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INTERPRETATION OF IMAGE FLOW:

A SPATIO-TEMPORAL APPROACH

Muralidhara Subbarao

Abstract

Research on the interpretation of image flow (or optical flow) until now has mainly focused

on instantaneous flow fields. This limits the scope of the problems that one can address and the

accuracy of the results. Here we extend a previous formulation of the problem to incorporate

temporal variation of image flow. We illustrate our approach by solving specific cases which are

of practical significance including simple cases of non-rigid and non-uniform motions. The for-

mulation is general in that it is applicable to any situation provided that the scene geometry, the

scene transformation, and the image flow are all ‘‘smooth’’ or analytic.

For the case of rigid and uniform motion we have obtained some results which are of practi-

cal value. We have shown that only the first-order spatial and temporal derivatives of image flow

are sufficient to recover the local surface orientation and motion; second-order (or higher order)

derivatives whose measurement is unreliable are not necessary. (In comparison, previous methods

use up to second-order spatial derivatives.). Further, the representation and the solution method

used here have some advantages in comparison with the existing approaches; they facilitate a uni-

form approach to all cases of rigid motion (including the case of interpreting instantaneous visual

motion).

Index Terms - Three-dimensional interpretation of image flow, optical flow, motion analysis, sur-

face structure and transformation recovery.
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I. Introduction

The motion of an object relative to a camera produces a moving image on the camera’s

image plane. The image motion thus produced contains valuable information about the three-

dimensional (3D) shape and motion of the object. Recovering this 3D information from image

motion is the topic of this paper. The approaches that have been taken in solving this problem

fall under two major categories, discrete and continuous. In the discrete approach, the velocities

of a number of distinct image feature points are used to compute the motions and relative posi-

tions of the corresponding points in the scene. (e.g.: [8,27,16,25,26]). In this paper we take the

continuous approach. In this approach the image motion is represented by an image velocity field

or image flow. Image flow is a two-dimensional velocity field defined over the camera’s image

plane. The velocity at any point is the instantaneous velocity of the image element at that point.

Some authors refer to image flow as optical flow. Methods for the computation of image flow

from time-varying intensity images have been proposed by many researchers (e.g.:

[7,10,9,32,35]). This paper is concerned with the interpretation of image flow, i.e. recovering the

geometry and the motion of objects in a scene from their image flow. Here we assume that the

image flow is given.

Methods for interpreting instantaneous image flow have been proposed by many researchers

(e.g.: [13,15,17,11,23,30,20]). However, previous work on using temporal variation of image

flow is scarce. Use of temporal information is necessary for two reasons. First, in many cases we

can trade noise-sensitive spatial information for relatively robust temporal information. Ullman

[28], in his work that belongs to the discrete category of approaches mentioned earlier, has the

following to say: ‘‘.... although the instantaneous velocity field contains sufficient information

for the recovery of the 3-D shape, the reliable interpretation of local structure from motion

requires the integration of information over a more extended time period.’’ This remark holds

equally well for the continuous approach. For example, consider a small surface patch in motion

which is approximately planar. For this case we show here that, in general, we can use the first

order temporal derivatives of image flow in place of the second-order spatial derivatives. The

measured values of second-order derivatives are usually very unreliable in comparison with the

first-order derivatives. Therefore using temporal derivatives is preferable in this case.
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The second and more important reason for using temporal information is that it makes pos-

sible for us to deal with more complicated situations such as when the object in view is undergo-

ing non-uniform (or accelerated) motion and non-rigid motion. In the domain of continuous

approaches there has been very little research on this topic. In this paper we present a general for-

mulation capable of handling arbitrarily complicated cases under a ‘‘smoothness’’ assumption.

This assumption states that the scene geometry, scene transformation (i.e. motion and deforma-

tion), and image flow are all locally ‘‘smooth’’.

Recently Bandopadhyay and Aloimonos [4] and Wohn and Wu [36] have used temporal

information to solve a restricted case of rigid motion. This case is the one we have considered in

Section IV.B.1.a. A systematic way of incorporating temporal information in the interpretation of

image flow was proposed in [21]. This paper is is mainly based on this work.

II. Summary of results

A major portion of this paper is devoted to the study of image flow resulting from rigid

motion of objects. Here the problem is to determine the three-dimensional shape and rigid

motion of surfaces from their image flow. In this paper, equations relating the local orientation

and motion of a surface and the first order spatio-temporal image flow derivatives are derived.

These equations are solved to obtain the orientation and motion in closed form. Also, an interest-

ing case where a camera tracks a point on a moving surface is solved with the knowledge of the

camera’s tracking motion. Then this formulation is extended to deal with non-uniform or

accelerated motions. This extension is illustrated with a simple example. Finally the formulation

for rigid motion is generalized to deal with non-rigid motion. This again is illustrated with a sim-

ple example. This general formulation leads to some new insights into the intrinsic nature of the

image flow interpretation problem. It makes explicit the well known fact that the image flow

interpretation in a general case is inherently underconstrained and that additional assumptions

about the scene are necessary to solve the problem. It gives the minimum number of additional

constraints (in the form of assumptions about the scene) necessary to solve the problem. For

example, it exposes the fact that the rigidity assumption, the assumption that objects in the scene

are rigid, is a sufficient constraint.
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In this paper we have not included any specific case which involves second or higher order

image flow parameters. Two such cases dealing with the interpretation of instantaneous image

flow for planar and curved surfaces can be found in [22]. Since these two cases have received a

great deal of attention in the past, we mention here that we have obtained closed form solutions to

both planar and curved surfaces using the theoretical framework described here. Also, we have

been able to prove many results concerning the multiplicity of interpretations for these cases.

Theoretically the framework described here can deal with cases involving higher order image

flow parameters, but their practical importance is not clear.

III. Strategy of formulation and analysis

We restrict the image flow analysis to be local, both in space and in time. This restriction

helps to keep the number of parameters small and makes the analysis tractable. Further, in a

small field of view and over a short period of time, the following are assumed to be ‘‘smooth’’

and changing slowly (i) the shape of the visible surface patch, (ii) the transformation (or motion

and deformation) of the surface patch with time, and (iii) the image flow.

A local analysis such as this must be preceded by a detection of discontinuities in the image

flow field corresponding to discontinuities in the geometry and the transformation of surfaces in

the scene. This problem has been addressed by several researchers (e.g.: [9,1,24,34,33,35]). Hav-

ing located such discontinuities in the motion field a local analysis is carried out in small image

regions not containing these discontinuities to recover the structure and motion of the correspond-

ing surfaces in the scene. A patching together of this local three-dimensional information is

necessary to obtain a global description of the scene.

IV. Rigid motion case

First we consider three cases where the motion is rigid and uniform and one more case

where the motion is non-uniform. The three rigid motion cases considered here cover a large

class of problems of practical interest. Of the three rigid uniform motion cases, the first two

relate to the case where the image flow is observed in a fixed image neighborhood and the third

relates to the case where the camera tracks a point on the object in motion and the tracking
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motion of the camera is known. In all three cases we have solved for the local orientation and

rigid motion of the surface patch.

