponding to

h 1(x,y) is

(8.2)e 1(x) =

àáá
â áá
ã

πr 2

1ä ä�ä�ä åæç πr 2 − r 2 Cos−1

èé
ê r

xë ë ì íî + x √ï ï�ï�ï�ï�ïr 2 − x 2

ð ñ
ò

0

1

if ó x ô < r .

if x ≤ −r

if x ≥ r

Similarly, the edge spread function e 2(x) corresponding to h 2(x,y) in equation (6.9) can

be shown to be

(8.3)e 2(x) =
√õ õ�õ2π σ

1ö ö�ö�ö�ö�ö
−∞
∫
x

e
−

2σ2

t 2÷ ÷ ÷ ÷
dt .

e 2(x) above is actually the one-dimensional cumulative normal distribution function.

9. Relation between edge spread and line spread functions
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The unit step function u (x) can be expressed as

(9.1)u (x) =
−∞
∫
x

δ(t) dt .

Therefore we have

(9.2)e (x) = h (x,y) **
−∞
∫
x

δ(t) dt .

Changing the order of integration and convolution, and noting that l (x) = h (x,y) ** δ(x),

we obtain

(9.3)e (x) =
−∞
∫
x

l(t) dt .

Denoting the derivative of e (x) with respect to x by e′(x) we obtain from the above equa-

tion

(9.4)l (x) = e′(x) .

Therefore, given the edge spread function, the corresponding line spread function can be

obtained from equation (9.4).

10. Determining Line Spread Function from Defocused Edges

Let f(x,y) be a step edge along the y-axis on the image plane (see Figure 2a). Let a

be the image intensity to the left of the y-axis and b be the height of the step. The image

can be expressed as

(10.1)f (x,y)=a+b u(x)

If g (x,y) is the observed image then we have

(10.2)g (x,y) = h(x,y)*f(x,y) .

Substituting for f (x,y) from equation (10.1) in equation (10.2) and using equation (8.1)

we obtain

(10.3)g (x) = a + b e(x) .

In the above equation, we have dropped y from g (x,y) for convenience. Now
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consider the derivative of g along the gradient direction, i.e. with respect to x. We will

denote it by gx(x) (see Figure 2b). We have from equations (9.3), (9.4), (10.3),

(10.4)gx(x) = b l(x) .

From equations (10.4) and (7.3) we obtain

(10.5)b =
−∞
∫
∞

gx(x) dx .

We have derived above an equation to obtain the height b of the original step edge

defined in equation (10.1). Having thus determined b, we obtain the line spread function

l(x) from equation (10.4) as (see Figure 2c)

(10.6)l(x) =
b

gx(x)ø ø�ø�ø�ø .

The spread parameter σl is then computed from l (x). The distance is then obtained

from equation (7.9) (or equation (11.1) below).

11. Determining Distance

In this section we will outline a method for determining the distance of a defocused

step edge (see Figure 2a-d). The methods for determining the distance of point and line

objects are similar to that of the method for edges presented here.

[1] Record the image g (x) of the defocused edge described by equation (10.3).

[2] Compute the derivative of the recorded image perpendicular to the edge (i.e. along
the gradient direction). For the edge described by equation (10.3), the derivative
gx(x) of g with respect to x is computed.

[3] Compute the height b of the edge using equation (10.5).

[4] Compute the line spread function l (x) using equation (10.6).

[5] Compute σl using equations (5.1.1), (5.1.2), and (5.1.3) (by substituting l for ψ in
these equations).

[6] Compute the distance using the equation (see equation (7.9))

(11.1)u −1 =
ml

σl − clù�ù�ù�ù�ù�ù .
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In order to perform step [6] above, we need to know the values of ml and cl . There

are two methods of determining these two quantities. The first method is by measuring

the three camera parameters s, f, σxp . Having measured these parameters by some

means, equation (7.10) is used to compute ml and cl . For most camera systems, the focal

length f and the aperture radius R are provided by the manufacturer as part of the camera

specifications. We have seen earlier that, for a circular aperture, σxp=R /2. Only the

parameter s which is the distance between the lens and the image plane needs to be meas-

ured. There are many methods for doing this, the simplest being directly measuring the

distance physically using a ruler.

The second method of determining ml and cl is through experiments. The minimal

experiments include the following steps:

[1] Place an object with a step edge in front of the camera at a known distance, say u 1 .

[2] Record the image of the edge and compute the corresponding spread parameter σl ,
say σl 1 .

