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Abstract

A mathematical model for a typical CCD camera system used in machine vision applications is presented. This
model is useful in research and development of machine vision systems, and in the computer simulation of camera
systems. The model has been developed with the intention of using it to investigate algorithms for recovering
depth from image blur. However, the model is general and can be used to address other problems in machine
vision. The model is based on a precise definition of input to the camera system. This definition decouples the
photometric properties of a scene from the geometric properties of the scene in the input to the camera system.
An ordered sequence of about 20 operations are defined which transform the camera system’s input to its output,
i.e. digital image data. Each operation in the sequence usually defines the effect of one component of the camera
system on the input. This model underscores the complexity of the actual imaging process which is routinely
underestimated and oversimplified in machine vision research.

1 Introduction

Experimental verification of computer vision theories often requires sophisticated and expensive camera systems.
When such camera systems are not available, then one can simulate such a camera system on a computer. This
simulation however requires a mathematical model of the camera system. In this paper we present a mathematical
model for a typical camera system used in machine vision applications.

The motivation for developing a model of a camera system came from our need for a precision camera system
whose parameters could be controlled and measured accurately. We needed such a camera system for conducting
experiments on a new method of finding the distance of objects [12]. However, no such camera system was available
in the market.

The model presented here is also useful in machine vision research. It makes explicit the sequence of transfor-
mations that the light incident on a camera system undergoes before being sensed by the image detector, and the
sequence of operations by which the sensed image is converted to digital data.

We found that previous literature in computer vision (e.g. Ch. 1 in [8], [6], [9]) on a camera system is descriptive
in nature. Shafer’s [9] work is perhaps the first to deal with a detailed description of the image sensing process.
Many important aspects of the image sensing process which are routinely ignored by computer vision researchers are
discussed in detail by him. A twelve parameter model for a robot imaging system - six parametrs in camera position
and orientation, three in the optical system, and three in sensitivity - is presented. In addition, valuable information
on the state of the art in imaging system technology and calibration is presented by Schafer [9].

A camera system (or any physical system) can be modeled at many levels of detail and abstraction. Here we have
attempted to focus on developing what we believe is a useful mathematical model rather than a detailed mathematical
model. However, it is certainly possible that there are situations where a more detailed model (or a less detailed
model) is needed than the one presented here.

Fig. 1 shows a block diagram of a solid-state video camera system which models a typical system used in machine
vision applications. Fig. 2 provides additional information about the roles of different parts of the system. In these
diagrams, the order in which certain parts appear from left to right can be changed without affecting the image
recorded by the system. For example, the position of Light Filter (LF) and Aperture Stop (AS) can be interchanged,
or the position of Light Filter and Shutter (implemented electronically) can be interchanged. However, the amount
of computation required for simulating the system on a computer may be affected by the order of the parts.



2 Generalized Image Forming Optical System

Fig. 1 shows a single lens and a single aperture. However, an actual image forming optical system may contain
many lenses and apertures. In this case, all these elements may be lumped into a single “black box”, and the
significant properties of the optical system can be completely described by specifying only the terminal properties
of the aggregate [3]. The terminals of the black box are an enterance pupil, representing a finite aperture (effective
or real) through which light must pass to reach the imaging elements, and an ezit pupil (again effective or real),
representing a finite aperture through which light must pass as it leaves the imaging elements on its way to the
image detector plane. It is usually assumed that passage of light between the entrance and exit pupil planes can be
adequately described by geometric optics [5]. The smallest aperture in the system (the aperture which determines
the amount of light reaching the image detector), i.e. the Aperture Stop (AS), determines the entrance and exit
pupils.

Entrance pupil is the geometrical image of the aperture stop as seen from an axial point on the object through
those imaging elements(lenses) preceding the aperture stop [5]. If there are no elements preceding the aperture stop,
then the aperture stop itself is the enterance pupil.

Ezit pupil is the image of the aperture stop as seen from an axial point on the image detector plane through the
interposed (imaging elements) lenses, if there are any. If there are no interposed lenses, then the exit pupil is the
same as the aperture stop. We will restrict our camera system to a circularly symmetric optical system, therefore
the entrance and exit pupils are circular.

