
Parallel Depth Recovery
by Changing Camera Parameters

Abstract

A new method is described for recovering the distance of
objects in a scene from images formed by lenses. The
recovery is based on measuring the change in the scene’s
image due to a known change in the three intrinsic camera
parameters: (i) distance between the lens and the image detec-
tor, (ii) focal length of the lens, and (iii) diameter of the lens
aperture. The method is parallel involving simple local compu-
tations. In comparison with stereo vision and structure-from-
motion methods, the correspondence problem does not arise.
This method for depth-map recovery may also be used for (i)
obtaining focused images (i.e. images having large depth of
field) from two images having finite depth of field, and (ii)
rapid autofocusing of computer controlled video cameras.

1. Introduction

Here we describe a new passive ranging method which in
principle is fast and involves relatively weak assumptions that
are generally valid. The method is basically a generalized ver-
sion of the ‘depth-from-focusing’ [4,6,14,7] method. It is gen-
eral in the sense that it is not required to focus an object in
order to find its distance. Instead, two images of the object
(which may or may not be focused) acquired with different
camera parameter settings are processed to determine the dis-
tance. In particular, this method requires only two images and
is parallel (hence fast) in contrast to the depth-from-focusing
method which requires a large number of images and is
sequential (hence slow).

2. Previous work

Pentland [10,11,12] is perhaps the first to investigate
monocular depth recovery in parallel from images formed by a
lens. Pentland proposes two methods. The first method is
based on measuring the ‘‘blur’’ of edges which are step discon-
tinuities in the focused image. Recently Grossman [3] has
reported results of some experiments based on this same prin-
ciple. A related method and experiments are described in [20].

Pentland’s second method is based on comparing two
images, one image formed with a very small (pin-hole) aper-
ture and the other image formed with a normal aperture. Appli-
cation of this method poses some practical difficulties. A very
small aperture increases the effects of diffraction which dis-
torts the image. Further, a smaller aperture gathers lesser light
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and therefore increases film exposure period. This could slow
down the method.

The method to be presented here originates from the new
methods for depth recovery proposed in [16]. The original
methods are based on measuring the change in an image due to
a very small or infinitesimal change in one of the camera
parameters. These methods are sensitive to noise as the change
in an image is small if the change in a camera parameter is
small. In the new method the change in the camera parameters
can be very large, thus permitting large changes in the
observed image. This makes the method realizable in practice
and more robust than the earlier methods. Further, it is more
general than the original methods. In the original methods
only one out of three camera parameters are changed at a time.
In the method described here, any one, any two, or all three
camera parameters may be changed simultaneously.

The main ideas behind the new method were developed
independently by us although Pentland’s earlier work is
related. Pentland’s method can be derived as a special case of
the new method.

3. Camera configuration

The first camera parameter, the distance between the lens
system and the image detector, is changed by moving the
image detector back and forth along the optical axis. (Note: In
most commercially available cameras, the lens is moved
instead of the image detector or film. However lens motion
introduces the same correspondence problem encountered in
structure-from-motion where the camera is moved along the
optical axis. Apparently, the fact that −moving the image
detector instead of the lens avoids correspondence problem−
has not been noted in previous work on depth-from-focusing.)
The second parameter, the focal length of the lens system, is
changed by moving back and forth the lens nearer to the image
detector (L2 in Figure 1). The other lens viewing the scene
directly is not moved. (Note: it is the motion of the front lens
L1 or object piece that introduces the correspondence problem;
hence it should not be moved.) The effective focal length f is
determined from the well known formula

(1)
f
1� � =

fa

1� ��� +
fb

1� ��� −
fa fb

l� �����

where fa ,fb are the focal lengths of the two lenses and l is the
distance between the two lenses. The positions of principal
planes and principal points are determined using well known
methods in geometric optics [9]. The third camera parameter,
the diameter of the camera’s aperture, is controlled separately
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by changing the diameter.