[3] Move the edge object to a new position, say u 2 , record the image, and compute the
new spread parameter σl , say σl 2 . u 1 and u 2 should however satisfy a certain con-
dition. Without loss of generality let us assume u 2>u 1 . Let u 0 be the distance to
which the camera is focused. Then, u 1 and u 2 should be such that one of the fol-
lowing conditions should be satisfied

(11.2)u 2 > u 1 ≥ u 0 ,

or

(11.3)u 0≥u 2>u 1 .

Satisfaction of the above condition can be checked easily by visual means. The
object is moved gradually from u 1 to u 2 and for each position, it is checked to see
that the change in image blur is monotonic, i.e. the blur should continuously
increase or continuously decrease from position u 1 to u 2 .

[4] Solve the following two simultaneous equations to obtain ml and cl:

(11.4)σl 1 = ml u1
−1 + cl and σl 2 = ml u2

−1 + cl .

In practice, a more robust estimate of ml and cl can be made by recording the image

of an edge for a large number of different positions and using a least squares technique to

solve the system of linear equations.

Note that ml and cl need to be determined only once after one or more of the three

camera parameters s, f , σxp are changed. It is not necessary to determine them each time
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the distance of a new object is to be determined. Therefore, if the camera parameters are

fixed, then ml and cl need to be determined only once at the beginning. This constitutes

the camera calibration step.

12. Obtaining the Point Spread Function

Finding the point spread function of a camera system directly by imaging a point

light source is often impractical as it is difficult to realize an ideal point light source. In

such situations, if the point spread function is circularly symmetric, then it can be

obtained from the line spread function using the inverse Abel Transform. As we have

seen earlier, the line spread function itself can be obtained by imaging a flat surface with

a brightness step edge.

The inverse Abel transform essentially ‘‘back projects’’ the line spread function to

give the point spread function. Let (ρ,θ) define a polar coordinate system with its origin

at the center of symmetry of a circularly symmetric point spread function h (ρ). The rela-

tion between h (ρ) and the corresponding line spread function l(x) is (cf. Horn ’86, page

143)

(12.1)h (ρ) = −
π
1ú ú

ρ
∫
∞

√û û�û�û�û�ûx 2 − ρ2

l′(x)ü ü�ü�ü�ü�ü�ü�ü�ü dx = −
π
1ý ý

ρ
∫
∞

√þ þ�þ�þ�þ�þx 2 − ρ2

dx
dÿ ÿ�ÿ ��� x

l′(x)� ������� � �� dx ,

where l′ denotes the derivative of l with respect to x. The forward Abel transform is

defined as

(12.2)l(x) = 2
x
∫
∞

√� �	�
�
�
�ρ2 − x 2

ρ� ��������������� h (ρ) dρ.

One can verify the above two relations for the specific examples of the point spread func-

tions (6.8), (6.9) and the line spread functions (7.5), (7.6) given earlier.

Although equation (12.1) can be used to recover the point spread function from the

line spread function, in the experiments we conducted, we found the resolution of our

images to be insufficient to do this. Note that equation (12.1) requires the derivative of

the line spread function l(x). This is essentially a second derivative of the original edge

image g. The estimation of second derivative for the images in our experiments were

very unreliable. However, this equation will be useful for better quality camera systems.
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Our discussion in this section until now deals with a circularly symmetric point

spread function. If the point spread function is non-symmetric, then it can still be

obtained provided the line spread function is given for each possible orientation. Let L be

the one-dimensional Fourier transform of the line spread function l for a line source

through the origin and along a direction θ with respect to the x −axis. Also, let H be the

two-dimensional Fourier transform of the point spread function h for a point source at the

origin. Then it can be shown that L is equal to the cross-section of H along a line through

the origin at an angle θ+π/2 (cf. Rosenfeld and Kak, 1982; section 7.1.2). Therefore, if

we know l for all possible θs then H can be determined. Taking the inverse Fourier

transform of H gives the point spread function. For a circularly symmetric point spread

function, the cross-section of H is the same for all lines through the origin. This suggests

that the point spread function h can be determined given the line spread function at any

one orientation.

13. Blobs, Stripes, and Generalized Edges

In real camera systems, even when an object such as a point source is in best possi-

ble focus, the recorded image is not a geometric point of infinitesimal dimensions, but is

more like a ‘‘blob’’ having a small but a finite spread. Similarly, focused line sources

appear as stripes of small width and focused step edges appear as smooth edges with a

finite slope. The reason for this is that, the optical transfer function of any optical system

has a finite cutoff frequency (cf. Goodman, 1968; equation (6-31)). Discrete image sam-

pling and quantization also increase image blur.

