Department of Electrical Engineering
State University of New York at Stony Brook
Stony Brook, New York 11794-2350

Stony Brook

Computer Vision Laboratory

Tech. Report 93.04.21 April 21, 1993

Computer Modeling and Simulation
of an Active Vision Camera System

Ming-Chin Lu and Muralidhara Subbarao

Abstract

Verification of computer vision theories is facilitated by the development and
implementation of computer simulation systems. Computer simulation avoids the
necessity of building actual systems; they are fast, flexible, and can be easily dupli-
cated for use by others. We proposed, in our previous work, an useful computational
model to explore the image sensing process. This model decouples the photometric
information and the geometric information of objects in the scene. In this report, we
extend the proposed image sensing model to simulate the formation of moving ob-
jects and stereo imaging applications. The simulation algorithms for curved objects,
motion simulation, and stereo imaging are presented. Based on the proposed model
and algorithms, a computer simulation system called Active Vision Simulator (AVS)
have been implemented. The implementations are efficient, modular, extensible, and
user-friendly so that others can easily reproduce and/or verify their experiments on
a broader set of computer vision theories.

Computer Modeling and Simulation
of an Active Vision Camera System

Ming-Chin Lu and Muralidhara Subbarao
Department of Electrical Engineering
State University of New York
Stony Brook, NY 11794-2350

Abstract

Verification of computer vision theories is facilitated by the development
and implementation of computer simulation systems. Computer simula-
tion avoids the necessity of building actual systems; they are fast, flexible,
and can be easily duplicated for use by others. We proposed, in our pre-
vious work, an useful computational model to explore the image sensing
process. This model decouples the photometric information and the geo-
metric information of objects in the scene. In this report, we extend the
proposed image sensing model to simulate the formation of moving objects
and stereo imaging applications. The simulation algorithms for curved ob-
jects, motion simulation, and stereo imaging are presented. Based on the
proposed model and algorithms, a computer simulation system called Ac-
tive Vision Simulator (AVS) have been implemented. The implementations
are efficient, modular, extensible, and user-friendly so that others can eas-
ily reproduce and/or verify their experiments on a broader set of computer

vision theories.

1 Introduction

Many theories have been developed in computer vision during the past three
decades for recovering scene information. Verification of such computer vision
theories often require expensive and accurate camera systems, and laboratory
facilities for calibration and experimentation. As an alternative, it is possible to
develop computational models of the camera system, and simulate the system
on a computer. This is not only faster and cheaper than building actual camera
systems and setting up expensive laboratories, it also provides flexibility and
accuracy. The physical parameters of the camera system (e.g. focal length,
sampling rate, quantization level, noise characteristics, optical aberrations,
etc.) are easily changed and they can be set to desired values to very high
accuracy. The only major limitation is the amount of computational resources

required for simulation.

In active vision, changing the direction of view and the visual parameters
facilitates and makes efficient the computational stage of machine vision. An
active vision system can be considered as a system that integrates visual sens-
ing and action. There are two common tasks to be solved in active vision
systems: one is the correspondence problem in stereo imaging, the other is mo-
tion estimation to dynamically track the objects in the scene. Many researchers
have proposed algorithms [1, 2, 3, 4, 5, 6, 8, 11] for these tasks. Our objective
here is to provide researchers a simulation environment to simulate image

sensing process in motion and stereo systems.

In our previous work[7, 10], we proposed a computational model on the

image sensing and formation process of a CCD camera system. This model

decouples the photometric properties of a scene from the geometric properties
of the scene in the input to the camera system. In this report, we further
extended the proposed computational model to simulate the image formation
of moving objects (motion) and stereo vision system. Based on the extended
computational model, a computer simulation system called Active Vision Sim-
ulator (AVS) is developed. AVS is an extension of the Image Defocus Simulator
(IDS) presented in[7, 10]. It can be used to simulate image formation process
in a monocular (MONO mode) or a binocular (STEREO mode) camera system.
The simulation of curved objects is also included in AVS. The user interfaces
for AVS are similar to those in IDS, i.e., two graphical user interfaces — Sun-
view Graphical Interface (SGI) and X-window Graphical Interface (XGI), and a
dummy terminal user interface — Dummy TTY Interface (DTI). Finally, a depth
map generation program using ray casting algorithm is also included in AVS

as a tool for curved object simulation.

