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Abstract

A closed-form expression is derived for the optical transfer function of

a diffraction limited system under polychromatic illumination. The expres-

sion is useful in a method for the accurate and efficient computation of the

optical transfer function of an optical system. The expression is also useful

in the theoretical analyses of the optical system. This method is illustrated

with an example where the optical transfer function of the human eye is

computed.
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I. Introduction

During our recent work in the area of machine vision on a new method

for finding the distance of objects [1], [2], it became necessary for us to

know the optical transfer function (OTF) of a camera under ambient illumi-

nation such as white light. A search by us to find an analytic model of the

white-light OTF in the optics literature was unsuccessful, although substan-

tial literature was found on OTF for monochromatic light. A two-

dimensional Gaussian has sometimes been suggested as a possible model for

the OTF of a camera [3], [4], but only as an approximation; a theoretical

model appears not to have been derived. This motivated the current work.

An analytic expression is known in optics for the OTF of a diffraction-

limited system for incoherent monochromatic illumination. Here this

expression is integrated with respect to wave length to obtain an explicit

expression for the OTF under polychromatic illumination. The integration

of the original expression was performed with the help of MACSYMA [5], a

computer program that can perform complex symbolic manipulations on

mathematical expressions. (MACSYMA is available on most main-frame

computers and is easy to use. See Appendix A.)

The OTF derived here is useful in the efficient estimation of the OTF of

an optical system. This method is illustrated with an example. First we con-
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sider the OTF of a system with circular exit pupil. Section III deals with the

case of a square exit pupil.

II. Derivation of OTF: circular exit pupil

The geometry of an aberration-free diffraction limited system with a

circular exit pupil is shown in Fig. 1. In this figure, l is the diameter of the

aperture and di is the distance between the aperture and the image detector

plane. The OTF of such a system for monochromatic incoherent light of

wave length λ is given in Goodman [6] to be

(1)H(ρ,λ) =
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0
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���
� cos−1
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 2ρ0

ρ� ���
� � �� −
2ρ0

ρ� ����� √
� �����
1−

��
� 2ρ0

ρ� ����� � �� 2 � ���
otherwise

for ρ≤2ρ0

where ρ is the spatial frequency in polar coordinates (H is circularly sym-

metric, and hence independent of θ). The quantity ρ0 is given by

(2)ρ0 =
2λdi

l� ������� .

Note that 2ρ0 is the spatial cutoff frequency of the system. (Interestingly,

the spatial cutoff frequency of the same system under coherent illumination

is only half of this, i.e. ρ0 [6]. Therefore incoherent illumination may often

be more desirable than coherent illumination.) Fig. 2 shows H(ρ,λ) for a

particular λ. In order to find the OTF for white light with a constant spectral
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distribution, equation (1) should be integrated with respect to the wave

length λ. Simple integration without regard to the phase of electromagnetic

field distribution is justified because, for incoherent illumination, the imag-

ing system can be treated as a linear mapping of light intensity [6].

Using the notation

(3)t =
l

ρdi� ����� ,

H(ρ,λ) in equation (1) can be expressed as

(4)H(ρ,λ) =

 !
" !
# 0

π
2$ $&%' cos−1(tλ) − (tλ)√()(*(*(+(*(1−(tλ)2 ,-

otherwise.

for t≤
λ
1. .

The MACSYMA symbolic integration program was used to integrate the

above expression for H with respect to λ. The indefinite integral is

G 0(ρ,λ) = ∫H(ρ,λ) dλ

=
π
2/ /102 ∫cos−1(tλ) dλ − t ∫λ√343*3+3*3*31−(tλ)2 dλ

56
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8999
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The derivative of the above expression can be easily verified to be the origi-

nal expression in equation (4). Now we consider the actual estimation of the

OTF using the above expression.
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For an optical system (e.g. Fig. 1) let S(λ) be the normalized spectral

distribution of the object radiance, M(λ) be the effective normalized spectral

transmittance of all the media through which the light originating from the

object and incident on the image detector traverses, and R(λ) be the normal-

ized spectral response of the image detector. Then, the overall normalized

weighting function P(λ) is defined by

(6)P(λ) = S(λ) M(λ) R(λ),

and the effective OTF of the system is given by

(7a)O(ρ) =
A
1F4F

−∞
∫
∞

P(λ) H(ρ,λ) dλ ,

where

(7b)A =
−∞
∫
∞

P(λ) dλ .

We next consider the derivation of O(ρ) for two different models of P(λ)

and then mention how the case of a general P(λ) can be handled by a piece-

wise polynomial approximation.