Another reason for considering blobs, stripes, and smooth edges is that, often

images are preprocessed by a smoothing filter to reduce noise. For example, edge-

detection often involves smoothing by a filter such as a Gaussian. The effect of smooth-

ing by a convolution filter w (x,y) is to transform a point δ(x,y) into w (x,y), a line δ(x)

into
−∞
∫
∞

w (x,y) dy, and a unit edge u (x) into
−∞
∫
x

−∞
∫
∞

w (t,y) dt dy. For example, smoothing

may transform an underlying perfect step edge into a ramp edge having a nearly constant

slope. In this section we see that such smoothing operations cause no loss of depth infor-

mation in principle, and little loss of depth information in practice (provided smoothed

image gray levels are stored on the computer as floating point numbers and not rounded
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off to the usual 8 bits).

The discussion in this section also applies to a class of blob objects, stripe objects,

and smooth edge objects, which subtend a constant angle at the camera’s lens irrespec-

tive of their distance from the camera system. As a counter example, the discussion here

does not apply to a bright bar stripe whose absolute width is fixed, because, in this case,

the width of the image of the bar stripe decreases as its distance from the camera

increases. Therefore the angle subtended by the bar at the lens decreases with distance.

(Note however that, if the width of the original bar object in the scene is known, then its

width in the image gives depth information.)

13.1 Blobs

A unit blob α(x,y) is defined as an image pattern satisfying the three properties:

(13.1)A α = 1 ,

(13.2)x
�

α = 0 , and y
 α = 0 .

A blob can be thought of as a smeared point through the process δ(x,y) ** α(x,y), where

α(x,y) has properties similar to that of a point spread function.

A blob of strength b is denoted by f α(x,y) and is given by

(13.3)f α(x,y) = b α(x,y) .

The defocused image of the blob is

(13.4)g α(x,y) = b z α(x,y)

where

(13.5)z α(x,y) = α(x,y) ** h (x,y) .

From theorem (5.2.2) in section 5 we have Az α
= 1 and

(13.6)σz α
2 = σα

2 + σh
2 .

Therefore,
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(13.7)

−∞
∫
∞

−∞
∫
∞

g α(x,y) dx dy = b .

From the above equations we see that σz α
can be computed from the observed image.

Therefore, if we have prior knowledge of σα , then we can compute σh . The distance u

can then be estimated as before from σh using equation (6.31). If α(x,y) is known, as for

example is the case when it corresponds to an image smoothing filter, σα can be com-

puted using equation (5.2.6). Even if the function α(x,y) is not known, we shall see later

that σα can be estimated experimentally through camera calibration.

13.2 Stripes

A unit stripe β(x) lying along the y −axis is defined as a non-negative function satis-

fying the properties

(13.8)A β = 1 ,

and

(13.9)x
�

β = 0 .

A stripe can be thought of as a smeared line through the process δ(x) ** β(x), or

δ(x) ** α(x,y) where

(13.10)β(x) =
−∞
∫
∞

α(x,y) dy .

β(x) has properties similar to that of a line spread function.

A stripe of strength b is denoted by f β(x) and is given by

(13.11)f β(x) = b β(x) .

The defocused image of a stripe is

(13.12)g β(x) = b z β(x)

where

(13.13)z β(x) = β(x) ** h (x,y) .

Since we can write β(x) = β(x) ** δ(x), we have

7/20/89 Submitted to IEEE Trans. on PAMI page 25



Murali Subbarao Determining Distance

(13.14)z β(x) =
��
β(x) ** δ(x)

��
** h (x,y)

= β(x) **
��
δ(x) ** h (x,y)

��

= β(x) ** l(x) .

From theorem (5.1.2) in section 5, we have Az β
= 1, x� z β

= 0, and

(13.15)σz β
2 = σβ

2 + σ l
2 .

Therefore,

(13.16)
−∞
∫
∞

g β(x) dx = b .

From the above equations we see that σz β
can be computed from the observed image.

Therefore, if we have prior knowledge of σβ , then we can compute σl . The distance u

can then be estimated as before from σl using equation (11.1). If β(x) is known, as for

example is the case when it corresponds to an image smoothing filter, σβ can be com-

puted using equation (5.1.3). Even if the function β(x) is not known, we shall see later

that σβ can be estimated experimentally through camera calibration.

13.3 General Edges

A generalized unit edge along the y − axis is denoted by eg(x) and is defined as

(13.17)eg(x) =
−∞
∫
x

β(t) dt

where β is a unit stripe function defined earlier. eg(x) has properties similar to that of an

edge spread function.

A generalized edge of height b along the y − axis is denoted by fe(x) and is defined

as

(13.18)fe(x) = a + b eg(x) .

The defocused edge of a generalized edge is denoted by gg(x) and is given by

fe(x) ** h (x,y). It can be shown to be
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(13.19)gg(x) = a + b ze(x)

where

(13.20)ze(x) =
−∞
∫
x

z β(t) dt

and

(13.21)z β(x) = β(x) ** l(x) .