4. Theoretical basis of the method

4.1 Spatial and gray-level scaling

The magnification of an observed image is proportional to
the distance s of the image detector from the second principal
plane (see Figure 1). In order to simplify locating correspond-
ing points (or regions) in images acquired with different s
values, we shall scale all images to have the same
magnification. In the following discussion we fix this
magnification to be that corresponding to s =1. Analogous to
this correction for spatial rescaling is the gray-level rescaling.
Changing the camera parameters could change the irradiance at
the image detector. For example, reducing the diameter of the
aperture reduces the image irradiance. This change in image
brightness is compensated as follows. After spatial rescaling
of the images, normalize (or rescale) the gray-levels of the
images so that the mean gray value is the same for all images.
This is done by multiplying the gray values by a constant fac-
tor. (This gray level normalization should be applied after
correcting for the vignetting effect.)

4.2 Point spread function of a lens system

Let P be a point on a visible surface in the scene and p be
its focused image (see Figure 1). The relation between the
positions of P and p is given by the lens formula

(2)
f
1� � =

u
1� � +

v
1� �

where f is the effective focal length, u is the object distance
from the first principal plane, and v is the image distance from
the second principal plane. (The lens formula is valid exactly
only for an aberration free optical system and for points near
the optical axis. Later we will comment on how to use our
method in the other cases excluded here.) If P is not in focus
then it gives rise to a circular image called the blur circle on
the image detector. From simple plane geometry (see Figure
1) and the lens formula (2) we can show that the diameter of
the blur circle is given by

(3)D s

�	

 f

1� � −
u
1� � −

s
1
 

� �
�

where D is the diameter of the lens. Normalizing the spatial
magnification of the blur circle (by dividing its diameter by s)
we obtain its new diameter d to be
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(4)d = D
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Note that d can be either positive or negative depending on
whether s≥v or s <v. In the former case the image detector is
behind the focused image of P and in the latter case it is in
front of the focused image of P. According to geometric
optics, the intensity within the blur circle is approximately con-
stant, but due to aberrations, diffraction, and other effects
[2,5,15,12,16,17,18] the following two-dimensional Gaussian
has been suggested as an alternative model:

(5)h(x,y) =
2πσ2

1� ������� e
−

2
1� �

σ2

x 2+y 2� � � � � �

where σ is the spread parameter such that

(6)σ = k d for k>0.

(k is a constant of proportionality characteristic of a given cam-
era; it is determined initially by an appropriate calibration pro-
cedure.) For the purpose of illustration, we proceed with the
above model, but later we indicate how the method is applied
for any circularly symmetric distribution. Now the blurred
image of point P is actually the point spread function of the
camera system. Therefore, for a linear shift-invariant camera
system (cf. [13]), an observed image is the result of convolving
the focused image with the camera’s point spread function.

The focused image f (x,y) of a scene for a given setting of
the camera parameters is defined as follows. For any point p
(see Figure 1) at position (x,y) on the image detector, consider
a line through that point and the second principal point (Q2).
Let P be the point on a visible surface in the scene whose
focused image lies on this line at position p′. Then f (x,y) is
defined as the image irradiance at p′ due to the light from P.

From equations (4) and (6) we have

(7)σ = kD

��
� f

1  −
u
1! ! −

s
1" "
# $
% .

The equation above differs from the corresponding equa-
tions in [16,17,18] by a factor of s. The reason for this
discrepancy is that the image magnification which depends on
s was not normalized. Therefore, one of the depth recovery
method based on changing s there needs minor modification.
This magnification correction appears to have also been over-
looked in the implementation of all depth-from-focusing
methods [8,14,7] known to the author with the exception of
Horn’s [4]. We believe that applying this magnification
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correction will improve the reported experimental results and
also alleviate some of the problems associated with local
extrema and region correspondence.

h(x,y) in equation (5) is defined in terms of σ and there-
fore is different for points at different distances from the lens
plane. The ‘‘volume’’ of h (x,y) can be shown to be unity.
(The volume of the point spread function of a non-light-
absorbing lens is unity irrespective of the form of the point
spread function.) The Fourier transform of h (x,y) is

(8)H(ω,ν) = e
−

2
1& & (ω2+ν2)σ2

where ω, ν are spatial frequencies in radians per unit distance.
In the above equation, the blur parameter σ is different for
objects in the scene at different distances from the camera. In
this paper we assume that an observed image has been subdi-
vided into smaller subimages within which the distance of
objects are nearly constant. The subimages are then processed
in parallel individually. If this assumption is not valid inside a
subimage, then our method gives an ‘‘average’’ distance of
objects in that subimage which is still a useful piece of infor-
mation.