Example 1. Constant model of P (λ):

Consider the case where P (λ) is uniform in an interval [λmin ,λmax]. Let

(8)P(λ) =

GH I
0
1

otherwise

for λmin≤λ<λmax
.

Referring to Fig. 3, we define the following quantities:
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(9a,b)ρmin =
λmaxdi

lJ J�J�J�J�J
J , ρmax =
λmindi

lK�K�K�K�K
K ,

(9c,d)ρmin≤ρ′<ρmax and λ′ =
ρ′di

lLML
L�L .

Note that, ρmin , ρmax , and ρ′ are the spatial cutoff frequencies of the system

for wave lengths λmax , λmin , and ρ′ respectively. In particular, it should be

noted that, the cutoff frequencies decrease with increasing wave lengths.

Now the OTF is obtained by evaluating the definite integral

(10)O(ρ) =

NOOO
P OOO
Q 0

λmax−λmin

1R R�R
R�R�R�R�R�R
RTSU G 0(ρ,λ)
VW

λmin

λ′=l /(ρdi)

λmax−λmin

1X X�X
X�X�X�X�X�X
XTYZ G 0(ρ,λ)
[\

λmin

λmax

for ρ≥ρmax .

for ρmin≤ρ=ρ′<ρmax

for 0≤ρ<ρmin

Fig. 3 is helpful in understanding why the limits of evaluation of the definite

integral are different in the above expression. A brief explanation is given in

the next paragraph.

In Fig. 3, if ρ = ρ1 , where 0 ≤ ρ1 < ρmin , it is clear that H (ρ,λ) is non-

zero for all wave lengths in the interval [λmin , λmax]. Therefore the limits

of integration are λmin and λmax . If ρ = ρ′ where ρmin ≤ ρ′ < ρmax , then

H (ρ,λ) is non-zero only for those wave lengths lying in the interval

[λmin ,λ′]. Hence the limits − λmin and λ′. If ρ = ρ2 , where ρ2 > ρmax , then

H (ρ,λ) is zero for all λ in the interval [λmin , λmax].

6



The same limits used in the evaluation of the definite integral in equa-

tion (10) will appear twice more in this paper. A clear understanding of them

now will be of much help later. Therefore we urge the reader to pause for a

moment and be convinced of their correctness.

Note that, except at the two points ρmin and ρmax , the function O(ρ)

above is continuous and differentiable everywhere. ]
In the above example we have assumed P (λ) to be a constant in the

interval [λmin ,λmax]. If P (λ) is not constant, then the above method can

still be used by approximating P (λ) by a function that is piecewise constant

in small intervals. Indeed we can do better than this; we found (using

MACSYMA) that not only H (ρ,λ), but also λnH(ρ,λ) is also integrable in

closed-form for at least n =0,1,2,3,4,5,6. (We suspect that it is integrable

for all positive integer values of n, but we did not investigate this further

because in most practical applications the values 0 to 6 may suffice.) There-

fore, an arbitrary function P (λ) can be approximated by a piecewise polyno-

mial of order up to six and the OTF can be computed very efficiently. In par-

ticular, piecewise linear approximation may suffice in most practical appli-

cations. The relevant integral, obtained using MACSYMA, is given below.

G 1(ρ,λ) = ∫λH(ρ,λ) dλ
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(11)=
π
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We illustrate the use of the above equation to obtain the OTF with an exam-

ple next.

Example 2. Linear model of P(λ):

We used equation (11) above to compute the OTF of the human eye. The

P (λ) corresponding to the human eye is shown in Fig. 4. The interval in

which P (λ) is non-zero was divided into seven intervals at λi for i =1,2,..,8.

In each interval the function was taken to be linear of the form:

P (λ) = miλ+ci for i =1,2,..,7. The approximate values of λi ,mi, and ci are

given in Table 1.

Let

(12)G(ρ,λ) = ∫P(λ)H(ρ,λ) dλ.

For a piecewise linear approximation of P (λ) we have

(12.1)G(ρ,λ) = ∫(miλ+ci) H(ρ,λ) dλ

= miG 1(ρ,λ) + ciG 0(ρ,λ) ,

where G 0 , G 1 are as in equations (5) and (11) respectively. In each interval

[λi ,λi +1], the definite integral is evaluated using rules similar to those in
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equation (10). First we let λi = λmin , λi +1 = λmax and define ρmin , ρmax , ρ′,

and λ′ as in equations (9a-d). Then

(13)
λi

∫
λi +1

P(λ)H(ρ,λ) dλ =

rss
t ss
u 0
vw
G(ρ,λ)

xy
λmin

λ′=l /(ρdi)

z{
G(ρ,λ)

|}
λmin

λmax

for ρ≥ρmax .

for ρmin≤ρ=ρ′<ρmax

for 0≤ρ<ρmin

From this expression, the OTF is computed as

(14a)O (ρ) =
A
1~4~

i =1
Σ
m

λi

∫
λi +1

P(λ)H(ρ,λ) dλ,

where

(14b)A =
i =1
Σ
m

λi

∫
λi +1

P(λ) dλ

and m =7. The resulting normalized OTF for the human eye is shown in Fig.