A. Formulation

A pin-hole camera with a spherical projection screen whose center is at the pin-hole or the

focus is a good camera model. For this camera model, due to symmetry, the image flow analysis

is identical at all regions on the projection screen. However, actual camera systems usually have

a planar screen. We adopt this planar projection screen model in our analysis. The geometry of

the screen is entirely a matter of convenience and does not affect our results. Note that there is a

one to one correspondence between an image on a curved screen such as a spherical screen and an

image on a planar screen. The choice of the planar screen geometry restricts our analysis to the

field of view along the optical axis. However, the image flow in a field of view not along the opt-

ical axis can be analyzed by first projecting the image velocities on to a plane perpendicular to the

field of view. (In this case, if the plane is at unit distance in front of the focus then the same

analysis in this paper holds.) This projection process is quite straightforward [12].

******** FIGURE 1 ABOUT HERE *********

The camera model is illustrated in Figure 1. The origin of a Cartesian coordinate system

OXYZ forms the focus and the Z-axis is aligned with the optical axis. The image plane is

assumed to be at unit distance from the origin perpendicular to the optical axis. The image coor-

dinate system oxy on the image plane has its origin at (0,0,1) and is aligned such that the x and y

axes are, respectively, parallel to the X and Y axes. The entire coordinate system is fixed with

respect to the camera system. Let the camera system be in motion relative to a rigid surface. Let

the relative motion consist of translational velocity VV = (VX , VY , VZ) and rotational velocity

ΩΩ = (ΩX , ΩY , ΩZ). Due to the relative motion of the camera with respect to the surface, a two-

dimensional image flow is created by the perspective image on the image plane. At any instant of

time, a point P on the surface with space coordinates (X, Y, Z) projects onto the image plane as a

point p with image coordinates (x, y) given by
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(1a,b)x = X / Z and y = Y / Z .

If the position of P is given by the position vector RR(X,Y,Z) then its instantaneous velocity

(X
.
, Y

.
, Z

.
) is given by the components of the vector −(VV + ΩΩ × RR) as follows:

(2a)X
.

= −VX − ΩY Z + ΩZ Y ,

(2b)Y
.

= −VY − ΩZ X + ΩX Z ,

(2c)Z
.

= −VZ − ΩX Y + ΩY X .

The instantaneous image velocity of point p can be obtained by differentiating equations (1a,b):

(3a,b)x
.

=
Z
X
.� � −

Z
X� �

Z
Z
.� � and y

.
=

Z
Y
.� � −

Z
X� �

Z
Z
.� �

In the above two expressions we substitute for the appropriate quantities using relations (2a-

c,1a,b) to obtain

(4a)x
.

= u =

�� �
x

Z

VZ	 	 	 −
Z

VX
 
 
 � �
 + [xy ΩX − (1 + x 2) ΩY + y ΩZ ] and

(4b)y
.

= v =

�� �
y

Z

VZ� � � −
Z

VY� � � � �� + [(1 + y 2) ΩX − xy ΩY − x ΩZ ] .

These equations define the instantaneous image velocity field, assigning a unique two-

dimensional velocity to every point (x, y) on the surface’s image. (These equations were origi-

nally derived by Longuet-Higgins and Prazdny [15]).

Note that the image velocity at a point (x, y) (given by equations (4a,b)) in the image

domain is due to the world velocity of a point (xZ, yZ, Z) in the world domain. The value of Z is

determined by the geometry of the actual surface. At any instant of time, let the visible surface

be described by Z = f (X, Y) in our camera-centered coordinate system; then, assuming that the

surface is continuous and differentiable, a Taylor series expansion of f can be used to describe a

small surface patch around the optical axis:
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(5.1)Z = Z 0 + ZX X + ZY Y +
2
1� � ZXX X 2 + . . .

for Z 0 > 0 . In the above expression, Z 0 is the distance of the surface patch along the line of

sight, ZX , ZY are the slopes of the surface with respect to X,Y, and ZXX , . . . , etc. are related to

the curvature and higher order variations of the surface.

Equation (5.1) gives only an instantaneous description of the surface patch. This description

relates only to the spatial geometry of the surface. However, in our analysis, we will also find it

necessary to represent the temporal transformation of the surface. Temporal transformation

corresponds to the motion and shape deformation of the surface with time. This transformation

can be represented by considering the Taylor coefficients in equation (5.1) to be functions of

time. Assuming the transformation to be ‘‘smooth’’ (in a short period of time), the time depen-

dence of the coefficients can be expressed in Taylor series expansion at time t =0 as

(5.2a)Z 0(t) = Z 0+Z
.

0t+
2
1� � Z

..
0t 2 + . . .

(5.2b,c)ZX(t) = ZX+Z
.
Xt+..., ZY(t) = ZY+Z

.
Y t+..., etc.

In the above relations, the terms with a dot on top denote time derivatives of the respective terms.

They are determined by the motion and deformation of the surface. For example see relations

(A3a-c) in Appendix A where Z
.

0 ,Z
.
X , and Z

.
Y are expressed in terms of the rigid motion parame-

ters.

Now, by substituting equations (5.2a-c) into (5.1), the surface can be described in the

space-time domain as

(5.3)Z = (Z 0+Z
.

0t+...) + (ZX+Z
.
Xt+...)X + (ZY+Z

.
Y t+...)Y + (ZXX+...)X 2 + ....

The terms ZX , ZY , ZXX , . . . etc. in the above equation constitute the structure parameters. In

order to simplify notation in the following discussion, we drop representing the second order

terms in the above equation. Note that the terms are not neglected, but simply dropped from

notation. In principle we can consider arbitrary (but finite) number of terms on the right hand

side of this equation (see [22]). Thus keeping only the first order terms we have
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(6a)Z = Z 0 + ZXX + ZYY+Z
.

0t .

Rearranging terms in the above relation we get

(6b)Z

��
� 1 −

Z
X� � ZX −

Z
Y� � ZY −

Z
t� � Z

.
0

� �
 = Z 0 .

Or, using relations (1a,b), equation (6b) can be rewritten as

(6c)Z = Z 0 (1− ZX x− ZY y− Z
.

0 (t /Z) )−1

(To express a surface in a form analogous to the above expression while keeping terms of higher

than first order, see the instantaneous image flow analysis for curved surfaces in [22]). Substitu-

tion for Z from relation (6c) into the image velocity equations (4a,b) gives

(7a)u =

!"
# x Z 0

VZ$ $ $ −
Z 0

VX% % % & '( (1−ZXx−ZYy−Z
.

0(t /Z))+
)*
xyΩX−(1+x 2)ΩY+yΩZ

+,

(7b)v =

-.
/ y Z 0

VZ0 0 0 −
Z 0

VY1 1 1 2 34 (1−ZXx−ZYy−Z
.

0(t /Z))+
56
(1+y 2)ΩX−xyΩY−xΩZ

78

In the above equations, the distance Z 0 between the surface and the camera along the optical axis

always appears in ratio with the translational velocity VV and therefore is not recoverable. There-

fore, we adopt the following notation in presenting the image flow equations.