Dividing an image into subimages introduces some errors
due to border effects. An image region cannot be analyzed in
isolation because, due to blurring (caused by the finite spread
of the point-spread-function), the intensity at the border of the
region is affected by the intensity immediately outside the
region. We call this the image overlap problem because the
intensity distribution produced by adjacent patches of visible
surfaces in the scene overlap on the image detector. In indoor
scenes such as the environments of industrial vision systems,
the image overlap problem can be completely avoided through
selective illumination of the scene. For example, the scene can
be illuminated by square bright patches separated by wide dark
bands with no illumination. In this case the boundaries of the
subimages can be chosen to be in the middle of the dark bands.
Border effects are then avoided because the image intensity is
zero at and near the borders. In situations where the illumina-
tion cannot be controlled (e.g. outdoor scenes), the image over-
lap problem may be reduced as follows. The image intensity is
first multiplied by a suitable center weighted (e.g. a Gaussian)
mask centered at the region of interest. The resulting weighted
image is then used for depth recovery. Because the weights are
higher at the center than at the periphery, this scheme gives a
depth estimate which is approximately the depth along the
center of the field of view.
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4.3 Power spectral density

Let g (x,y) be the observed image of an object on the
image detector, and f (x,y) be the corresponding focused
image. Also, let G (ω,ν) and F(ω,ν) be the corresponding
Fourier transforms. We have

(9)g(x,y) = h (x,y)*f (x,y)

where * denotes the convolution operation. Therefore, the
power spectral density for a Gaussian point spread function is

(13)P(ω,ν) = e −(ω2+ν2)σ2
F F * .

4.4 Depth recovery by changing camera parameters by
large values

The blur parameter σ for an image region can be changed
by changing one or more of the camera parameters: s, f,and D
(see equation 7). Let P 1(ω,ν) and P 2(ω,ν) denote powers for
two different camera parameter settings: s 1 , f 1 ,D 1 and
s 2 , f 2 ,D 2 . Let σ1 and σ2 be the corresponding blur parame-
ters. Then, from equation (13) we have

(14)
P 2(ω,ν)

P 1(ω,ν)' '�'�'�'�'�'�' = e −(ω2+ν2)(σ1
2−σ2

2)

Taking logarithm on either side of equation (14) and rearrang-
ing terms, we get

(15)σ1
2−σ2

2 =
ω2+ν2

−1(�(�(�(�(�( ln

)*
+ P 2(ω,ν)

P 1(ω,ν), ,�,�,�,�,�,�,
- .
/ .

For some (ω,ν), the right hand side of equation (15) can be
computed from the given image pair. Therefore equation (15)
can be used to estimate σ1

2−σ2
2 from the observed images. In

principle, measuring the power spectral density at a single
point (ω,ν) is sufficient to obtain the value of σ1

2−σ2
2 , but a

more robust estimate can be obtained by taking the average
over some domain in the frequency space. Let the estimated
average be C given by

(16)C =
A
10 0 ∫

R
∫ ω2+ν2

−11�1�1�1�1�1 ln

23
4 P 2(ω,ν)

P 1(ω,ν)5 5�5�5�5�5�5�5
6 7
8 dωdν

where R is a region in the (ω,ν) space not containing points
where P 1(ω,ν) = P 2(ω,ν), and A is the area of R. Therefore,
from the observed images we get the following constraint
between σ1 and σ2:

(17)σ1
2−σ2

2 = C .

Above we have one equation in two unknowns. We obtain an
additional equation from the actual camera parameter settings
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as follows.

From equation (7) we have

(18a)σ1 = k 1D 1

9:
; f 1

1< <�< −
u
1= = −

s 1

1> >�>
? @
A , and

(18b)σ2 = k 2D 2

BC
D f 2

1E E�E −
u
1F F −

s 2

1G G�G
H I
J .

Eliminating u from the above two equations we get

(19a)σ1 = ασ2+β
where

(19b)α =
k 2D 2

k 1D 1K K�K�K�K�K , β = k 1D 1

LM
N f 1

1O O�O −
f 2

1P P�P +
s 2

1Q Q�Q −
s 1

1R R�R
S T
U .

Equations (17,19a) together constitute two equations in two
unknowns. From these equations we get

(20)(α2−1)σ2
2 + 2αβσ2 + β2 = C.