5. This method of computing OTF should be compared to the experimental

methods referred to in [7]. �
Equations (12), (13) and (14) above are actually valid for arbitrary

P (λ); they are not restricted to a piecewise linear model of P (λ). Therefore

they can be used even when P (λ) is approximated by a piecewise polyno-

mial function (at least up to order six). Some useful integrals (obtained

using MACSYMA) for this purpose are given in Appendix B. The OTF

O(ρ) defined by an equation such as equation (14a) is analytic everywhere
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except at a small finite number of points corresponding to λi .

The expressions for OTFs in equations (10) and (14) are valid only for

the case of an aberration-free diffraction limited system. If aberrations are

present, then the expressions will be different.

Till now we have described a method for finding the OTF of an optical

system with a circular aperture. Analogous results can be derived for the

case of square aperture. The integral in this case is much simpler than that

for a circular aperture. We consider this next.

III. Derivation of OTF: square exit pupil

Let l be the width of the square aperture of an optical system and, as

before, let di be the distance between the aperture and the image detector.

For a diffraction-limited system, the OTF for incoherent monochromatic

light illumination is given in [6] to be

H ( fx , fy ,λ) =

��
� �
� 0

��
� 1−

l

λdi� fx ��M�����
��� � ��
��
� 1−

l

λdi� fy��M�����
��� � ��
otherwise. (11)

for � fx� ≤ λdi

l� ����� , � fy� ≤ λdi

l� ���
�

In the above expression, fx , fy are the spatial frequencies along the x and y

axes respectively. This OTF has the form of a pyramid as shown if Fig. 6.

This OTF is symmetric in the four quadrants of the fx , fy plane. Therefore

the OTF for white light also will be symmetric in the four quadrants.
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Because of this symmetry, we will consider finding the OTF in only the first

quadrant corresponding to fx≥0 and fy≥0. Having determined the OTF in

one quadrant, the OTF in the other quadrants is determined through mirror

reflection. Therefore we have

H ( fx , fy ,λ) =

��
� �
� 0

� 
¡ 1 −

l

λdi fx¢M¢�¢
¢�¢ £ ¤¥
¦¤
§ 1 −

l

λdi fy¨M¨�¨
¨�¨ © ª«
otherwise. (16)

for 0≤ fx≤
λdi

l¬ ¬�¬�¬ , 0≤ fy≤
λdi

l­ ­�­�­

It is trivial to integrate the above expression with respect to λ. Further,

λnH( fx , fy ,λ) can also be integrated easily for n=0,1,2,3, .... Therefore,

P(λ) can be approximated by a piecewise polynomial of any order in a given

interval. Let

(17)G( fx , fy ,λ) = ∫P(λ) H( fx , fy ,λ) dλ .

Now, for any interval [λi ,λi +1], define λmin=λi , λmax=λi +1 and the quanti-

ties ρmin , ρmax , ρ′, λ′ exactly as in equations (9a-d). Also, define a new

quantity ρ to be the maximum of fx and fy (reminder: fx≥0 and fy≥0

assumed due to symmetry), i.e.

(18)ρ = maximum( fx , fy) .

Now the required definite integral is given by an equation that is almost

exactly the same as equation (13); only the arguments of G and H need to be

changed from (ρ,λ) to ( fx , fy ,λ). We repeat it here for clarity:
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λi

∫
λi +1

P(λ)H( fx , fy ,λ) dλ =

®¯¯
° ¯¯
± 0
²³
G( fx , fy ,λ)́

µ
λmin

λ′=l /(ρdi)

¶·
G( fx , fy ,λ)̧

¹
λmin

λmax

for ρ≥ρmax . (19)

for ρmin≤ρ=ρ′<ρmax

for 0≤ρ<ρmin

The actual OTF can then be obtained using the following equation which is

similar to equation (14a):

(20)O ( fx , fy) =
A
1º4º

i =1
Σ
m

λi

∫
λi +1

P(λ)H( fx , fy ,λ) dλ

where A is given by equation (14b) and m is the number of intervals.