Translation parameters:

(8a-c)Vx =
Z 0

VX9 9 9 , Vy =
Z 0

VY: : : , Vz =
Z 0

VZ; ; ; for Z 0 > 0 .

The three components of rotation ΩX , ΩY , ΩZ and the three components of scaled translation Vx,

Vy, Vz will be collectively referred to as the motion parameters.

In the image domain the image flow is assumed to be analytic in the space-time domain.

The image flow is represented by

(9a)u(x,y,t) = u 0+uxx+uyy+utt+O2 (x,y,t) and

(9b)v(x,y,t) = v 0+vxx+vyy+vtt+O2 (x,y,t)

where the subscripts indicate the corresponding partial derivatives evaluated at the image origin
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and time t = 0 and O2 (x, y, t) indicates second and higher order terms of the Taylor series. The

coefficients of this Taylor series are the spatio-temporal image flow parameters.

From the image velocity equations (7a,b), we can derive the following equations which

relate the first order spatial image flow parameters to the structure and motion parameters:

(10a,b)u 0 = − Vx − ΩY , v 0 = − Vy + ΩX ,

(10c,d)ux = Vz + Vx ZX , vy = Vz + Vy ZY ,

(10e,f)uy = ΩZ + Vx ZY vx = − ΩZ + Vy ZX .

(Above equations have been derived by Longuet-Higgins and Prazdny [15]). Above we have six

non-linear algebraic equations in eight unknowns. We will derive two more equations relating

ut , vt to the structure and motion parameters. (These equations are different for the three different

cases considered here.)

We could derive the equations relating the second and higher order image flow parameters

to the structure and motion parameters by following steps similar to the above method, but we

stop at first order as we get a sufficiently constrained system of equations (eight equations in eight

unknowns).

B. Solution for motion and slopes

In solving for the structure and motion parameters from the given image flow parameters,

we use a new parameterization of the solution space; we use a trigonometric substitution which

introduces two new variables r and θ which respectively correspond to the (signed) magnitude

and direction of the translational component parallel to the image plane. This particular represen-

tation of the problem simplifies the task of solving the problem and proving many uniqueness

results. For all rigid motion cases, we can first solve for r and θ by simultaneously solving a

small set of equations (typically two) and from these we can compute the other unknowns. An

important advantage of this method is that the set of relations used to compute the structure and

motion parameters from r and θ are the same in the many different cases considered here. The

only difference is in the expressions we use to solve for r and θ. Therefore, the computational
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approach given here forms a general method useful in many different cases. The solution of

equations (10a-h) in terms of r and θ is given by the following lemma.

Lemma : Suppose that translation parallel to the image plane is not zero and let r and θ be such

that

(11a,b)Vx ≡ r cosθ and Vy ≡ r sinθ for −π/2 < θ ≤ π/2 .

Then, using the notation

(12a,b)s ≡ sinθ and c ≡ cosθ ,

(13a,b)a 1 = uy+vx, and a 2 = ux−vy

the motion and orientation are

(14a,b)Vx ≡ rc, Vy ≡ rs,

(14c,d)Vz = uxs 2+vyc 2−a 1cs, ΩZ=uys 2−vxc 2+a 2cs,

(14e,f)ZX = (a 1s+a 2c)/r, ZY = (a 1c−a 2s)/r,

(14g,h)ΩX = v 0+rs, ΩY = −(u 0+rc).

Proof : Relations (14a,b,g,h) are easily obtained from relations (10a,b) and (11a,b). From rela-

tions (13a,b), (10c-f), and (11a,b) we can get

(15a,b)a 1 = rcZY + rsZX and a 2 = rcZX − rsZY .

Solving for ZX and ZY from above equations, we get relations (14e,f). Now, from relations (10c),

(11a), and (14e) we can get

(16a)Vz = ux−a 1cs−a 2c 2 .

Or, using relation (13b) and the identity s 2+c 2=1,

(16b)Vz = ux(s 2+c 2)−a 1cs−a 2c 2 .

Relation (14c) can be obtained from the above relation. The derivation of relation (14d) is
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similar to that of relation (14c).

Relations (14a-h) give an explicit solution for the orientation and motion in terms of r and θ.

Therefore once we have solved for r and θ we can solve for the two slopes and all the motion

parameters. Notice that Vz and ΩZ are given only in terms of θ. Therefore they can be deter-

mined from θ alone. This observation will be important later on. In order to solve for r and θ we

need additional constraints. In the next three subsections we will consider solving for r and θ for

three cases using the first order temporal derivatives of the image flow.

1) Rigid and uniform motion

In deriving the equations relating r and θ to ut and vt we consider three different cases

which are explained below. With the exception of the second case (in a limited sense which will

be made clear later) we assume the motion to be uniform, i.e. all orders of the derivatives of VV

and ΩΩ with respect to time are zero. In each of these cases, we derive the equations relating ut , vt

to the structure and motion parameters and use them to solve for θ and r.

a) The case when VV is uniform with respect to the camera

Assuming that the translational velocity VV is uniform with respect to the camera’s reference

frame (i.e. ΩΩ = 00 or ΩΩ is parallel to VV) we can derive the following from equations (7a,b):

(17a,b)ut = Vx (Z
.

0/Z 0) and vt = Vy (Z
.

0/Z 0) .

In Appendix A it is shown that relations (17a,b) can be expressed as

(18a,b)ut = Vx p and vt = Vy p

where

(18c)p = − (u 0 ZX + v 0 ZY + Vz) .

Now we solve for θ and r using relations (18a-c). Taking the ratio of relations (18a,b) and

using relations (14a,b) the solution for θ is obtained as

11



(19a)tanθ =
ut

vt< < < .

We solve for r using relations (18a-c), (14a,b,e,f) to get

(19b)r =
− Vz

(ut+u 0a 2+v 0a 1)c+(vt+u 0a 1−v 0a 2)s= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = .

Thus, given the image flow parameters u 0 , v 0 , ux, . . . , etc. of equations (9a,b), we first solve for

θ , Vz and ΩZ from relations (19a,14c,d) and then solve for r from relation (19b).

In this case, there are some situations in which the system of equations (10a-f,18a-c)

becomes under-constrained and so cannot be solved completely. The first situation is when the

distance of the surface along the optical axis (given by Z 0) remains constant. In this case p (given

by Z
.

0 / Z 0 , see equation (A3a)) is zero and therefore equations (18a,b) degenerate and in their

place we get a single constraint p = 0. So we find that the system of equations cannot be solved.

Another situation is when there is no translation along the optical axis, i.e. Vz = 0. In this case r is

indeterminate. There are other degenerate cases such as when there is no translation parallel to

the image plane (Vx = Vy = 0), when the surface patch is a frontal (ZX = ZY = 0), etc., when the

equations are partially solvable and some of the unknowns become undetermined. In a computa-

tional algorithm, the presence of such degenerate cases should be detected in the early stages and

dealt with.