Above we have a quadratic equation in σ2 which is easily
solved. In general there will be two solutions. However a
unique solution is obtained if D 1=D 2 . We can also derive
other special cases where a unique solution is obtained (e.g.:
D 1≠D 2 , s 1=s 2= f 1= f 2; in this case only the negative solution
of σ is acceptable which is unique.) Having solved for σ2 we
obtain the distance u from equation (18b) as

u =
s 2 f 2σ2+k 2D 2( f 2−s 2)

−k 2D 2s 2 f 2V V�V�V�V�V�V�V�V�V�V�V�V�V�V�V�V�V�V .

4.5 Depth recovery by changing camera parameters by
small values

Next we describe a method for depth-map recovery by
changing camera parameters by small values. This method is a
generalization of the methods proposed in [16]. At present it
remains to be investigated experimentally whether this method
is better than the previous method when the change in the cam-
era parameters is very small.

Let two images be acquired with camera settings s, f ,D
and s +ds, f +df ,D +dD where ds,df,dD are small changes in
the respective parameters. From (7) we have

(21a)dσ =
∂s
∂σW W�W ds +

∂ f
∂σX X�X df +

∂D
∂σY Y�Y�Y dD.
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(21b)=
s 2

kDZ�Z�Z ds −
f 2

kD[�[�[ df +
D
σ\ \�\ dD.

From (13) we get

(22)dP = −2(ω2+ν2) P σ dσ.

Therefore

(23)σ dσ = −
2
1] ]

ω2+ν2

1^�^�^�^�^�^
P
dP_ _�_ .

Let

(24)C = −
2
1` `

ω2+ν2

1a�a�a�a�a�a
P
dPb b�b .

In principle, measuring P and dP at a single point (ω,ν) is
sufficient to compute C, but a more robust estimate of C can be
computed from the observed images as

(25)C = −
2A
1c c�c ∫

R
∫ ω2+ν2

1d�d�d�d�d�d
P(ω,ν)
dP(ω,ν)e e�e�e�e�e�e�e dω dν

where, as before, R is a region in the (ω,ν) space not contain-
ing points where dP(ω,ν)=0, and A is the area of R. From
(21b,23,24) we obtain

(26)σ

fg
h

s 2

kDi�i�i ds −
f 2

kDj�j�j df +
D
σk k�k dD

l m
n = C.

σ is obtained by solving the above quadratic equation. In gen-
eral two solutions are obtained. However a unique solution is
obtained if dD=0.

4.6 Notes:

Enhancing depth-of-field: A focused image may be
obtained in principle from two observed images as follows. As
in the depth recovery method, first the spread of the Gaussian
point spread function is estimated for one of the observed
images. The observed image is then deconvolved with the
corresponding point spread function. The resulting image is
the required focused image. However, in practice, deconvolu-
tion poses many serious difficulties (especially in the presence
of noise).

Multiple images: Although our method requires only two
images, the estimate of depth can be made more robust if more
images are used. If n images are available for different camera
parameter settings, then n −1 independent estimates of depth
can be made and the mean of these gives a robust estimate of
the actual depth. Alternative schemes are also possible for
using multiple images.
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Domain of analysis: Our method is based on a Fourier
domain analysis of the images. It is possible to do a
corresponding analysis in the spatial or other suitable domain.
We have chosen the Fourier domain for its simplicity and in
particular analyze the power spectrum as it can be computed
very fast by optical methods.

5. Practical Considerations

Lens formula: We said earlier that the lens formula in
equation (2) is valid exactly only for an aberration-free lens
and for points near the optical axis. For an actual camera, one
may consider v to be that distance of the image detector from
the lens for which the image of a point at distance u is ‘‘shar-
pest’’ (we will give a precise definition of sharpness shortly).
Therefore, for a given camera, one can experimentally deter-
mine v as a function of u, f and the direction (or angular posi-
tion) of a point in the scene. Having determined this function,
one can use it in place of the lens formula and derive the
corresponding equations. Even if there is no satisfactory piece-
wise parametric representation of the function, a table-look-up
method can be used. Only the computational steps become
clumsy.