3 External Parametrs

We define a spherical coordinate system with its Z-axis along the optical axis and the origin fixed in the plane of the
entrance pupil (see Fig. 3). We call this the Entrance Pupil coordinate system, or the ENP coordinate system for
short.

The external parameters of the camera system are the position and orientation of the entrance pupil coordinate
system with respect to an external coordinate system (X,,Y,, Z,,0,) in the object space (see Fig. 3). Let the position
of the entrance pupil origin O with respect to the external coordinate system be (O, 0,,0,) and orientation of the
entrance pupil coordinate system with respect to the external coordinate system be specified by three suitable rotation
parametrs (6,6,,6.).

4 Scene Parameters

We shall consider a scene which contains only objects with opaque surfaces. In this case, for every direction defined
by (6, ¢) in the entrance pupil coordinate system, there is a unique point P (Fig. 3) on a visible object in the scene.
If r is the distance of P from the orogin O, then the geometry of visible surfaces in the scene can be completely
defined by a function denoted by r(8, ¢). r(8, ¢) gives geometric information about visible surfaces in the scene. We
shall agsume that the geometry of the scene remains the same during the time interval of interest, i.e. there are no
moving objects in the scene. If there are moving objects, then one may take it into consideration by specifying the
geometry as function of time ¢ as r(6, ¢, ).

What the camera “observes” due to a point light source at P is the electromagnetic field distribution produced by
the source at the entrance pupil (Fig. 3). Although this field distribution can be specified by a very general function,
we will only consider those cases and quantities which are useful for our purposes. The case we consider corresponds
to an incoherent light source and unpolarized light, and the quantities we consider are radius r of the wavefront
incident on the entrance pupil, and the energy strength of the wavefront as a function of its wavelength A\. The
other quantities one can consider are the degree of coherence of the light source, and the direction of polarization of
light. We shall assume that these quantities remain the same during one exposure period (T') of the camera system.
We consider the radius r of the wave front (i.e. the distance of the point) because, one of our interest is to model
defocusing in the camera system [12, 13].

We take the inputs to the camera system to be the geometry of visible surfaces specified by (6, ¢), and the
photometry of visible surfaces specified by f(8, ¢, A,t) which is the power of light of wave length A incident on the
entrance pupil from the direction (6, ¢) at time ¢.



For our purposes, the function (8, ¢) and f(6, ¢, A, t) are the inputs to the camera system. We shal call f(6, ¢, A, t)
as the apperance of the scene or the focused image of the scene, and r(6, ¢) as the geometry of the scene. The
parameters of the function r(8,¢) and f(0,, A, t) are the scene parameters. Our view that the input to the camera
system is scene appearance f(6,$, A, t) and scene geometry r(6, ¢) as defined earlier is very important in modeling the
camera system. In particular we note that f(8,¢,,t) and r(6, ¢) as defined by us are quantities which are directly
observable by the camera system. There is no interdependence between these quantities. This should be compared
to the traditional convention of characterizing the photometric aspects of the scene in terms of scene radiance. The
radiance of a small surface patch in the scene is the light power emitted by the surface patch into a unit solid angle
per unit area, and has units of Watts/m?/Steradian. Since the area of a surface cannot be estimated without a
knowledge of the orientation of the surface patch with respect to the camera system, the radiance of the surface
patch cannot be observed by the camera system independently. Therefore, characterization of scene appearance in
terms of the radiance of surface patches in the scene invariably couples the photometric and geometric properties
of the scene. In contrast, our characterization of scene properties in terms of f(8,¢, A\, t) and r(8, ¢) decouples the
photometric and geometric properties.

Another problem with using radiance is that it cannot be used to define the “brightness” of a point light source
as a point has no surface area. We will find it necessary to define the brightness of a point light source in order to
be able to define the point spread function of the camera system.