Recently Bandopadhyay and Aloimonos [4] have shown that in this case, given the image

velocities at any three non-collinear points where their temporal derivatives are non-zero, the

motion parameters are uniquely determined. Wohn and Wu [36] have also solved this case by a

different approach.

b) The case when the direction of VV changes

In the previous case we assumed that the translation and rotation are uniform with respect to

the camera’s reference frame. But in many real world situations, their magnitudes remain the

same but their directions change due to the rotation of the camera’s reference frame. For exam-

ple, consider a ball in the air which is moving horizontally with respect to the ground and
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spinning along an axis not parallel to the direction of translation. Suppose that during a short

time interval the motion of the ball can be considered uniform (ignoring gravity) in the world

reference frame. Then the relative translation of the ground as seen from a reference frame fixed

with respect to the ball changes continuously in direction with time due to the rotation of the ball,

although the magnitude remains the same. The solution method in this case is similar to that in

the previous case except that the expressions for ut and vt are more complicated than before. In

deriving expressions for ut and vt from relations (7a,b) we consider VV and ΩΩ to be functions of

time t. The rates of change of VV and ΩΩ with time are given by

(20a,b)V
.
V
.

= VV × ΩΩ and Ω
.
Ω
.

= ΩΩ × ΩΩ = 0 .

Using the above relations, we can derive expressions for ut and vt from relations (7a,b) to be

(21a)ut = Vz ΩY − Vy ΩZ + Vx p and

(21b)vt = Vx ΩZ − Vz ΩX + Vy p

where p is, as before, given by relation (18c).

Relations (21a,b) can be used to solve for θ and r. Using relations (14a,b,e,f), the right hand

sides of equations (21a,b) can be expressed in terms of θ, r, Vz and ΩZ . From the resulting equa-

tions we can solve for r to get

(22a)r =
− (ΩZ s + 2 Vz c)

ut + u 0 Vz + c q> > > > > > > > > > > > > > >
and

(22b)r =
ΩZ c − 2 Vz s

vt + v 0 Vz + s q? ? ? ? ? ? ? ? ? ? ? ? ? ?
where

(22c)q ≡ u 0 (a 1 s + a 2 c) + v 0 (a 1 c − a 2 s)

Equating the right hand sides of the two equations (22a,b), substituting for Vz and ΩZ in terms of

θ using relations (14c,d), and simplifying, we can derive a fifth degree equation in tanθ. This

derivation is given in Appendix B. θ is obtained by solving for the roots of the fifth degree
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polynomial. Therefore θ may have up to five solutions, but requiring the solution to be consistent

over time should give a unique solution in most cases. For example, if ZX and ZY are the slope

components of the surface patch at time t = 0, then these components after a small time dt should

be (approximately) ZX + Z
.
X dt and ZY + Z

.
Y dt where Z

.
X and Z

.
Y are given by relations (A3b,c).

Having solved for θ we solve for Vz and ΩZ from equations (14c,d). We then solve for r

from either (22a) or (22b).

In this case, there are two special situations which deserve mention. In both these cases, the

orientation of the surface patch is indeterminate as there is no translation parallel to the image

plane. These cases are summarized in Appendix B.

c) The case when the camera tracks a point

While observing moving objects, human visual system has a tendency to actively track the

object being observed by continuously changing the direction of view. We will consider this case

here where the camera system deliberately tracks a point on the object’s surface along the optical

axis. A canonical tracking motion in this situation is a rotation around the focus about an axis

perpendicular to the optical axis. Here we assume that the voluntarily induced angular velocity

and acceleration of the camera in order to track the point are known. The canonical tracking

motion we assume does not restrict our analysis because a general tracking motion involving

arbitrary rotation about the focus (but no translation) can be expressed as the combined effect of a

canonical tracking motion and a rotation about the optical axis. The effect of rotation about the

optical axis can be cancelled by a rotation of the image coordinate system. This can be achieved

because we have assumed that the tracking motion is known.

If ωω and ω
.
ω
.

are respectively the angular velocity and acceleration of the camera, then the

image velocity and acceleration of the point being tracked with respect to a stationary coordinate

system are given by ωω × k̂k̂ f and ω
.
ω
.

× k̂k̂ f where f is the focal length of the camera. In this case,

due to the tracking motion of the camera, VV and ΩΩ are changing with time in a complex manner.

In this situation, the image velocity field in a small neighborhood around the image of the point

being tracked over a short duration of time is given by
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(23a)u (x, y, t) = (u 0 + u
.

t) + ux x + uy y + O2 (x, y, t) and

(23b)v (x, y, t) = (v 0 + v
.

t) + vx x + vy y + O2 (x, y, t)

where (u
.
, v

.
) is the acceleration of the image of the point being tracked at time t = 0. Notice that

the above expressions are similar to relations (9a,b) except that ut , vt are replaced by u
.
, v

.
respec-

tively. The expressions for u
.

and v
.

are obtained from equations (7a,b) by considering x and y to

be functions of time t (i.e. x = X(t) / Z(t) and y = Y(t) / Z(t) ) and differentiating and evaluating

at the image origin and t = 0. Alternatively, they can be obtained by directly differentiating rela-

tions (1a,b) twice with respect to t and evaluating at the image origin. This has been derived in

Appendix C to be

(24a)u
.

= v 0 ΩZ + u 0 Vz − Vx Vz and

(24b)v
.

= v 0 Vz − u 0 Ωz − Vy Vz .

In Appendix C the solution for θ is derived to be

(25)tanθ =
ux u 0 + uy v 0 − u

.
v 0 vy + vx u 0 − v

.@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ .

Having solved for θ from the above equation, we solve for Vz , ΩZ (using relations 14c,d). In

terms of these quantities the solution for r is shown (Appendix C) to be

(26)r = u 0c+v 0s +
Vz

(v 0ΩZ−u
.
)c−(u 0ΩZ+v

.
)sA A A A A A A A A A A A A A A A A A A A .

In this case, we find that when there is no translation along the optical axis (i.e. Vz = 0), r

and θ are indeterminate. Although ΩZ can be computed as u
.
/v 0 (or −v

.
/u 0) all other parameters of

motion and structure remain undetermined.

The problem of interpreting instantaneous image flow when a binocular camera tracks a

feature point has been considered by Bandopadhyay, Chandra, and Ballard [5].

2) Accelerated motions
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In the previous examples we have restricted the time dependence of the motion parameters.

In general they can be arbitrary (but analytic) functions of time. We can in principle deal with

these cases. Solving the general case involves using second and higher order image flow deriva-

tives. Here we illustrate the method with a simple example which involves only first order image

flow parameters.

An example of non-uniform motion

In this example, we restrict the situation in the following ways: no relative rotation between

the camera and the surface patch, the surface is rigid and the translational acceleration is uniform.

In this case, we can derive the following equations from equations (7a,b):

(27a,b)u 0 = − Vx , v 0 = − Vy ,

(27c,d)ux = Vz + Vx ZX , vy = Vz + Vy ZY ,

(27e,f)uy = Vx ZY , vx = Vy ZX ,

(27g,h)ut = −
∂t

∂VxB B B B and vt = −
∂t

∂VyC C C C .