If the derivative of gg(x) with respect to x is denoted by ggx(x), then it is easy to see that

ggx(x) = g β(x) in equation (13.12). Therefore, the distance can be found from ggx by the

same method as described earlier for g β(x).

13.4 Estimating σα and σβ

We have seen above that the value of σα is needed to determine the distance of blob

objects and the value of σβ is needed to determine the distance of stripes and smooth

edges. We will describe here a method of estimating σβ through experiments for smooth

edges. This method constitutes the camera calibration step. This calibration step needs

to be done only once for each set of camera parameter values. It is not necessary to do

this step each time the distance of a new object is to be determined. A method similar to

that described here can be devised to determine σα for blob objects.

Equation (13.15) can be written as

(13.22)σz β
2 (u −1) = σβ

2 + σ l
2(u −1) .

The above equation makes explicit the fact that σz β
and σl are functions of inverse dis-

tance u −1 . In order to determine σβ , we record images of an edge object for a large

number of known values of u −1 at close intervals. For the position u −1 at which the lens

formula (1.1) holds, the object is in focus according to paraxial geometric optics. At this

position σ l
2=0 (see equations (1.1), (6.6), and (7.8)) and at all other positions σ l

2>0.

Therefore σz β
2 has the minimum value at this position and it is equal to σβ

2 . Denoting the

value of σz β
corresponding to this minimum by σz β

min , we can write

(13.23)σβ = σz β
min .
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σβ can be estimated from the above equation. σl for any position is then computed from

(13.24)σl = √
� ���������
σz β

2 − σβ
2 .

Having computed σl , the distance is computed from equation (11.1).

13.5 A General Method

All along, until now, we have strived to derive a linear relation for computing dis-

tance. Such a relation can always be derived for a camera system which can be modeled

adequately by paraxial geometric optics. Paraxial geometric optics is a good approxima-

tion to wave optics. If, however, a model based on paraxial geometric optics is not satis-

factory for a camera system, and for some reason a linear relation cannot be derived, then

an alternative method can be used. In this method, first we estimate the function

σz β
(u −1) through experiments at close intervals of u −1 and store it as a table of values in

computer memory. This table is then ‘‘inverted’’ to make it indexable by the value of

σz β
(see equation (13.15)) directly, and retrieve the corresponding value(s) of u −1 . For

any computed value of σz β
, the distance is determined by simply referring to this table.

The table can also be encoded in terms of a set of parameters by fitting piecewise polyno-

mials, and using these parameters to compute distance. This method is general and can

be used in most cases.

14. Determining camera parameters

In equation (6.6), note that the dependence of q on u and f are similar. q is linearly

related to both u −1 and f −1 . Therefore, a method similar to that for finding u can be used

for finding f. In this case, one has to keep u fixed and store σh or σl as a function of f −1 .

We can also obtain a method for determining σp if we can measure σh from the

image, and know the factor q. q can be computed from equation (6.6) by measuring the

values of s, f and u. σp is obtained directly from the computed value of σh using equa-

tion (6.28). Note that σp is a measure of the size of the camera’s aperture. A similar

method can be used to determine σxp from σl using equation (7.8). In the case of a cam-

era with circular aperture, these methods are useful in determining the radius of the

camera’s aperture.
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15. Noise

There are three sources of noise. The first is the signal noise due to the electronic

hardware that converts light energy to analog electrical signals. The other two sources are

quantization and discrete sampling. The effects of these three sources of noise on our

method of depth recovery are discussed in the Appendix.

All quantities computed from the recorded images are affected by noise. For exam-

ple, if σ̂l denotes the computed value of σl , then we can write

(15.1)σ̂l = σl + σlN

where σlN represents the unknown noise term. In our experiments, we study the effects

of noise on the various computed quantities in terms of the standard deviation of the

computed quantities. For example, we find in our experiments that the standard devia-

tion of σ̂l is usually about 0.1 pixel. See next section for more details.

16. Experiments and computational steps

The goal of our experiments was two fold: (i) to verify the applicability of our

mathematical model to practical camera systems, and (ii) to test the usefulness of the

method in practical applications.

Rectangular sheets of a black paper and a white paper were pasted adjacent to each

other on a cardboard. This created a step edge corresponding to a step discontinuity in

reflectance along a straight line. The cardboard was placed directly in front of a camera

such that the edge was vertical and located near the center of the camera’s field of view.