This report is organized as follows: Section 2 presents the computational
model for motion and stereo simulation; Section 3 describes the simulation
algorithms used for curved objects, motion simulation, and stereo imaging;
Section 4 describes the user interfaces of AVS; Section 5 presents the simulation

results; and finally, Section 6 concludes this report.

2 Camera Model

In this section, we will extend the computational model presented in[10] to
simulate the image sensing process for moving objects and binocular stereo

camera systems.

2.1 Motion Simulation

When objects move in front of a camera, or when a camera moves through a fixed
environment, there are corresponding changes in the images. The displacement
of a point in the environment will cause a displacement of the corresponding
image point. In motion simulation, we assume that all the objects in the scene
are rigid objects. Therefore, the shape of the objects will not change during

motion.

Figure 1 shows the relationship between an object motion vector 7, = P;P(j =
[Veo Vi V. At] and the image motion vector ni; = P;PZ»’. For simplifying
the discussion, the image plane is placed at the focused position and is perpen-
dicular to the optical axis (z-axis). The vector n7, can be decomposed into two
components, one parallel to the x-y plane (P;Pg’) which shifts the object, and

another parallel to the z-axis which changes the size of the object.

Consider the translation vector P;P:. Let P;Pg = [Vt At =[Veo Ve 0 Af]
for a fixed time interval At. This corresponds to a motion vector iii; = [V, At] =
[V.i V,i 0 At]in the image plane. The amount of displacement is || P, P"|| =
||V;At|| in the scene which corresponds to a displacement of | |P;PZ»’|| — ||V;At]] in

the image plane.
From the geometry in Figure 1, we have

VAL 7o !

The displacement of points in the image plane can be computed using Equa-
tion (1). For z-axis movement, i.e. V., # 0, there will be a change in the size
of the objects in the scene. This results in image magnification or shrinking

which requires image interpolation and resampling.

Figure 1: Relationship between the displacement of a point in the scene and
the corresponding point in the image plane.

2.2 Stereo Vision System

A general stereo system model is shown in Figure 2 where O is the global
origin, O’ and O” are the entrance pupil origin of the left and the right cameras,
respectively. The left and the right cameras can be treated as monocular camera
systems similar to that in Figure 3. The global origin O is introduced as a
reference point for the positions of the object, the left camera, and the right

camera.

In this generalized stereo system, the optical axes of the two cameras are
not parallel, but intersect at some point in the scene. In order to simplify
computations in our simulation, we restrict the optical axes of the cameras to
be parallel. Therefore, in this model, there is a relative translation between
the two cameras, but no relative rotation. This restriction can be removed at

the expense of more computation.

Figure 4 is the global coordinate system used in our current stereo simula-
tion where z-, z2’-, and z”-axes are parallel to each other. Based on this configu-
ration, the stereo vision system can be modeled as shown in Figure 5. The scene
information is first translated, and scaled with respect to the origin of each cam-

era. After this transformation, the photometric information f(0, ¢, A, ¢) and the

5

Figure 2: A general stereo system model.

. Image
Object :
Exit Pupil wtor
.. Xi ’ 5
~

Entrance Pupil

Figure 3: Entrance pupil coordinate system.

Figure 4: Global coordinate system used in stereo simulation.

Digital
Data

Beqaelo
awel

|

Cable

JB1BALOD
v/d

!

losuss
ano

CCD Spec. 1

!

dos
pRiH

i

Yo—

weis/s
eondo

i

BumeubiIA

!

Burel| -4
Wb

A

uolrewlosuel |
8UR0S

A

J|ueAuo)
via

CCD Spec. 2

!

losuss
ano

f

dois
pRiH

TFS

i

wesAs
feondo

i

BumeubiIA

‘lnT

f

Bure|i4
eI

A

uolfewiosuel |
3UsdS

A

Scene

Figure 5: Block diagram of a stereo vision system.

geometric/depth information r(0, ¢) are transformed to f;(6, ¢, A, t), f.(0, 0, 1)
and (0, ¢), r.(0, ¢) for the left and the right cameras. These functions are the
input to the camera system. The remaining functional blocks are the same as

those presented in[10].