Arbitrary point spread function: For the purpose of illus-
tration we have taken the point spread function to be a Gaus-
sian. For this case, as we have seen above, neat closed form
solution exists for depth recovery. However, for an actual cam-
era, the form of the point spread function could be significantly
different from the Gaussian form. (This is the case with the
camera used in our experiments.) Simple arguments based on
geometric optics suggests a cylindrical or ‘‘pill-box’’ point
spread function. For this case too, closed form solution exists
(in the form of the roots of an infinite series derived from the
ratio of two first order Bessel functions) although the expres-
sion is cumbersome. However, due to diffraction effects, lens
aberrations, and, quantization and digitization, the effective
point spread function of a practical camera becomes compli-
cated. In this case we characterize the point spread function by
a single parameter for the purpose of depth recovery. We call it
the spread parameter of the point spread function, defined as
the square root of the second central moment of the point
spread distribution. (This corresponds to the ‘‘standard devia-
tion’’ of the distribution of the point spread function. It can
also be interpreted as the ‘‘radius of gyration’’ about the
‘‘center of mass’’.) Therefore, if h (x,y) is the point spread
function and σ is its spread parameter, then we have
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(27)σ2 =
−∞
∫
∞

−∞
∫
∞

[(x−xo )2+(y−y
p

)2] h(x,y) dxdy

where (x
q
,y
r

) is the location of the ‘‘center of mass’’ of the dis-
tribution defined by

(28a)xs =
−∞
∫
∞

−∞
∫
∞

x h(x,y) dx dy ,

(28b)y
t

=
−∞
∫
∞

−∞
∫
∞

y h(x,y) dx dy.

(Note that the ‘‘total mass’’ of the distribution is unity, i.e.

(29)
−∞
∫
∞

−∞
∫
∞

h(x,y) dx dy = 1 .

)

A measure of ‘‘sharpness’’ of an image is given by the
spread parameter σ of the point spread function. An image is
sharpest when the corresponding σ is a global minimum.

Irrespective of the form of the point spread function,
given two images of a scene recorded with two different cam-
era parameter settings, we obtain two constraints on the spread
parameters of the point spread functions corresponding to the
two images. The first one is derived from the two observed
images (which corresponds to equation (17) for a Gaussian
point spread function), and the second one is derived from the
actual values of the camera parameters (corresponding to equa-
tion (19a) for an aberration-free optical system for points near
the optical axis). Solving these two constraints simultaneously
enables the determination of distance of objects. However, in
practice, the camera has to be calibrated (only once at the
begining) and the actual computational method may be compli-
cated. The details depend on the characteristics (e.g. the form
of the point spread function) of the camera system.

Error sensitivity: The effective range of the system
depends on many factors such as the values of the camera
parameters, illumination condition of the scene, aberrations of
the optical system, image quality (i.e. spatial and gray level
resolution), etc. The method will fail for polished (mirror-like)
objects. A general and complete analysis remains to be done,
but one calculation under simplified assumptions leads to the
following conclusions: (i) the method is more accurate for
nearby objects than for far away objects, (ii) the effective range
of the method in practical applications is about one hundred
times the focal length of the camera system, and (iii) for far
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away objects, even if the accuracy of the quantitative estimate
of depth may be unsatisfactory, the method can often provide
useful qualitative information such as, for example, ‘‘object A
is nearer than object B’’, ‘‘there are no obstacles within dis-
tance X’’, etc.

Relevance to human vision: In the human visual system,
focusing occurs by changing the focal length of the lens. In our
method for depth recovery, the two images may be obtained by
changing only the focal length. This suggests that humans
could, in principle, perceive the depth of all objects in the field
of view even if the objects are not in focus. There is evidence
in support of the fact that the human eye deliberately exhibits
small fluctuations in the focal length of the lens to obtain two
images. The following paragraph is quoted from [23] (page
18):

‘‘... the state of accommodation of the un stimulated
eye is not stationary, but exhibits micro fluctuations
with an amplitude of approximately 0.1 D (diopter: a
unit of lens power given by the reciprocal of focal
length expressed in meters) and a temporal frequency
of 0.5 cycles/second. He (Cambell, [1]) demonstrated
convincingly that these were not a manifestation of
instrumental noise, since they occurred synchronously
in both eyes. It follows that their origin is central.’’

Our method implies that such fluctuations could be used to per-
ceive depth in the entire scene simultaneously.