In our methods for finding the distance of objects from their blurred images [11, 12, 13], we will need to compare
two or more images of the same object recorded with different camera parametrs. The camera parameters that are
set to different values for the two images include one or more of: the diameter of the aperture, the focal length of
the lens, and the distance between the lens and the image detector. In order for us to decouple the effect of the
geometry of the scene from the photometric properties of the scene, the aperture stop experinced by all objects in
the scene should be the same. In particular, it should not depend on the distance of objects in the scene.

In Fig. 4, there are two stops A; and As. For a point P; at distance Uy, A; detrmines the aperture stop. For a
point P, at distance Us, As determines the aperture stop. This example illustrates how the aperture stop depends
on the distance of objects in the scene. Note that, by making As sufficiently small, we can make sure that A
determines the aperture stop for both P, and P,. Suppose that we assume that the minimum distance at which an
object appears is U,uin, then the camera can be designed such that one stop determines the aperture stop for all
objects at distance U,,;, or higher (i.e. U > U,pip). In particular, Uy,;, may be taken to be f (focal length) because,
for objects nearer than the focal length, the images are virtual.

We further assume that the entrance pupil is not moved when any of the camera parameters (e.g. the focal length
of the optical system, or the diameter of the aperture stop) are changed. This is a desirable characteristic in our
method of determining distance [11, 12], because, in order to avoid the correspondence problem explained in the
Appendix, we require the entrance pupil to be unmoved. Since entrance pupil is not moved, all object distances are
measured with respect to it.

5 Input Transformation

In order to compute the image of a scene, information about the scene is required. The scene information may be
specified in terms of scene radiance at all visible points on the scene, and scene geometry. Alternatively, one may have
to compute the scene radiance given scene illumination and scene reflectance at every point in the scene. Given the
necessary scene information, and the positon, orientation, and the diameter of the entrance pupil, one can compute
the inputs to the camera system - f(8, ¢, A,t) and r(6, ¢).

Having defined the input to the camera as the photometric characteristics of the scene specified by f(6, ¢, A, t)
and the geometry of the scene specified by r(6,¢), we will now define a sequence of transformations of the input
signals which transforms the input to the output. The output of the camera is the digital image data. Each step in
the sequence of transformations typically corresponds to the effect of one component of the camera system on the
input signals. The output of the ith transformation step is denoted by a function of the form f; for i = 1,2,3, ...
The sequence of transformations defined here can be easily translated into a flow-chart form.

5.1 Light Filter

Typically, camera systems have a light filter to control the spectral content of light entering the camera system.
Filters that block infrared rays are widely employed. The characteristic of a light filter can be specified in terms of a



transmittance function T r(A) where 0 < Trr(A) < 1.0. The effect of the light filter on the camera input is specified
by
fi (07 é, A, t) = f(07¢7 A t) : TLF()‘)a (1)

where f(0,, A, t) is the input light energy defined earlier, and f1(8, ¢, A,t) is the light energy transmitted by the
filter. Usually, light filters have uniform characteristics in space and time. However, if the characteristics change
with time and space, then the transmittance function takes the form T (8, ¢, A, ).

5.2 Vignetting

When there are multiple apertures in the optical system along the optical axis displaced with respect to each
other (Fig. 6), the effective light energy transmitted by the system decreases with increasing inclination of light
rays with respect to the optical axis [4, 5]. The effect of vignetting can be specified by a function Ty (,$) where
0 <Ty(6,¢) <1.0 and the relation between the input f1(0,¢, A, t) and the output f2(6, ¢, A, t) as

f2(07¢7)‘7t) = fl(ea ¢7 )‘7t) ’ TV(07¢) . (2)