The term
dt

dVZD D D D corresponding to the acceleration along the optical axis does not appear in the

above equations and therefore is not recoverable from the available information (knowing uxt or

vyt would make it possible for us recover this term). Equations (27a-h) are overdetermined (eight

equations in seven unknowns). Solving these equations is straightforward.

V. The general formulation:

Non-rigid and non-uniform motions

Until now we have only considered rigid motion of objects. In this section we consider the

general case of non-rigid motion. Restricted types of non-rigid motion problem has been

addressed by some of researchers [14,6,28]. General non-rigid motion problem was recently for-

mulated in [21]. A refined and extended version of the formulation will be described in this
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section.

The formulation for the non-rigid motion case is basically an extension of the rigid motion

case. The primary difference is that here the instantaneous velocities of points on surfaces in the

scene are considered to be functions of their positions in the scene. The formulation of a general

non-rigid motion case has two stages: (i) the representation of non-rigid motion of surfaces, and

(ii) relating the non-rigid motion parameters to the changing image flow in space and time.

A. Representation and formulation

Here we describe the non-rigid motion of a small surface patch in terms of the deformation

and motion of a small volume element embedding the surface patch. This is an adequate

representation because given the deformation parameters of the volume element the deformation

of the embedded surface is computable (see Appendix D for more discussion of this). In fact we

can recover from the image flow field only those deformation parameters which affect the embed-

ded surface patch and in any case this is all that we want. For example, for a planar surface

patch, the extension (or contraction) of a line segment normal to the planar surface is not recover-

able from the image flow and we don’t need it anyway because it has no effect on the surface

patch.

An alternative representation of surface deformation can be obtained by using a curvilinear

coordinate system fixed in the surface. In this system, geometric points on the surface are

labelled by two independent parameters and the partial derivatives of the velocities of material

particles on the surface with respect to these parameters represent the surface deformation param-

eters (see [3,29,18]). But the velocity gradient tensor representation we have used is simpler and

may be more desirable because the deformation of a surface in the physical world is often due to

deformation of the 3D object of which it forms a part.

Let the instantaneous three-dimensional velocities of points in a small volume embedding a

small surface patch along the optical axis be given by UU = (X
.
, Y

.
, Z

.
) where

(28a)X
.

= a 10 + a 11 X + a 12 Y + a 13 (Z − Z 0) + O2(X, Y, Z)
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(28b)Y
.

= a 20 + a 21 X + a 22 Y + a 23 (Z − Z 0) + O2(X, Y, Z)

(28c)Z
.

= a 30 + a 31 X + a 32 Y + a 33 (Z − Z 0) + O2(X, Y, Z) .

In the above expressions the last terms denote the second and higher order terms with respect to

X, Y and Z. The 3 × 3 matrix defined by aij for 1 ≤ i, j ≤ 3 is in fact the spatial velocity gradient

tensor at the point (0, 0, Z 0). An intuitive interpretation of this velocity gradient tensor and aij

are given in Appendix D. Comparing the above expressions for a general non-rigid motion to

relations (2a-c) for a rigid motion, we see that in the case of rigid motion

(29a,b)a 11 = a 22 = a 33 = 0 , a 23 = −a 32 = ΩX ,

(29c,d)a 31 = −a 13 = ΩY and a 12 = −a 21 = ΩZ .

Therefore, non-zero values for the terms a 11 , a 22 , a 33 , a 12 + a 21 , a 13 + a 31 , and a 23 + a 32 ,

imply a non-rigid motion. Substituting for Z from equation (6a) in equations (28a-c) and rear-

ranging terms we obtain

(30a)X
.

= a 10+(a 11+a 13ZX)X+(a 12+a 13ZY)Y+a 13Z
.

0t+O2(X,Y,Z,t)

(30b)Y
.

= a 20+(a 21+a 23ZX)X+(a 22+a 23ZY)Y+a 23Z
.

0t+O2(X,Y,Z,t)

(30c)Z
.

= a 30+(a 31+a 33ZX)X+(a 32+a 33ZY)Y+a 33Z
.

0t+O2(X,Y,Z,t) .

Now we wish to solve for aij and the local surface structure given the image flow field. Here, as

there are more unknowns than before, we have to consider terms in the Taylor series expansion of

the image velocity field beyond first order (see relations (9a,b)). The coefficients of this Taylor

series are the new image flow parameters. The relations between these image flow parameters and

the deformation, motion and local surface structure parameters are derived by a method similar to

that for the rigid motion case described earlier except that in this case X
.
, Y

.
and Z

.
are taken to be

as in relations (30a-c) instead of (2a-c). We illustrate this for a simple case where we need to

consider only the first order image flow parameters. The general case is considered later.

1) An example of non-rigid motion
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Consider a simple situation where a surface patch along the direction of view of a camera is

translating uniformly and expanding (or contracting) along the X and Y directions. In this case we

have

(31a)a 12 = a 13 = a 21 = a 23 = a 31 = a 32 = a 33 = 0 ,

(31b-d)a 10 = − VX , a 20 = − VY , a 30 = − VZ ,

(31e,f)a 11 = −
∂X

∂VXE E E E , and a 22 = −
∂Y

∂VYF F F F .

Now we can derive the following from equations (7a,b):

(32a,b)u 0 = − Vx , v 0 = − Vy ,

(32c,d)ux = Vz + Vx ZX −
∂X

∂VXG G G G , vy = Vz + Vy ZY −
∂Y

∂VYH H H H ,

(32e,f)uy = Vx ZY , vx = Vy ZX ,

(32g,h)ut = Vx s′ and vt = Vy s′
where

(32i)s′ = Vx ZX + Vy ZY − Vz .

Equations (32a-h) are eight equations in seven unknowns. The equations are overdetermined

because of the restricted type of motion and deformation we have assumed. Solving these equa-

tions is straightforward.

B. Arbitrarily time-varying 3D scenes: non-rigid and non-uniform motion of general sur-

faces

Combined non-rigid and non-uniform motions can be analyzed by considering parameters

aij in the previous case to be functions of time. This modification is similar to our extension in

the previous section from uniform motion to non-uniform motion. In this case the velocity field

in the scene domain takes the form:
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(33a)X
.

= a 10 + a 11 X + a 12 Y + a 13 (Z − Z 0) + a 14 t + . . .

(33b)Y
.

= a 20 + a 21 X + a 22 Y + a 23 (Z − Z 0) + a 24 t + . . .

(33c)Z
.

= a 30 + a 31 X + a 32 Y + a 33 (Z − Z 0) + a 34 t + . . .

Further, we can use finer local surface models (quadric, cubic, etc.) by considering longer Taylor

series expansions of the surface expressed in the form Z(X, Y, t) (see equation (5.3)). However,

in this case we need to know how the general spatio-temporal derivatives of image flow are

related to the scene parameters. We consider this next.