Plain objects: Objects like machine parts, wall, door,
road, etc. are often ‘‘plain’’ or ‘‘textureless’’, i.e. their surfaces
are smooth and have no reflectance variation. Therefore they
appear as objects with constant brightness under uniform
illumination. Our method fails for such objects due to the lack
of spatial frequency content. However, if one has control over
the illumination of the scene (as in indoor scenes), one can
introduce ‘‘texture’’ by projecting an arbitrary light pattern
(e.g. a random dot pattern) onto the surface of objects. Then
our method becomes applicable.

6. Preliminary experiments

At present it appears that camera systems calibrated with
respect to s, f ,D are not available. Therefore the method pro-
posed here could not be tested in its complete generality.
Further, most existing camera systems have small apertures.
This appears to be a deliberate design decision to maximize the
depth-of-field. For such cameras objects at all distances are
nearly focused and consequently have low depth discrimina-
tion. Therefore a camera system designed specifically for
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depth recovery (having small depth-of-field) should perform
significantly better than the camera used by us.

The Panasonic WV-CD 50, a CCD camera, focal length
16 mm, and aperture diameter 11.4 mm, was used in our exper-
iments. The goal of our experiments was two fold: (i) to verify
the applicability of our mathematical model to practical cam-
era systems, and (ii) to test the usefulness of the method in
practical applications. Two sets of experiments were con-
ducted.

The first set of experiments are described in detail in [20].
The pictures of a step edge were used to compute the spread σ
as a function of object distance. Two of the edge pictures and a
typical plot of σ against inverse distance are shown in figures 2
and 3. The plot verifies that the spread parameter σ defined by
equation (27) for the point spread function of our camera
(which was neither Gaussian nor pill-box or cylindrical form)
is a meaningful and consistent measure. They show that, for a
given setting of camera parameters, the spread parameter is
linearly related to inverse distance as implied by equation (7).
Indeed we find that (see Figure 3) this linear relation predicted
by our mathematical model holds remarkably well for our cam-
era system.

The second set of experiments is related to depth recovery
from two images. Due to the lack of a suitable camera system
whose parameters can be changed and measured, only the fol-
lowing limited experiment could be conducted. A painted
cloth hung normal to the optical axis at about 1 meter from the
camera was used as the object. A sequence of pictures A1-A7
of the object (some shown in Figure 4) were taken by continu-
ously decreasing the distance between the lens and the image
detector. We could see that the blur in the pictures gradually
decreased, reached a minimum for A4 (which was visually
judged to be focused) and then increased again. The size of
each picture was 480×480. Four subpictures of size 32×32
were taken from near the center of each of these pictures and
their power spectrums were computed. Then the quantities
σAi

2 −σA 4
2 for i =1,2,...,7 were computed using equation (16)

(see equation 17). These quantities have been plotted against
the picture sequence in Figure 5. In the graph the symbols:
x,*,+, and o correspond to the four subpictures. The horizontal
axis crudely corresponds to s, the distance between the lens
and the image detector. The actual distances could not be
measured in the camera system available to us. For ideal data
and an exact mathematical model, the positions of x,*,+ and o
would all be the same for each picture. We see that this is
approximately true of Figure 5. The computed blur is (i) nearly
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the same for different parts of the pictures, and (ii) a strictly
monotonic function in two intervals. These observations imply
that the computed measure depends only on the camera param-
eters and the distance of objects in the scene, but not on the
appearance of objects. We attribute most of the deviation in
the plot to the magnification correction that could not be
applied due to the unavailability of the correction factor.
Further, the image overlap problem and noise (quantization,
digitization, etc) contribute to the deviation from the predicted
behavior.

Experiments were conducted for two more sets of pic-
tures. The results were similar to the one above. We conclude
from these experiments that (i) our mathematical formulation
is a reasonable model of actual camera systems, and (ii)
approximate depth information can be obtained in practical
applications. Clearly more experiments are needed. Design
and fabrication of a custom designed camera system is essen-
tial for future experiments.

7. Related Work

In this paper we have concentrated on the method for
depth recovery. A formal development of the underlying
theory from first principles is presented in [21]. Detailed com-
putational steps, and camera design are described in [19]. A
scheme for incorporating the depth recovery method into a
binocular system to help establish correspondence and a
method for motion recovery are described in [18].
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