5.3 Optical System

As discussed earlier, an image forming optical system can be characterized by specifing its properties at the entrance
pupil and the exit pupil of the optical system. An image sensing system contains an image sensor or an image detector
such as a CCD array or photographic film. An ideal image forming optical system (see Fig. 7) converts a divergent
spherical wavefront WI incident on the entrance pupil ENP from a point object source P into a convergent spherical
wavefront WO at the exit pupil EXP which converges onto a point P’ on the image detector ID. However, practical
image sensing systems convert a divergent spherical wavefront WI incident on the entrance pupil into an emergent
wavefront WNI which is different from the convergent spherical wavefront WO. The deviation of the actual emergent
wavefront WNI from a hypothetical convergent spherical wavefront WO is associated with optical aberrations. Given
the parameters of the optical system, the shape of the emergent wavefront WNI can be determined [1], and given the
position of the image detector, the intensity distribution produced on the image detector by the emergent wavefront
WNI can be determined. This intensity distribution in fact corresponds to the Point Spread Function (PSF) of the
imaging system. If point object sources in the scene are incoherent, then the intensity distribution produced on the
image detector by different point sources can be simply summed (or added) to obtain the overall image !. Therefore,
for incoherent point sources, the imaging system acts as a linear system. Hence the imaging can be characterized in
terms of a point spread function.

The point spread function of an imaging system is determined by the parameters of the optical system, the
distance between the exit pupil and the image detector, the radius of the incident wavefront on the entrance pupil,
and the direction of location of the point source. Therefore, the PSF can be specified by a function of the form
h(8, 9,60 ,¢',1(0,¢),e) where (8, ¢) is the direction of the point source, (§',¢’) is the direction of the point on the
image detector in the image space where the intensity value is specified by the PSF, r(8, ¢) is the function specifying
the geometry of visible surfaces in the scene, and e is a vector specifying the parameters of the imaging system,
such as the diameter of the aperture stop, effective focal length of the optical system, distance between the exit
pupil and the image detector, etc. In order to specify the effect of the imaging system on the input, we define
normalized Cartesian coordinates in the scene space and the object space as shown in Fig. 8. The relations between
the corresponding Cartesian coordinates and the spherical coordinates are

z = sinf cosp, ' = sin€ cos¢, (3)
y = sinfsing, y = sin sing'. (4)

Now the input f2(6, ¢, A, t) can be equivalently represented by fo(z,y, A, £), the output f3(6',¢', A\, t) by fa(z',y', A, t),
and the PSF h(9,¢,6',¢',r(0,¢),e) by h(z,y,z',y’,r(z,y),e) (to be more precise, we should use different notations
for the functions which take the above coordinate transformation into account). The effect of the imaging system
can now be specified by the relation

fo(@ ' A D) = / / Wy, 2y (@), @) a9, A ) dudy | (5)

Mf the point sources are coherent, then the electromagnetic field distribution will have to be summed instead of their intensities [3].




If the scene and the optical system are such that the PSF is spatially invariant in the region of interest (isoplanetic
region [1]), then the above integral becomes a convolution operation:

f3($layla)\7t) :/ / h(x'—x,y'—y,r(x,y),e) fQ(xaya)‘at) d.’l:dy . (6)
Examples of PSF models can be found in Section 8.8.2 of [1] and in [12].

5.4 Field Stop

The region on the image detector plane which contains photosensors is limited in extent. For example, a CCD array
has a finite rectangular shape, and in a photographic camera, only a limited rectangular part of the film is exposed
to light. The extent of the image detector containing photosensors determines the field of view of the imaging system
and is called Field Stop. The effect of the field stop can be expressed in terms of a transmittance function Trg(z’,y")
which has a value of 1 inside the image detector region and a value of 0 outside. The relation between the input and
the output is

f4(xlayla)‘7t) :f3(xlayla)‘7t) TFS(xlayl) . (7)

We shall assume that the field stop is rectangular in shape with length A and width B. Therefore we have
xl !
Trs(a',y') = rect (Za %) (8)

where the function rect is as defined in [2]. The definitions in [2] will be used throughout this report for standard
functions such as rect, comb, 4, etc.

5.5 CCD Sensor
5.5.1 Spectral sensitivity of the CCD sensor

The transducer on the image detector which converts light energy to electrical (or other type of) energy is not
uniformly sensitive with respect to the wave length of light. If the sensitivity as a function of wave length X is denoted
by Ts(\) where 0 < T,(A) < 1.0, then the relation between the input fy(z’,9', A, t) and the output f5(z’,y', A, t) can
be specified by

f5($layla)‘7t) = TS()‘) f4($layla)‘7t) . (9)
If the spectral sensitivity changes in space also, then this dependence can be made explicit by denoting the sensitivity
by Ts(\, 2’,y’). Time t can also be included as another variable of the sensitivity function if necessary.