1) Time and space-time derivatives of image flow

In order to derive the equations relating the time and space-time derivatives of image flow

to the scene parameters, it is necessary to know how the corresponding surface structure parame-

ters are changing with time; i.e., if the surface is represented by

(34)Z = b 0+b 1X+b 2Y+b 3X 2+....

then we need to know how b 0 ,b 1 ,b 2 , .... are changing with time (compare the above equation

with equation (5.1)). For this purpose, if the transformation of the surface in the scene is assumed

to be ‘‘smooth’’ and analytic with time, then each of the surface structure parameters can be

expressed in a Taylor series expansion as

(35)bi=bi 0+bi 1t+bi 2t 2+ . . . for i=0,1,2, ....

(Compare the above equation with equation (5.2a-c)). The transformation can be any combina-

tion of translation, rotation, deformation, and higher order variations of these quantities. The

time dependence of these parameters is determined by the scene transformation parameters, i.e.,

aij . If aij are themselves changing with time then we can express them as functions of time as in

the case of bi (see equation (35)). The first order dependence of the structure parameters on time,

denoted by bi 1 , can be related to aij as follows (see Appendix A for an example). Differentiating

equation (34) we obtain
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(36)Z
.

= b
.

0+b
.

1X+b 1X
.
+b

.
2Y+b 2Y

.
+b

.
3X 2+....

In the above expression we substitute for X
.
,Y

.
,Z

.
using equations (33a-c) respectively and then

substitute for Z from equation (34). Simplifying the resulting expression we can obtain an expres-

sion of the form

(37)C 0+C 1X+C 2Y+C 3X 2+....=0.

We can equate each of the coefficients Ci to zero in the above expression since the above equa-

tion should hold for every (X,Y) value. Using the set of equations Ci=0 at time zero we can expli-

citly express bi 1 in terms of aij (see equations (A2-A3) as examples in Appendix A). In order to

derive the second order dependence of the structure parameters we differentiate equation (36) and

follow steps similar to the previous one. In general this method can be used to express all bij for

j>0 in terms of aij . Having obtained these relations, the equation of the surface as a function of

time is given by equations (34) and (35). Using this representation of the surface, the equations

relating the time and space-time derivatives to the scene parameters (i.e. bi 0 ,aij) can be derived.

The method is similar to that of the rigid motion case. The result is that we have a general

method for obtaining the relation between the image flow parameters of any order and the scene

parameters. Solving these equations constitutes the interpretation of image flow.

2) The nature of the problem

As we generalize our method to incorporate more general motions (non-rigid, non-uniform,

etc.) and finer local surface patch models (quadric, cubic, etc.) more unknown parameters are

introduced. In these situations, the general principle is to consider sufficiently long Taylor series

expansions of the image velocity field so that enough equations are available to solve for all the

unknowns. Typically, each Taylor series coefficient of the image velocity field yields one equa-

tion (sometimes all the equations may not be independent as some of them may yield extra con-

straints such as a rigidity constraint, etc.). These Taylor series coefficients are to be extracted

from the given image velocity field. Since this image velocity field is itself estimated from an

image sequence, the longer the Taylor series, the higher the desired quality of the input image

data (in terms of spatial and intensity resolution).
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The problem of image flow interpretation in its general form is inherently ill-posed or

under-constrained. In order to see this we first observe that, in general, each image flow parameter

(which is assumed to be known) gives one image flow equation for the scene parameters (the

unknowns). If we consider up to nth order Taylor coefficients in equations (9a,b), then it can be

shown that we get 2
IJ

3
n +3KL image flow equations where

MN
r
nOP denotes the obvious binomial

coefficient. In these equations, all scene parameters up to nth order will appear. Therefore the

number of unknowns is obtained by summing the number of aij in equations (33a-c) and the

number of bi in equation (34) for i >0 (b 0 has been taken to be the scaling factor which is indeter-

minate; see earlier discussion in section IV.A). This sum can be shown to be

3
QR

4
n +4ST +

UV
2

n +2WX − 1. Therefore, the number of equations increase as O(n 3) whereas the number

of unknowns increase as O(n 4). Thus, for any given order of image flow parameters the number

of equations is lower than the number of unknowns (see Table I). In order to solve for the

unknowns we will have to impose additional constraints on the scene parameters. For example,

consider the case in section IV.B.1.b where n =1. The above formulas give eight image flow

equations and seventeen unknowns. Now the rigidity assumption gives effectively six additional

equations represented by equations (29a-d). The assumption that the motion is uniform (i.e.

acceleration is zero with respect to an external reference frame) gives three additional equations

(one for each component of V
.
V
.
) as in equation (20a). (Note: Ω

.
Ω
.

is a second order scene parameter

and therefore equation (20b) does not give additional constraints.) Therefore we arrive at a situa-

tion where the number of equations exactly match the number of unknowns (seventeen each).

(Only for n =0 we will have to consider an object centered coordinate system for our formulas to

hold (in this paper we are using a camera centered coordinate system). In this case ΩX and ΩY

will not appear in equations that correspond to (10a,b)). In practice the assumptions of rigidity of

motion, local planarity of surfaces, and constancy of motion with respect to time are useful. In

general some model of the scene parameters is required for the interpretation process.

*********** TABLE 1 ABOUT HERE ***********

VI. Error sensitivity and numerical examples
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A worst case error sensitivity analysis of the computational approach for the many cases we

have considered above can be performed easily. For this purpose we invoke error estimation

theory since the solutions are given by explicit analytic expressions. Approximate bounds on the

maximum error in the solution can be estimated in all cases given the uncertainty in the input

parameters. In contrast, sensitivity analyses of previous approaches are based on a few numerical

examples; a general analysis was not possible as closed-form solutions were not available

[1,2,31,32]. However, the analysis here gives only the worst case behavior and therefore is often

not helpful in practical applications. A more useful analysis is difficult unless a domain of appli-

cation is specified. This difficulty arises from the non-linear nature of the problem.

A. Estimation of maximum absolute error

The maximum absolute error in the computation of an analytic function can be estimated

using the total differential of the function [19]. Let y = f(x 1 ,x 2 , ....,xn) be an analytic function

and ∆x 1 ,∆x 2 , .....,∆xn be the errors in the corresponding arguments. Then, for sufficiently small

absolute values of ∆x 1 ,∆x 2 , .....,∆xn , the error ∆y in y can be shown to satisfy the relation

(38)
Y
∆y Z ≤ [

∂x 1

∂ f\ \ \ \^] ]∆x 1 _ + ` ∂x 2

∂ fa a a acb b∆x 2 d + .... + e
∂xn

∂ ff f f fcg g∆xn h
Relation (38) can be used to estimate the maximum absolute errors in the scene parameters given

the uncertainties in the image parameters.

Example : Given the first order spatial and temporal image flow derivatives for a rigid motion

case where the angular velocity and the magnitude of translation are constant with time, but the

direction of translation changes due to angular velocity (see Section IV.B.1.b), up to five interpre-

tations are possible.