The camera was focused to 24’’ and nine images of the cardboard were acquired (see

Figure 4) for distances 8’’, 11’’, 14’’, 17’’, 20’’, 24’’, 33’’, 48’’, and 100’’ between the

cardboard and the camera. The camera setting (i.e. camera parameters) remained the

same for all images. The acquired images were trimmed to size 64×64 so that the edge

was approximately in the middle of the trimmed images. The edge was perpendicular to

the rows and extended from top row to the bottom row.

The camera used by us was a Panasonic WV-CD50, focal length 16 mm, aperture

diameter 11.4 mm, pixel size 0.013 mm × 0.017 mm, and 8 bits/pixel.
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In our experiments, since the edge on the cardboard was vertical, its image was

along a column of the image matrix. Therefore the gray values of pixels in a column

were approximately constant, but changed more or less monotonically along the rows.

Each of the 64×64 images were cut perpendicular to the edge into 16 equal strips of

size 4 rows × 64 columns. The edge was located approximately at the middle column of

these image strips. In each strip, the gray values of pixels in the same column (4 pixels)

were averaged. We will denote the resulting average pixel values of a strip by ĝ( j) for

j =0,1,2,...,63.

For each image strip, the first derivative of ĝ( j) was computed along the intensity

gradient by simply taking the difference of gray values of adjacent pixels. The intensity

gradient in our images was along the rows since the edge was perpendicular to the rows.

Let ĝx( j) represent the derivative. It is computed as

(16.1)ĝx( j) = ĝ( j +1) − ĝ( j) for j =0,1,2,...,62.

An initial estimate of the height b̂ of the edge was computed by

(16.2)b̂ =
j =0
Σ
62

ĝx( j).

The approximate position j
�ˆ

of the edge was then estimated by computing the first

moment of ĝx( j) as (see equation (5.1.2))

(16.3)j
�ˆ =

b̂

1� �
j =0
Σ
62

j ĝx( j) .

The following ‘‘noise cleaning’’ step was included to reduce the effects of noise. ĝx( j)

was traversed on either side of position j
�ˆ

until a pixel was reached where either ĝx( j) was

zero or its sign changed. All pixels between this pixel (where, for the first time, ĝx

became zero or its sign changed) and the pixel at the row’s end were set to zero (see Fig-

ure 5). This step is summarized in the following piece of psuedo-C-code:

k = j
�ˆ

/* k is the moving index */

while( ( k > 0 ) and ( ĝx(k) * ĝx(k-1) > 0 ) )

{ k = k - 1 }
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j1 = k /* marker for start position */

k = k - 1

while( k ≥ 0 )

{ ĝx(k) = 0 ; k = k - 1 }

k = j
 ˆ

while( ( k < 62 ) and ( ĝx(k) * ĝx(k+1) > 0 ) )

{ k = k + 1 }

j2 = k /* marker for end position */

k = k + 1

while( k ≤ 62 )

{ ĝx(k) = 0 ; k = k + 1 }

The above step sets to zero the non-zero values for ĝx( j) resulting from noise at points far

away from the location of the edge.

The ĝx( j) obtained by noise cleaning is used to recompute a refined estimate of the

height b̂ of the step edge using, again, equation (16.2). Next the line spread function is

computed from

(16.4)l̂( j) =
b̂

ĝx( j)! !�!�!�! for j=0,1,2,...,62.

Note that l̂ computed above is not exactly the line spread function, but corresponds to z β

in equations (13.14) and (13.21). However we shall use l̂ as σβ in equation (13.23) was

relatively small in our experiments. The image for distance u =24′′ was visually judged

to be the best possible focused image. From this image, σβ was estimated to be 0.977

pixel.

We recompute j
"ˆ

using the noise-cleaned ĝx( j) from equation (16.3) to obtain a

better estimate of the location of the edge. An estimate of the spread σ̂l of the line spread

function is computed from
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(16.5)σ̂l = ± √
#$#%#&#%#&#%#
j =0
Σ
62

( j − j
'ˆ
)2 l̂( j) − σβ

2 .

The results of the experiments are given in Table 1. Each of the nine images had 16

strips of size 4×64. For each image strip, location j
(ˆ

of the edge, height b̂ of the edge, and

the spread parameter σ̂l of the line spread function were computed. The mean value (µ)

and the standard deviation (σ) of these quantities over the 16 strips are tabulated for each

image. The standard deviations give a measure of the uncertainty in the computed quan-

tities due to noise and discretization effects.

We see in Table 1 that, the location of the edge is close to the center of the image

(32 pixels) for most images. The height of the edge ranged from about 25 gray levels to

50 gray levels and the spread parameter ranged from about 0 to 7 pixels. The standard

deviation of the position of the edge is about 0.15 pixel, and, for edge height it is about

1.5 gray level. The standard deviation of the spread parameter is about 0.1 pixel. We see

that all quantities are reasonable and the standard deviations are comparable to the meas-

urement errors.