5.5.2 Transduction

Output of the photosensitive detectors on the image detector depends on the total light energy incident on the
detectors. Therefore, the light energy has to be integrated with respect to wave length. This step removes the
dependence of the image signal on A. The relation between the input f5(z’,y’, A,t) and output fe(z',y’, %) is

fﬁ(x',y',t):/_00 fs(@' ', A8 dA . (10)

5.5.3 Exposure Time

The image sensor is exposed to incident light for a finite duration of time. During the period when the sensor is
exposed, the strength of the incident light may vary because of the changing area of the aperture stop with time
(as in the case of shutter in photographic cameras). The area of the aperture stop as a function of time can be
denoted by Tas(t). This exposure function remains almost unchanged each time the shutter is opened to record a
new picture. Therefore, the effect of the exposure function is to integrate in time the input fg(z',y’,t) weighted by
Tas(t) to give the output f7(2',v', 1), i-e.

f7(x',y',t):/_00 felz',y',7) Tas(t —t)dr . (11)



If Tas(t) = Tas(—t) (i.e., it is symmetric), then the above operation becomes a convolution operation. In a CCD
camera, typically there is no physical shutter, but the equivalent efffect is achieved by periodically measuring the
charge collected by the CCD elements and then clearing the charge in the elements. In most cases, the exposure
function can be approximated by a rectangular form and is given by Tag(t) = rect(4) where T is the duration of
exposure. Typical duration of exposure is 1/30th of a second.

5.5.4 Integration (summation) Over Space

The photosensitive elements on the image detector have a very small but finite surface area. These elements produce
an output which depends on the total light energy incident on their surface. The shape and size of the surface area of
each photosensitive element is usually the same. Let R(z,y) be a function whose value is 1 inside the surface area of a
photosensitive element centered at the origin and zero outside. The photosensitivity of an element is usually uniform
at each point on its surface. Therefore, the effect of collecting light energy over a finite region can be specified by
the following relation between the input f7(z',y',t) and the output fs(x',y’,1t):

fs(x’,y’,t)Z/_oo /_Oo f(as ) Rla— o', 8 — y/) dord . (12)

If R(z,y) is symmetric, i.e. R(z,y) = R(—z,—y), then R(a—2z',8—1v') = R(z' — a,y’ — ). Then the above equation
specifies a convolution operation. As a particular example, consider a CCD array having the geometry shown in Fig.
9. In this case,

R(z,y) = rect (%, %) . (13)

Therefore, for any pixel with indices (m, n)

/00 /Oo Fr(a, B, 1) rect (a_fxs,ﬂ‘d"yS) do

/00 /Oo Fr(a, B, 1) rect (mxsb_a,"ysd‘ 5) do

= f7(x7y7t)*re(:t (%7%) (14)

fs(mzs,nys)

where x denotes the convolution operation.

5.5.5 CCD Sensor Noise

In practice the output of the photosensitive elements includes a noise component n(z’,y’,t). For CCD sensors, this
can be modeled as electronic additive noise. Therefore, the input fs(z',y’,t) at this stage is changed to fo(2’,y’,t)
where

fola,y',t) = fa(a',y/, 8) + n(a',y/, 1) (15)

5.5.6 Sampling in Time and Space

We will assume that the continuous signal fo(z’,y’,t) is sampled in time periodically at fixed intervals of 751 and
sampled in space on a discrete rectangular grid of points seperated by a distance of z; along the horizontal direction
and by a distance of y, along the vertical direction (Fig. 9). The resulting output function is the summation of Dirac
delta functions with different strengths. The output function fio(z',y',t) is