About fifty sets of structure and motion parameters were generated randomly and the image flow

parameters were computed using equations (10a-f,21a,b,18c). These image flow parameters were

given as input to a program to solve the image flow equations. For these test examples it was

found that, most often the number of possible interpretations was three (about three out of four
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cases); occasionally (about one out of five cases) there were five possible interpretations, and in a

few cases (about one out of twenty cases) the interpretation was unique. Below we give one case

where there are five possible interpretations. The validity of this example can be verified easily by

computing the image flow parameters for the different solutions using relations (10a-f,21a,b,18c)

and comparing them to the input flow parameters. (All values are rounded to the sixth decimal

place.)

Input image flow parameters:

u 0 : -9.150000 v 0 : -8.970000 ux : 54.466200 vx : 21.655800

uy : 0.062400 vy : -1.488400 ut : 304.508958 vt : 303.101922

The set of solutions for (θ, r):

{ (1.129612 , 0.762626) , (0.6196659 , 4.598889) , (0.545963 , 9.899050)

(0.235251 -31.567504) , (-1.014546 , 6.088551) }

Solution 1:

(Vx, Vy, Vz) : ( 3.214788 , -5.170647 , 48.605154)

(OX , OY , OZ) : ( -14.140647 , 5.935212 , -31.082672)

(ZX , ZY) : ( 1.823151 , 9.688064 )

Solution 2:

(Vx, Vy, Vz) : ( -30.698008 , -7.357963 , -3.371209)

(OX , OY , OZ) : ( -16.327963 , 39.848008 , -7.792830)

(ZX , ZY) : ( -1.884077 , -0.255887 )

Solution 3:

(Vx, Vy, Vz) : ( 8.460000 , 5.140000 , 3.960000)

(OX , OY , OZ) : ( -3.830000 , 0.690000 , 9.030000)

(ZX , ZY) : ( 5.970000 , -1.060000 )
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Solution 4:

(Vx, Vy, Vz) : ( 3.743829 , 2.670866 , 7.116296)

(OX , OY , OZ) : ( -6.299134 , 5.406171 , 12.123849)

(ZX , ZY) : ( 12.647452 , -3.221688 )

Solution 5:

(Vx, Vy, Vz) : ( 0.325650 , 0.689602 , 37.877619)

(OX , OY , OZ) : ( -8.280398 , 8.824350 , 17.707709)

(ZX , ZY) : ( 57.081497 , -54.184914 )

VII. Conclusions

We have described a general formulation for the interpretation of image flow. In the farme-

work of this formulation, computational methods have been derived for image flow interpretation

for many important cases including simple cases of non-rigid and non-uniform motions. It is pos-

sible to derive computational methods for other situations not considered explicitly in this paper.

The results in this paper provide a theoretical framework for further investigations. Some topics

which need to be investigated in the future are mentioned below.

As in the area of image flow interpretation, most of the research until now on the measure-

ment of image flow has concentrated on measuring only the instantaneous image flow. General

methods for measuring image flow in the spatio-temporal domain needs to be investigated.

The theory developed here needs to be applied to practical applications and tested. Robust

computational methods, perhaps based on some kind of ‘‘multi-resolution image flow analysis’’,

need to be developed.
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APPENDIX A. Equation of a Planar Surface in Motion

At time instant t =0, let a planar surface in motion be described by

(A1)Z = Z 0 + ZX X + ZY Y for Z 0 > 0

in the coordinate system shown in Figure 1, where ZX and ZY are the X and Y slopes respectively.

As in Figure 1, let VV and ΩΩ be the relative translational and rotational velocities of the camera.

These velocities are assumed to be uniform (i.e. there is no acceleration). Due to the motion of

the plane, its equation changes with time. Taking the time derivative of equation (A1), we have

(A2)Z
.

= Z
.

0 + ZX X
.

+ X Z
.
X + ZY Y

.
+ Y Z

.
Y

In the above expression, we first substitute for (X
.
, Y

.
, Z

.
) from relations (2) and then we substitute

for Z from relation (A1). After these substitutions and rearranging terms, we getij k
Z
.

0 − Z 0 ((ΩY + VX/Z 0) ZX − (ΩX − VY /Z 0) ZY − VZ /Z 0)

l m
n +

op q
Z
.
X − (ZX (ΩY ZX − ΩX ZY) + (ΩY + ΩZ ZY))

r s
t X +

uv w
Z
.
Y − (ZY (ΩY ZX − ΩX ZY) − (ΩX + ΩZ ZX))

x y
z Y = 0 .

In the above expression, since X and Y are independent parameters of points on the plane in

motion, we can equate each of the three terms to zero separately. Equating these terms to zero

yields the following expressions for Z
.

0 , Z
.
X and Z

.
Y respectively:

(A3a)Z
.

0 = Z 0 ((ΩY + VX/Z 0) ZX − (ΩX − VY /Z 0) ZY − VZ /Z 0)

(A3b)Z
.
X = ZX (ΩY ZX − ΩX ZY) + (ΩY + ΩZ ZY)

(A3c)Z
.
Y = ZY (ΩY ZX − ΩX ZY) − (ΩX + ΩZ ZX)

Therefore, after a small time t, the equation of the planar surface is given by

(A4)Z = (Z 0 + Z
.

0 t) + (ZX + Z
.
X t) X + (ZY + Z

.
Y t) Y for Z 0 > 0
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or

(A5)Z = Z 0 + ZX X + ZY Y + Z
.

0 t + O2(X, Y, t) for Z 0 > 0

where O2(X, Y, t) denotes the second order terms in X, Y and t. Discarding of the second order

term (O2) in relation (A5) makes the relation completely isomorphic to equation (6a). Therefore,

Z
.

0 of equation (6a) in this case is given by Z
.

0 in equation (A3a). Now, using the notation of

relations (8a-c) for the scaled translation parameters, we have

(A6)Z
.

0 = Z 0

{|
(ΩY + Vx) ZX − (ΩX − Vy) ZY − Vz

}~

or, using relations (10a,b) we have

(A7)Z
.

0/Z 0 = − ( u 0 ZX + v 0 ZY + Vz )

From the above relation and relations (17a,b), relations (18a-c) are easily derived.

APPENDIX B. Solving for θθ when the direction of VV changes

Equating the right hand sides of the two equations (22a,b), substituting for Vz and ΩZ in

terms of θ using relations (14c,d), and simplifying, we get the following equation for θ:

(B1)(b 1 + b 2 cos2θ + b 3 sin2θ + b 4 cosθ sinθ)

(b 5 cos3θ + b 6 cos2θ sinθ + b 7 cosθ sin2θ + b 8 sin3θ) +

(c 1 + c 2 cos2θ + c 3 sin2θ + c 4 cosθ sinθ)

(c 5 cos3θ + c 6 cos2θ sinθ + c 7 cosθ sin2θ + c 8 sin3θ) = 0

where bi and ci are constants given by

(B2a-d)b 1 = ut , b 2 = u 0 ux + a 1 v 0 , b 3 = u 0 ux , b 4 = − a 2 v 0

(B2e-h)b 5 = − vx , b 6 = a 2 − 2 vy , b 7 = 2 a 1 + uy , b 8 = − 2 ux

(B3a-d)c 1 = vt , c 2 = v 0 vy , c 3 = v 0 vy + a 1 u 0 , c 4 = a 2 u 0
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(B3e-h)c 5 = 2 vy , c 6 = − vx − 2 a 1 , c 7 = a 2 + 2 ux and c 8 = uy .