3 Simulation Algorithms

3.1 Curved Objects

Consider the photometric information f(6, ¢, \,t) and the geometric informa-
tion r(0,¢). r(0,¢) contains the depth information of objects in the scene.
For curved objects, (0, ¢) can not be approximated by a constant «. Under
this situation, the point spread function is space-variant and is specified by
h(0,0,0',¢',1r(8,¢),€) as discussed in[10]. In a Cartesian coordinate system,
the geometric information and the point spread function can be represented as
r(x,y) and h'(x,y,r(x,y),€), respectively, under the assumption that all CCD
elements have the same characteristics. In this case, the output of the optical

system will be:

fg(x,y,)\,t):h'(:z:,y,r(:z:,y),éj*fé(x,y,A,t) (2)
where « is the convolution operator.

Assume there are N different distances (r;,2 = 1,---, N) in the scene. Using

superposition, f}(x,y,\,t) can be decomposed into N components as:

N
fé(xvyv)‘vt):Zf%(xvyv)‘vt) (3)
=1

where

') Aley A, ifr(ey) =1
f22(x7y7)\7t) - { 07 elsewhere

Step 1: Decompose the object into N planes, fs;(x,y, A, 1), of distance

ri,t = 1,---, N, according to the depth map information;
Step 2: for: =1 to N do
begin
Compute and store the point spread function /;
end;
Step 3: f3 « 0;
for:=1to N do
begin
fa — fa+ faixh;
end;

Figure 6: Simulation algorithm for curved objects.

Thus, Equation (2) becomes:

N

fa(z,y, \t) = Zh’(:z;,y,r(:z;,y),éj*fgi(x,y,A,t)
z;
= > hi(x,y,8) * falz,y, A\ 1) 4)
i=1
where £;(-) is the point spread function for the planar object at distance r;. Note
that, if the profile of the scene in a small field-of-view is smooth, we have N = 1
and

fg(l’,y,)\,t) = h’(x,y,e_')*fé(x,y,)\,t)

as derived in[10]. Therefore, the algorithm for the simulation of curved objects
can be summarized as in Figure 6 where FFT algorithm can be applied in Step
3 to reduce the large amount of computations needed.

The depth map information can be obtained from, e.g., range scanner or the

ray casting algorithm presented in Appendix Appendix A.

3.2 Motion Simulation

The motion parameters used in the simulation are specified by the vector m =
Ve V, V. At],whereV,,V,, and V. are the velocity components of the motion;
At is the duration of the motion. Here, we assume that the scene contains only

rigid objects so that the object will not change its shape while it is moving.

For objects moving perpendicular to the optical axis, i.e. V. = 0, the size of
the objects in the scene will remain unchanged. However, part of the original
image will move out of the field-of-view and will not appear in the image plane.
This will also introduce other objects into the scene which are not in the original
image. Therefore, the original input image must include the objects that may
come into the camera’s field of view due to motion. This problem can be avoided
by assuming a dark background. When parts of the objects move out of the
camera’s field of view, the dark background appears in the field of view. Here,

we use this approach for its simplicity and efficiency in memory management.

When an object moves toward or away from the camera, the objects in
the scene will be enlarged or shrunk. Therefore, resampling must be done to
compensate for this effect. In AVS, we use bi-linear interpolation to compute the
value g(m, n) fromits four neighbors f (7, j), f(:+1,7), f(¢,7+1),and f(i+1,7+1).

The result is:

glmyn) = a-(m—i)+b-(n—J)+c- (m—i)n—j)+d (5)
where: <m<:+1,7<n<j+1,and

a = fli+1,7) = f(,7)

b = fli,5+1)—f(4,7)

d = f(lvj)

10

Step 1: if V, 0 or V,, # 0 then
begin
Shift the object horizontally by the amount V, A¢;
Shift the object vertically by the amount V, At
Append dark background if part of the object is
moved out of the view;
end;
Step 2: if V. # 0 then
begin
if V. > 0 then
move the object toward the camera and resample;
else/*V, <0 %
move the object away from the camera and down-sample;
Append dark background if the neighbor of the object
appears in the view;
end;

Figure 7: Simulation algorithm for moving objects.

The simulation of an object moving with an arbitrary motion vector m is
done by a shift operation if V. # 0 or V,, # 0, and then a resampling operation if
V. # 0 to get the synthesized image. The algorithm is shown in Figure 7. Note
that, during up-sampling process, the image might be smoothed, while in the

down-sampling process, some image details might be lost.