1 t
f10(x’,y',t) = fg(:z;’,y/,t) |7- |c0mb (—)
sl

1 1
comb (i) . comb (i) (16)
| Ts | Ts | Ys | Ys

1 z y t
= z',y,t) —————————comb (— = —) 17
o@D e T | an)

b b
Ts Ys Ts1



The function fio(z’,y’,t) is actually a continuous function. This function is converted to a discrete function repre-
sented as a three-dimensional matrix fi1[¢, j, k] where

fll[iaja k] = f9(7/ ‘T, J - ysak : Tsl)
i~ws+ j~ys+ k~7'51+
= / / / fro(@',y',t) da’ dy' dt (18)
i 7 k

N P YT T

fori =10,1,2,..,.M -1, =0,1,2,..,N—-1,k =0,1,2,..., K — 1, where M is the number of columns, N is the
number of rows, and K is the number of image frames.

5.5.7 Sensor response

Ideally, we require the output of the photosensitive elements to be proportional to the light energy incident on them.
However, in practice, their output is not proportional but some other function of light energy. If fi1[i, 4, k] is the
light energy, then the corresponding output fi2[i, j, k] is given by

fialiy g, k) = s ( funli, 4, K] ) (19)

where s(I) is called the sensor response function. For a CCD sensor, several models have been proposed for s(I)
based on experimental observations. Some examples are listed below:

(i) Exponential Model (the gamma model)

s(Iy=I7. (20)
For standard NTSC TV, vy = 1/2.2 [10].

(ii) Linear Model
s(D=al+b a,b are constants. (21)

(iii) s(I) can also be specified by a dense table of values. It can also be specified by a sparse table of values with
an interpolation scheme to determine the intermidiate values.

If the sensor response function is different for different photosensitive elements, then s becomes a function of these
variables instead of one variable as s(i, 7, I). Then the relation between fi2 and fi; is given by

f12[7:7j7 k] - S( iajafll[iaja k] ) . (22)

5.5.8 Conversion of an array of numbers to a one-dimensional sequence of numbers

The discrete function fi2[i, 5, k] specifies the value of an image pixel in the k* image frame, j** row, and i** column.
Usually (to reduce image flicker observed on a monitor) alternate rows are scanned in sequence (interlaced mode, e.g.
all odd rows first, and then all even rows), the numbers in the rows are converted to analog signal and transmitted
over a cabel. Between each row, a horizontal synchronization pulse is added when the scanning shifts from odd rows
to even rows and vice versa. However, in our model, for simplicity, we shall assume that all rows are scanned in
sequence one by one. We shall also ignore the horizontal and vertical synchronization pulses that are required in
practice. With these assumptions, we can use the following transformation to map the 3D array fia[i, j, k] to a one

dimensional sequence fi3[l].
fisli+j-M+k-M-N|= fiali, j, k] (23)

where M is the number of columns per image frame, and N is the number of rows per image frame. In a CCD
array, a set of horizontal and vertical charge transport registers are used to convert an array of 2D image data into
a sequence of 1D data, .



5.5.9 Reconstruction / Interpolation Filter

The discrete sequence of numbers represented by fis[i] is converted to an analog signal using a sample-and-hold
circuit. The time interval 50 between two numbers is an input to the circuit. Note that 74 should be consistent

with the frame period 74, i.e.
Ts1

M-N
Mathematically, the operation of the reconstruction circuit can be thought of as interpolating the sequence of values
f13[é] defined at i - 752 to obtain a continuous signal fi5(¢) as output. This can be described in two steps as

Ts2 < (24)

K-M-N-1
fu®) = Y fulldt-1Te), (25)
1=0
fis(t) = hen(t) * fis(t) (26)

where hgp,(t) is the effective impulse response function of the sample-and-hold interpolation circuit and % is the
convolution operator.

5.5.10 Amplifier

f15(¢) is the video signal. Before this is transmitted over a video cable, it is amplified so that any noise introduced
in the cable will not dominate the signal. If h,(¢) is the impulse response of the amplifier, then the output of the
amplifier can be modeled as

flﬁ(t) = f15(t) * ha(t) + na(t) (27)
where n, (t) represents additive amplifier noise, and  is the convolution operator. fi4(t) is the output of the camera
system which is transmitted over a video cable.