Figure 6 shows a plot of the mean value of σ̂l as a function of inverse distance u −1 .

We see that this function is very nearly linear on either side of the position corresponding

to the focused distance which is u =24′′. Further, the slopes of the graph on either side of

the focused position are almost exactly equal. This confirms the linear relation predicted

by equation (7.9) and thus validates our theoretical model. The sign of σ̂l in equation

(16.5) cannot be determined without some a priori knowledge. It is because of this rea-

son that the graph in Figure 6 has a ‘V’ shape. This implies a two-fold ambiguity in dis-

tance u for a given value of σ̂l (see Figure 2d). As mentioned earlier, this ambiguity can

be avoided, for example, by setting s = f. In this case the focused image is always behind

the image detector and σ̂l is always negative.

Figure 7 has been obtained by enclosing the graph of Figure 6 with a dark band

whose vertical width at each point is approximately two times the standard deviation of

σ̂l . This shows that, at positions close to the camera’s focused distance, σ̂l is very small,

but the error δσ̂l is high. Therefore the uncertainty in distance is higher. At other posi-

tions, the error is usually small or moderate.
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Two more set of experiments, each similar to the one described above but with dif-

ferent camera settings were performed. The camera was focused to distances 14 inches

and 17 inches respectively for the first and second set of experiments. Nine images were

recorded and processed in each set of experiments. The results of these experiments were

similar to those reported here.

We found that noise cleaning step described earlier was very important in our

experiments. A small non-zero value of image derivative caused by noise at pixels far

away from the position of the edge affects the estimation of σ̂l considerably. The farther

a pixel is from the edge, the higher its effect on the final result (see error analysis in the

appendix) because the distance is squared in the computation of σ̂l .

The effective range of our method depends on the constants ml ,cl in equation (7.9)

and the image quality in terms of spatial and gray level resolution. This method is more

effective for objects at shorter distances than at longer distances because blur varies

linearly with inverse distance. The maximum distance of the cardboard in our experi-

ments was about 8 feet. The range can be increased by using a custom designed camera

which produces high quality images.

17. Conclusion

We have described a general method for determining the distance of a simple class

of objects by measuring the degree of image blur. The method is more accurate for

nearby objects than for distant objects. One limitation of the method is that it is res-

tricted to isolated objects; presence of other objects nearby (within a distance of about

twice the spread parameter of the object) affects depth estimation.

Methods for determining the distance of more complicated objects can be found in

(Subbarao, 1988,89). But these methods use two images as opposed to only one image in

the method presented here.
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APPENDIX

A. Edge spread function for a circular aperture

Referring to equations (8.1) and (6.8) we have

(a1)e 1(x) = h 1(x,y) ** u (x)

=
−∞
∫
∞

−∞
∫
∞

h 1(ξ,η) u(x−ξ) dξ dη

Figure 8 is a diagram representing the above equation. In this figure, (ξ,η) define a

Cartesian coordinate system. C is a circle of radius r and centered at the origin. h 1(ξ,η)

is zero outside the circle C and is 1/(πr 2) inside the circle. AB is a line given by ξ=x.

u (x −ξ) is 1 to the left of this line, and is 0 to the right of this line. Therefore, if ) x * < r it

can be shown that

(a2)e 1(x) =
πr 2

1+ +�+�+ × [Area of circle C to the left of line AB]

=
πr 2

1, ,�,�, ×

-..
/
Area of triangle OAB

Area of sector OADB +
Area of circle C − 0 112

=
πr 2

13 3�3�3 ×

45
6 πr 2 −

2
17 7 ( 2 θ ) r 2 +

2
18 8 x ( 2 y)

9 :
;

=
πr 2

1< <�<�< ×

=>
? πr 2 − r 2 Cos−1

@A
B r

xC C D EF + x √G G	G
G
G
Gr 2 − x 2

H I
J .

We have above one part of the result of equation (8.2). It is trivial to verify the other two

parts of equation (8.2) from the diagram in Figure 8.
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B.1 Error Analysis

The inverse distance u −1 is linearly related to the spread parameter σl (equation

7.9). Therefore, the error in u −1 denoted by δu −1 is also linearly related to the error in σl

denoted by δσl . We will now derive expressions for δσl in terms the effects of noise and

digitization.

Let the distance between two pixels be the unit of spatial distance. Also let x be a

continuous parameter along a row of pixels such that the pixels from left end to the right

end are located at positions 0,1,2,...,N −1. We will denote the noise-free analog image

signal by g (x) and its partial derivative with respect to x by gx(x).