3.3 Stereo System

For a binocular camera system, the two camera positions are specified by the
vectors Oy = [v; yi = bu Oy 040 and O, =[x, y, 2z 0O, 0, 0.]
with respect to the global origin O in Figure 2. The components of these vectors

specify the positions and the orientations of the two cameras.

Stereo image pairs can be generated using the motion algorithm presented

11

Active Vieion Simulator (C) by M.C. Lu & M. Subbarao, Copyright 1992, RF of SUNY

(Quit) ([Close) [Read object) [Read Parameters) (Read Depth Map) Mode: & STERED
Filename: /local/home/melu/simulation/avs/testimg/tiger.256

2256 Width: 256 Height: 256 Default: & OBJ

[Show All] [Reset ALl] [Optionz] [Edt Param] [Write] [Print]
l Eun] | Step] | Goto] [Depth Map] [Spectrum] [Hiztogram]
[Fit Win] [View Value]

Status

Win Wth Hgt Status

LEFT

OBJ 256 256 Object: /local/home/melu/simulation/ave/testimg/tiger.256
RIGHT

Figure 8: AVS graphical user interface.

in Figure 7 where the motion displacement corresponds to (—z;, —y;, —z;) for the
left camera and (—x,, —y,, —z,) for the right camera. Note that, the orientation

parameters are fixed to be 6, = 90°, 6, = 90°, and 9, = 0°.

4 The User Interfaces

Three user interfaces are provided in AVS — SGI, XGI, and DTI. The appearance
and the basic functions of these user interfaces are similar to those in IDS. AVS
has all the functions of IDS plus one more window and some additional features

as shown in Figure 8. Besides, the single parameter window in IDS is now three

12

' u — — <<< Parameters (Object) >>>»
Active Vigio
Quit Object distance (mm): 5053’ Wawelength (A): 57904
Filename: Ve (mm/=): 0.0 Yy (mm/=): 0.0
256 Wi Vz (mmf2): 0.0 dt (=ec): 0.0
Show All
(e T
<<¢ Parameters (Left Camera) »>> <<< Parameters (Right Camera) >
Focal length (mm): 35, F Number: 4 Focal length (mm): 350 F Number: 4
s (mm): 35.24412 delta s (mm): 0.0245 & (mm): 35.24412 delta = (mm): 0.0245
CCD size (mm/pxl): 0.013 X (mm): 17um Ya (mm): 13um CCD zize (mm/pxl): 0.013 ¥z (mm): 17um Y= (mm): 13um
Talims): 33.3ms Ta2(mz): 2us Ta3(ms): Zus Tal(ma): 33.3ms Ta2(me): 2us Ta3(mz): 2us
[Posgition] ¥ (mm): 0.0 ¥ (mm): 0.0 Z (mm): 0.0 [Position] X (mm): 0.0 Y (mm): 0.0 Z (mm): 0.0
[Orientation] ¥:90.0 Y: 90.0 Z: 0.0 [Orientation] ¥:90.0 ¥: 90.0 Z: 0.0
T_LF{lambda): 1 T_LF(lambda): 1
p.s.f: cylinder p.s.f: cylinder
T_V(theta,phi): constant 1 T_¥{theta,phi): constant 1
T_FS(x,y): rect(x/9.3, v/9.3) T_FS(x,y): rect(x/9.3, v/9.3)
T_S{lambdal: 1 T_S({lambda): 1
T_AS(t): rect(t/.0333) T_AS(t): rect(t/.0333)
R(x,¥): rect(x/13umn, y/13um) Rix,y): rect(x/13um, y/13um)
S(Iy: I S(Iy: I
h_sh(t): O-order h_zh(t): 0-order
N_shi{t): none N_sh(t): none
h_a(t): delta(t) h_a(t): delta(t)
N_A(t): none N_A{t): none
h_c(t): delta(t) h_cit): delta(t)
N_C{t): none N_C(t): none
N_S(x,y,t): none N_S(x,y,t): none

Figure 9: Categorized parameters in AVS.

parameter windows in AVS — one each for the left and the right camera (camera

parameters), the other for object-specific parameters as shown in Figure 9

For curved object simulation, the depth map is read from a file by using

the “Read DepthMap” command. The depth information stored in the file is

a relative value, Ar(x,y), with respect to the object distance « which is the

shortest distance between the global origin O and the scene (i.e., min{d;,: =

1,---,N}). The object distance r(z,y) is computed as

d(l’,y) = Ar(xvy) k+u

where £ is the scaling factor option in the option menu popped up by the “Option”

command. The format of the depth map file is also specified in this menu.