5.5.11 Cable

The relation between the input signal fi6(¢) at one end of the video cable and the output fi7(¢) at the other end of
the cable can be specified as

f17(t) = fr6(t) * he(t) + nc(t) (28)
where % is the convolution operator, h.(t) is the impulse response function of the cable, and n.(t) is the additive
cable noise.

5.5.12 Sample and Hold Circuit
The analog signal fi7(¢) is sampled at intervals of 753 by multiplying it by (see page 115,0ppenheim and Schafer [7])

icomb (L) = i 0(t — nTe3) . (29)

Ts3 Ts3 e —o0

If 743 # Ts2, this causes geometric distortion of the picture. This phenomenon has been called mismatched electronics
in Schafer[9]. The sampled values are interpolated by an n-th order (usually 0" order) sample-and-hold filter. The
resulting signal is again sampled by a slightly shifted sampling function. If we assume that the sampling occurs at
the middle of the interval, the effect of sample-and-hold circuit on the input can be summarized as below:

fra(t) = écomb (Tt—s) - fu(t) (30)

frs(t) = frra(t) *x he(t) + ng(t) (31)

ﬁdﬂ==—lumm(ilﬁﬂ2)-ﬁn@) (32)
Ts3 Ts3

The output fis(t) is an impulse train. This impulse train is converted to a sequence of numbers fig[¢] where

(i+1/2)1]h
mmzj fslt) dt . (33)

i+1/2)7 5



5.5.13 Quantization

The effect of quantization can be summerized by the transformation rule

f20[i] = Q(f19[i]) (34)

where, after appropriate scaling, Q(z) can be defined as

Qmaw for X > Qmaw
Q(.’IJ) = |_.’IJ + 05J for 0 <z < Qmas (35)
0 otherwise

5.5.14 Digital Image Sequence

The one-dimensional sequence fao[l] is converted to a three-dimensional array representing a sequence of two-
dimensional images or image frames using the following rules:

i=I%M, j=(1-i)/M)%N, k=(-i-jM)/(MN), or k=I/(MN)], (36)

fa1lé, 5, k] = faoll], (37)
where % denotes the mod (i.e. remainder) operator.

6 Conclusion

The camera model described here has been developed to help simulate on a computer the formation and sensing of
defocused images. Some additional refinements to the basic model presented here are needed to implement it on a
computer. This model can also be extended to address other specific problems.
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A Correspondence Problem

In Fig. 5 we show how the motion of the entrance pupil introduces the correspondince problem, and also show how
correspondence problem is avoided by keeping the entrance pupil stationary even when the exit pupil is moved.

Let a first image be acquired with a first set of camera parameters. Fig. 5a shows the position of the entrance
pupil ENP1, and the exit pupil EXP1 with respect to an external coordinate system X,,Y,,Z,,0, for the first
camera setting. For any point Pll on the first image, the direction (8, ¢1) of the object point P in the scene can
be determined. Now, suppose that the camera parameters are changed so that the positions of the entrance pupil
and exit pupils are as in Fig. 5b. Here, the position of the entrance pupil ENPy remains unmoved with respect to
the external coordinate system. In this case, the direction(f1, ¢1) of the point P remains the same, and the position
of P’s image, P/', in the second image I can be determined from (61, ¢1). Consequently, for any point such as P;
in the first image the position of the corresponding point P}’ in the second image can be determined, that is, the
correspondence between images I; and I5 can be established.

Suppose that the camera parameters are changed so that the entrance pupil moves with respect to the external
coordinate system as in Fig. 5¢c. Then the direction of the point P changes from (61, ¢1) in Fig. 5a to (f2,¢1) in
Fig. 5c. The angle #; cannot be determined even if the displacement AZ of the entrance pupil with respect to the
external coordinate system is given because the distance r is not known. Therefore the position of the geometric
image Pj of the point P cannot be determined given the position of P/ in image I, that is, the correspondence
between the points P| and Pj cannot be established.

In summary, given the position of a point in one image, the position of the image of the same point in another image
cannot be determined if the entrance pupil is at different positions for the two images. This is the correspondence
problem.
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