IV. Conclusion

An analytic expression is derived for the OTF of a diffraction-limited

system for polychromatic illumination. The expression has been derived for

circular and square exit pupils. It may also be possible to derive such ana-

lytic expressions for many other shapes of exit pupils. The steps would be

similar to the case of circular (or square) exit pupil. This work is useful in

modeling the OTF of an optical instrument.
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Appendix A. MACSYMA

The information in this appendix on MACSYMA has been included as

per the suggestion of one of the referees of this paper. This information is

taken from the online manual of our computer system (VAX 11/780,

Department of Electrical Engineering, State University of New York at

Stony Brook; October 1989).

Description:

MACSYMA is a large computer programming system written in LISP. It is

used for performing symbolic as well as numerical mathematical manipula-

tions. With MACSYMA the user can differentiate, integrate, take limits,

solve systems of linear or nonlinear equations, expand functions in Laurent

or Taylor series, solve differential equations (using direct or transform

methods), compute Poisson series, plot curves, and manipulate matrices and

tensors. There is a MACSYMA newsletter which is published every two

months. You can see your computer site manager for information on this.

History:

MACSYMA is a large symbolic manipulation program developed by the
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Mathlab Group of the MIT Laboratory for Computer Science. Since 1982

MACSYMA has been supported and distributed by Symbolics, Inc. of Cam-

bridge, Mass. MACSYMA is a trademark of Symbolics, Inc.

Appendix B. Some Useful Integrals

Let H (ρ,λ) be as defined by equations (4) and (3). Then the following

integrals will be useful in obtaining OTF by modeling P(λ) by piecewise

quadratic and cubic polynomials. These integrals were obtained using

MACSYMA.

∫λ2H(ρ,λ)dλ =
3

λ3cos−1(λt)» »�»�»�»�»�»
»�»�»�» +
5t

λ2(1−(λt)2) 2
3¼ ¼½ ½
½�½�½�½�½�½
½�½�½�½�½ +

15t 3
2(1−(λt)2) 2

3¾ ¾¿ ¿�¿�¿�¿
¿�¿�¿�¿�¿�¿
¿
−

9t
λ2 √À4À*À+À*À*À1−(λt)2Á Á�Á�Á�Á
Á�Á�Á�Á�Á�Á −

9t 3
2√Â4Â+Â*Â*Â+Â1−(λt)2Ã Ã
Ã�Ã�Ã�Ã�Ã�Ã
Ã�Ã .

∫λ3H(ρ,λ)dλ = −
32t 4

sin−1(λt)Ä�ÄiÄ�Ä�Ä�Ä�Ä�Ä −
16t

λ3 √Å)Å*Å*Å+Å*Å1−(λt)2Æ Æ
Æ�Æ�Æ�Æ�Æ�Æ
Æ�Æ�Æ −
32t 3

5λ√Ç4Ç+Ç*Ç*Ç+Ç1−(λt)2È È�È�È
È�È�È�È�È�È
È

+
6t

λ3(1−(λt)2) 2
3É ÉÊ Ê�Ê�Ê�Ê
Ê�Ê�Ê�Ê�Ê�Ê
Ê�Ê +

8t 3
λ(1−(λt)2) 2

3Ë ËÌ Ì�Ì�Ì�Ì�Ì�Ì
Ì�Ì�Ì�Ì�Ì +
4

λ4cos−1(λt)Í Í�Í�Í�Í�Í
Í�Í�Í�Í�Í .

As mentioned in the main text, λnH(ρ,λ) is integrable for at least

n =0,1,2,..,6. Therefore if one wishes to use a polynomial model of order

more than three for P(λ) then we suggest the use of MACSYMA to get the

integrals. We do not list the integrals here for n =4,5,6,... as the expressions
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are cumbersome and their use in practical applications is questionable.
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Fig. 1. A diffraction-limited system with circular exit pupil.

Fig. 2. OTF of a diffraction-limited system with a circular exit pupil

under incoherent quasimonochromatic illumination (after Goodman

[6]).

Fig. 3. Determining the limits for the evaluation of the definite integrals.

Fig. 4. Approximate visibility curve for a normal eye under white light

illumination (see Schreiber [4]).

Fig. 5. OTF of a diffraction limited normal eye under white light illumi-

nation.

Fig. 6. OTF of a diffraction-limited system with a square exit pupil

under incoherent monochromatic illumination (after Goodman [6]).
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center delim() box; l | c | c | c | c | c | c | c | c l | c | c | c | c | c | c | c | c l | c | c | c | c | c |
c | c | c l | c | c | c | c | c | c | c | c l l l .
i: 1 2 3 4 5 6 7 8 _ λi in
A 0: 4250 4750 5000 5350 5550 5700 6500 6850 _
mi: 0.020 0.088 0.180 0.025 -0.020 -0.109 -0.029 . _ ci: -85.0 -

Table 1.
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