When the depth map is loaded, depth information r(x,y) can be viewed

13

by using the “Depth Map” command which will pop up a window with depth
profile. The value of the depth at each point can then be viewed on the screen by
moving the mouse pointer to the desired location. In DTI, the value is displayed

according to the command line arguments used.

The parameters can be edited/viewed by the “Edt Param” command which
searches the “Default” field for target window. The target can be object pa-
rameters, left camera parameters, or the right camera parameters as shown
in Figure 9. The object parameters contain object distance and wave length
information for general object information; and V,., V,, V., dt for motion informa-
tion. The camera parameters are basically the same as those in IDS except
that (i) the object distance and wave length information are moved to the object
parameters window; and (ii) the camera position and orientation information

(6T, 51) are added.

Another added feature is the “Mode” choice in Figure 8 which can be tog-
gled between MONO and STEREO mode to simulate monocular and binocular
image formation process. In “MONO” mode, “Left Camera” window will disap-
pear. Therefore, the image will be synthesized in the “right camera” window
by default. All the other commands are borrowed from IDS and carry the
same functions. Besides, the 3-D object generation program described in Ap-
pendix Appendix A is also integrated into this system as a tool to generate the

depth map information r(x, y).

5 Simulation Results

In this section, some simulation results are presented to illustrate the capability

of AVS simulator.

14

(a) (b) (c)

Figure 10: Simulated images for two planar boxes placed at different distances.

(a) (b) (c)

Figure 11: Simulated images for object placed on a cone-shaped depth map.

5.1 Curved Objects

Figure 10 gives a simulated image of two striped boxes placed at two distances.
The scene and the depth map are shown in Figure 10(a) and Figure 10(b),
respectively. Note that, the darker the value the depth map is coded, the
closer the object is to the camera. The horizontal-striped box is located near
the camera, while the vertical-striped box is located away from the camera.
The camera parameters are adjusted to focus at the vertical-striped box. The

resulting image is shown in Figure 10(C).

15

(a) n; (b) () n7,
Figure 12: Resampled images in motion simulation.

Another example is the tiger face placed on a cone-shape depth map as
shown in Figure 11(a) and Figure 11(b), respectively. The depth range is from
2000mm to 3600mm (inside the cone) and the camera parameters are adjusted
to focus at an object distance of 2000mm. The resulting image is shown in
Figure 11(c). Note that, the depth outside the cone (white area) is assumed to

be infinity. Therefore, a circle is visible in Figure 11(c).

5.2 Motion

Figure 12 shows the simulated images of moving objects. The center image
is the original one. The left and the right images are generated with motion
vector my = [0 0 —2.5m/s lsecjandmy=[0 0 2.5m/s lsec|, respectively.

All other parameters are the default ones in Figure 9.

The simulation of the shift operation (motion with V, = 0) and the combined
operation are shown in Figure 13 with ms; = [100 100 0 Ilsec] and my =

[100 100 2.5m/s lsec|. All other parameters remain the default ones.

Note that in Figure 12(c), Figure 13(a) and (b), dark background is intro-

16

(a) nis (b) ni4

Figure 13: Simulated images under shift operation and the general motion
vector.

duced because the object is moved away from camera or part of the object move

out of the field of view as mentioned in Section 3.

5.3 Stereo

The simulation of the stereo image pairs for the left camera position O, =
[—100mm Yy 2 90° 90° 0] and the right camera position 0, =
[100mm y, =z 90° 90° 0] is shown in Figure 14 where the first row
is the image on the left camera, the second row is the image on the right
camera. In Figure 14(a), vy = 2, = y, = z, = 0 which corresponds to the
shift operation; in Figure 14(b), the left lens is moved toward the object with
y; = —100mm, z; = 500mm while the right camera is moved toward the camera
with y; = 100mm, z; = —500mm. The image resampling and the dark back-

ground effect are visible in these simulations.

17

(a) (b)

Figure 14: Simulation of stereo image pairs.
6 Conclusion

In this report, we have implemented the curved object, motion, and stereo
image sensing simulation in the computer simulation package called Active
Vision Simulator. AVS is a natural extension of IDS presented in the previ-
ous work[10]. It can be used to synthesize the images for research on image
restoration, motion analysis, depth from defocus, and algorithms for solving

the correspondence problem in stereo vision area.