Now, multiplying b 1 , c 1 in relation (B1) by cos2θ+sin2θ and simplying, equation (B1) can be

further reduced to

(B4)d 1tan5θ+d 2tan4θ+d 3tan3θ+d 4tan2θ+d 5tanθ+d 6 = 0

where

(B5a)d 1 = (b 1+b 3)b 8+(c 1+c 3)c 8 ,

(B5b)d 2 = b 4b 8+(b 1+b 3)b 7+c 4c 8+(c 1+c 3)c 7 ,

(B5c)d 3 = (b 1+b 2)b 8+b 4b 7+(b 1+b 3)b 6+(c 1+c 2)c 8+c 4c 7+(c 1+c 3)c 6 ,

(B5d)d 4 = (b 1+b 2)b 7+b 4b 6+(b 1+b 3)b 5+(c 1+c 2)c 7+c 4c 6+(c 1+c 3)c 5 ,

(B5e)d 5 = (b 1+b 2)b 6+b 4b 5+(c 1+c 2)c 6+c 4c 5 , and

(B5f)d 6 = (b 1+b 2)b 5+(c 1+c 2)c 5 .

In this case, there are two special situations which deserve mention. In both these cases, the

orientation of the surface patch is indeterminate as there is no translation parallel to the image

plane. For brevity, the two situations are summarized below:

(B6a)[ (ut = − u 0 ux) and (vt = − v 0 vy) and (ux = vy) and (uy = − vx) and

(ux ≠ 0 or uy ≠ 0) ] → [ (Vx = Vy = 0) and (ZX , ZY are indeterminate) ]

(B6b)[ (ut = − u 0 ux) and (vt = − v 0 vy) and (ux = vy) and (uy = − vx) and

(ux = 0) and (uy = 0) ] → [ ( (Vx = Vy = 0) and (ZX , ZY are indeterminate) )

or ( (ZX = ZY = 0) and (Vx, Vy are indeterminate) ) ]

APPENDIX C. Solving for r and θθ when the camera tracks a point
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Differentiating equation (1a) twice with respect to time t yields

(C1)x
..

=
Z
X
..� � − 2

Z
X
.� �

Z
Z
.� � +

Z
X� � ��

� 2
Z 2

Z
. 2� � � −

Z
Z
..� � � �� .

In the above expression, X
.
, Y

.
and Z

.
are given by relations (2a-c) and X

..
, Y

..
and Z

..
are easily derived

from these. For example,

(C2)X
..

= − ΩY Z
.

+ ΩZ Y
.

.

From these, we express x
..

in terms of only VV, ΩΩ, X, Y and Z and evaluate it at the image origin,

i.e. (X, Y, Z) = (0, 0, Z 0) where Z 0 > 0 . Denoting x
..

evaluated at the image origin by u
.

we can

derive

(C3)u
.

= ΩZ (ΩX − Vy) − Vz (ΩY + Vx) − Vx Vz .

Using relations (10a,b) the above equation can be reexpressed as

(C4)u
.

= v 0 ΩZ + u 0 Vz − Vx Vz

or

(C5a)Vx = (u 0 Vz + v 0 ΩZ − u
.
) / Vz .

Similarly, starting from equation (1b) and following steps similar to those above, we can derive

(C5b)Vy = (v 0 Vz − u 0 ΩZ − v
.
) / Vz .

In equations (C5a,b) we substitute for all unknowns in terms of r and θ from (14a-d) and elim-

inate r and solve for θ to get relation (25). Relation (26a) which gives the solution for r is easily

obtained from relations (C5a,b) and (14a,b).

APPENDIX D. Surface Deformation Parameters

We have chosen to describe the deformation of a small surface patch in 3D space in terms

of the deformation of a small volume element embedding the surface patch. To a first approxi-

mation, the deformation parameters of a small volume element are given by the components of its

velocity gradient tensor. The physical interpretation of the velocity gradient tensor shows that an

arbitrary time variation of a small surface patch can be expressed as the combined effect of a pure
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translation, a pure rotation, a pure acceleration and a deformation (see the last part of this Appen-

dix). Also, the velocity gradient tensor representation gives explicit conditions for rigid motion,

pure translation, etc..

Interpretation of the Velocity Gradient Tensor

Consider a Cartesian coordinate system with axes x 1 , x 2 and x 3 . The gradient tensor of a

velocity vector vv = (v 1 , v 2 , v 3) can be written as the sum of symmetric and antisymmetric parts,

(D1a)∂xj

∂vi� � � � =
2
1� � �� �

∂xj

∂vi� � � � +
∂xi

∂vj� � � � � �� +
2
1� � �� �

∂xj

∂vi� � � � −
∂xi

∂vj� � � � � ��

(D1b)= eij + ωij i, j = 1, 2, 3 .

It can be shown that the three independent parameters of the antisymmetric tensor ωij correspond

to the components of a rigid body rotation, and, if the motion is a rigid one (composed of a trans-

lation plus a rotation), all the components of the symmetric tensor eij will vanish. For this reason

the tensor eij is called the deformation or rate of strain tensor and its vanishing is necessary and

sufficient for the motion to be without deformation, that is, rigid. A component eii of this tensor

gives the rate of longitudinal strain of an element parallel to the xi axis. A component eij , i ≠ j,

represents one-half the rate of decrease of the angle between two segments originally parallel to

the xi and xj axes respectively. In fact it can be shown that there exists a rotation of the coordinate

system for which the matrix eij becomes diagonal. Thus, to a first order, the deformation of a

volume element is pure stretching along some three orthogonal axes. For a more detailed treat-

ment of these topics, see Aris [3].

Interpretation of the motion and deformation parameters aij

From our discussions above, the interpretation of the motion and deformation parameters

aij in equations (28a-c) with respect to (X, Y, Z, t) = (0, 0, Z 0 , 0) can be summarized as follows:

(D2a)(a 10 , a 20 , a 30) : rigid body translation
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(D2b)
2
1� � (a 23 − a 32 , a 31 − a 13 , a 12 − a 21) : rigid body rotation

(D2c)(a
.

10 , a
.

20 , a
.

30) : rigid body acceleration

(D2d)(a 11 , a 22 , a 33) : measures stretching

(D2e)
2
1� � (a 12 + a 21 , a 23 + a 32 , a 31 + a 13) : measures shear .

It is interesting to note that an arbitrarily time-varying surface patch can be described, to a

first approximation, in terms of a rigid translation plus a rigid rotation plus a rigid acceleration

plus a deformation.
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Figure and Table captions

Fig. 1. Camera model and coordinate systems.

Table I. The numbers in the first row represent the maximum order of the Taylor
coefficients considered for the scene parameters and the image flow parameters. We see
that under any given column, the number of unknowns exceeds the number of equations.
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Table I

Order of Taylor coefficients: 0 1 2 3 4 ..

Number of equations: 2 8 20 40 70 ..

Number of unknowns: 3 17 50 114 224 ..
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