At any pixel j for j =0,1,2,...,N −1, let the measured value of image brightness be

ĝ( j) such that

(b1)ĝ( j) = g ( j) + n( j)

where n( j) is a random variable representing zero-mean additive noise. n( j) represents

the combined effect of both signal noise and quantization, i.e.

(b2)n( j) = ns( j) + nq( j)

where ns is the analog signal noise, and nq is the quantization noise. Usually ns and nq

are of the same order, and both are zero-mean. Typically nq has a uniform distribution in

the range [−0.5,+0.5] in units of gray level. Therefore its’ standard deviation is 1/(2√K K3 ).

The standard deviation of ns is usually about a fraction of a gray level (about 0.1 or so).

Let σn , σns , and σnq denote the noise standard deviations of n, ns , and nq , respectively.

Then we have σn
2 = σns

2 + σnq
2 .

Let ĝx( j) be the estimated partial derivative with respect to x at pixel j. Using equa-

tions (10.3), (10.4), we have

(b3)ĝx( j) = ĝ( j +1) − ĝ( j) .

= g( j +1) − g( j) + n( j +1) − n( j) ,

= b l̃( j) + nx( j)

where
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(b4)l̃( j) = e( j +1) − e( j)

and

(b5)nx( j) = n( j +1) − n( j) .

l̃ is a discrete estimation of l in the absence of noise. The error in this estimation given by

l̃−l is purely due to image sampling at finite discrete intervals rather than at

infinitesimally small intervals. This error decreases as the size of the sampling interval

decreases.

nx is effectively a random variable which is a summation (or difference) of two ran-

dom variables n ( j), n( j +1). Since the two random variables are uniformly distributed

and zero-mean, their summation and difference both represent a random variable with

identical statistical properties. If the noise n at adjacent pixels are independent, then nx is

a random variable having a triangular distribution with its peak value being 1.0 located at

the origin and decreasing linearly on either side and becoming zero at -1.0 and +1.0. The

standard deviation of this noise is √L L2 σn .

B.2 Error in the computation of b

We have

(b6)∆b = b̂ − b

=
j
Σĝx( j) − b

=
j
Σ
MN
b l̃( j) + nx( j)

OP
− b

= b

QR
S

j
Σ l̃( j) − 1

T U
V + nb

where

(b7)nb =
j
Σ nx( j) .

nb is a summation of many zero-mean independent random variables. Therefore nb is

also zero mean and follows approximately the normal distribution. If the summation
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involves m pixels, then the standard deviation of nb is √W Wm times the standard deviation of

nx , i.e. √X X�X2m σn . Due to the special noise cleaning method employed in our algorithm, m

is usually about 4 times the spread parameter σl and therefore the standard deviation of

nb becomes approximately 2√Y Y
Y2σl σn . Therefore, the error δσl itself depends on σl!

The term
j
Σ l̃( j) − 1 gives the error purely due to discrete sampling. As the sampling

rate increases, this error decreases. Given the sampling rate and the analytic equation for

e(x), this error can be estimated purely through computational means.

B.3 Error in j
Z

(b8)j
[ˆ − j
\

=
b̂

1] ]
j
Σj ĝx( j) −

b
1^ ^

−∞
∫
∞

x gx(x) dx

=
b̂

1_ _
j
Σj
`a
b l̃( j) + nx( j)

bc
−

b
1d d

−∞
∫
∞

x b l(x) dx

=

eff
g b̂

bh h
j
Σj l̃( j) −

−∞
∫
∞

x l(x) dx

i jj
k +

b̂

1l l
j
Σj nx( j) .

If there is no error in b̂, i.e. b̂=b, then the term in square brackets above gives the error

due to discrete sampling. The last term above is a weighted sum of many independent

identically distributed random variables. It is a zero-mean random variable which

approximately follows normal distribution. If the upper and lower limits of summation

are p +1 and p +m, then the standard deviation of this random variable is

(b9)
b̂

√m m
m
m
m	m
m
m
m
m
m	m
m
m
m
m
m	m
m
m
m
m
m	m
m
m(p +1)2+(p +2)2+(p +3)2+...+(p +m)2n n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n √o o2 σn .

As mentioned earlier, in our algorithm m is approximately four times σl . Therefore, set-

ting m =4σl and p =0 we get

(b10)2√
pqprpsprpsprp

3

σl(4σl+1)(8σl+1)t t�t�t�t�t�t�t�t�t�t�t�t�t�t
b̂

σnu u�u .

We see above that the effect of this noise reduces inversely with the estimated edge
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height b̂. Therefore, the larger the edge height, the lower is the error in its estimated posi-

tion.

B.4 Error in σσ l
2

(b11)l̂( j) =
b̂

1v v ĝx( j)

=
b̂

bw w l̃( j) +
b̂

nx( j)x x�x�x�x .

Now, neglecting error in σσββ
2 , we have

(b12)∆∆σσ l
2 = σσ̂ l

2 − σσ l
2

=
j
ΣΣ( j − j

yˆ
)2 l̂( j) −

−∞∞
∫∫
∞∞

(x − j
z
)2 l(x) dx

=

{||
} b̂

b~ ~
j

ΣΣ( j − j
�ˆ
)2 l̃( j) −

−∞∞
∫∫
∞∞

(x − j
�
)2 l(x) dx

� ��
� +

b̂

1� �
j
ΣΣ( j − j

�ˆ
)2nx( j) .

In the above equation, if the error in b and j
�

are negligible (i.e. b̂=b and j
�ˆ= j
�
) then

the term in square brackets gives the effect of discrete sampling, and the other term

gives the effects of signal noise and quantization noise. In this case, the effect of

discrete sampling is independent of the edge height b but the effect of noise reduces

inversely with the edge height. The noise term is actually a weighted sum of many

independent identically distributed zero-mean random variables. Therefore this

term represents another zero-mean random variable. If p +1 and p +m are the limits

of summation, then the standard deviation of the noise term is

(b13)
b̂

1� � √√
���%�&�%�
i =1
ΣΣ
m

(p +i − j
�ˆ
)4 √√� �2 σσn .

As in the previous cases, the value of m is about 4σσl . An examination of the noise

term shows that the farther a pixel is from the location of the edge, the more is the

effect of noise at that pixel on the computed value of σσl . This is due to the factor
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( j − j
�ˆ
)2 in the noise term.

The error δσl is given by

(b14)δσl =
2σl

∆σ l
2� ������� .

Finally the error δu −1 in inverse distance is obtained from equation (7.9) as

(b15)δu −1 =
ml

δσl − cl������������� .

The error analysis here brings out the effects of quantization, discrete sampling, and

signal noise, on the error in the final result. This analysis suggests ways of improving the

computational algorithm. It is clear that the effect of image signal noise can be reduced

by smoothing the image parallel to the edge (i.e. perpendicular to the gradient direction).

For example, a smoothing filter such as a simple averaging filter or a Gaussian filter can

be employed. Suppose, for example, we average m rows of pixels parallel to the edge,

then the standard deviation of original noise n will be reduced by a factor of 1/√� �m .

Averaging parallel to the edge does not reduce quantization noise because the

quantization errors in pixels parallel to the edge are highly correlated.

The effect of all three factors-- quantization, discrete sampling, and signal noise,

can be reduced if one has prior knowledge about the form of the edge spread function

e(x). In this case, one can fit a curve corresponding to this form to the data through a

least square error minimization technique. For example, if e is known to be a smooth

analytic function, then one can fit piecewise polynomials to the data. These polynomials

can be used to perform exact differentiation and integration rather than the differencing

and summing operations employed in our computational algorithm. For example, equa-

tion (10.5) can be used instead of (16.2).

An alternative method is to directly estimate σl from e(x) rather than going through

several computational steps. For example, if the form of e is known to be as in equation

(8.2), then one can compute the mean square error between the data and e(x) for various

values of r, and find the value of r which minimizes the the mean square error. σl then is

given by r /2. This method involves searching for r that minimizes the mean square error.

An initial estimate of r can be obtained by the algorithm employed in our experiments.
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This value can then be refined through an iterative search.
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µ(.): mean value of . σ(.): standard deviation of .

µ(σβ) = 0.977 pixels σ(σβ) = 0.0628 pixels

u µ( j
�ˆ
) σ( j

�ˆ
) µ(b̂) σ(b̂) µ(σ̂l) σ(σ̂l)

gray gray

inches pixels pixels levels levels pixels pixels

8 40.85 0.638 46.88 3.407 7.060 0.4543

11 37.37 0.133 48.94 1.197 4.165 0.0951

14 31.34 0.104 48.19 1.509 2.552 0.0758

17 34.06 0.083 49.88 0.696 1.510 0.0760

20 35.00 0.058 47.75 1.031 0.598 0.0794

24 33.10 0.059 47.50 1.275 0.011 0.3283

33 35.64 0.076 41.38 0.781 0.999 0.0548

48 31.16 0.158 33.94 1.088 1.698 0.1306

100 30.00 0.373 25.56 1.273 2.598 0.0857

Table 1
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Index Terms

depth recovery, depth-from-focusing, defocused images,

point spread function, line spread function, edge spread function,

paraxial geometric optics, blur circle, convolution,

moments of a function, camera parameters.