The efforts spent on extending the IDS to AVSis limited — two added modules
on motion and stereo, and some changes in the user-interfaces — because of the
module design and embedded extensibility of our original design of IDS. Again,
AVS can also be easily extended if needed and can be used by other researchers

on the verification of various vision theories.

18

References

[1] S. T. Barnard and M. A. Fischler, “Computational Stereo,” Computing
Surveys, Vol. 14, No. 4, Dec. 1982.

[2] P. Bouthemy and P. Lalande, “Motion Detection in an Image Sequence
Using Gibbs Distributions,” Proceeding of IEEE International Conference
on Acoustic, Speech, and Signal Processing, pp. 1651-1654, May 1989.

[3] B. K. P. Horn, Robot Vision, McGraw-Hill, New York, 1986.

[4] J. Konrad and E. Dubois, “Bayesian Estimation of Motion Vector Fields,”
IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 14,
No. 9, pp. 910-927, Sep. 1992.

[5]1 E. P. Krotkov, Exploratory Visual Sensing for Determing Spatial Layout
with an Agile Stereo Camera System, Ph.D. dissertation, Department of
Computer and Information Science, University of Pennsylvania, PA, April

1987.

[6] Y. Liu and T. S. Huang, “A Linear Algorithm for Determining Motion and
Structure From Line Correspondences,” Computer Vision, Graphics, and

Image Processing, Vol. 44, No. 1, pp. 35-57, 1988.

[7] M.-C. Lu and M. Subbarao, “Image Defocus Simulator: A Software Tool,”
Technical Report No. 92.05.27, Computer Vision Laboratory, Department

of Electrical Engineering, State University of New York, Stony Brook, May
1992.

19

[8] D. Murray and B. Buxton, “Scene Segmentation From Visual Motion Us-
ing Global Optimization,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-9, pp. 220-228, March 1987.

[9] S. D. Roth, “Ray Casting for Modeling Solids,” Computer Graphics and
Image Processing, 18, pp. 109-144, 1982.

[10] M. Subbarao and M.-C. Lu, “Computer Modeling and Simulation of Cam-
era Defocus,” Technical Report No. 92.01.16, Computer Vision Labora-
tory, Department of Electrical Engineering, State University of New York,
Stony Brook, 1992. (Also appears in Proceedings of Optics, Illumination,
and Image Sensing for Machine Vision VII, SPIE Proceedings Conf. 1822,
Boston, Nov. 1992)

[11] J. Weng, T. Huang, and N. Ahuja, “Motion and Structure from Line Corre-
spondences: Closed-Form Solution, Uniqueness, and Optimization,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 3,
pp. 318-336, March 1992.

20

Appendix A Ray Casting Algorithm

Roth [9] models solid objects by combining primitive solids, such as blocks and

cylinders, using the set operators union, intersection, and difference. We have

implemented his model in ANSI C and the implemented program can be easily

ported to various platforms (e.g., VAX, SUN, and PCs).

The program generates 3-D scenes consisting of primitives of blocks, spheres

(ellipsoids), cylinders, and cones. These primitives can be arbitrarily scaled,

rotated, and translated. The input data to the program is organized as a node-

based tree structure. Each node contains 14 fields:

struct _NODE {
char *| abel ;
i nt address;
char *node_type;

char *op;

char *primtive;
float a, b, r;

float sx, sy,
float tx, ty,

SZ,
tz;

b

[*"
"primtive" */
[*"

[*"

/*
/*
/*

conposite" or

uni on", "intersection",
or "difference" */

bl ock"”, "sphere",
"cylinder" or "cone" */
rotation */

scaling */

transl ation */

The leaf nodes of the tree are the primitive nodes while the internal nodes

are the composite nodes. The 3-D transform is associated with each node in the

tree. This program generates 3-D range image with hidden surface removed.

21

A.1 Depth Map Generation Using Ray Casting Algorithm

In this subsection, we illustrate how the object generation program can be
used to generate the cone-shape depth map shown in Figure 11(b). The input
description file is listed below. Note that, the first entry in this file is the

number of nodes in the tree.

1

cone

0

primtive

uni on

cone

0. 0. 90.

200. 200. 200.
0. 0. O.

A.2 Object Generation Using Ray Casting Algorithm

In this subsection, we illustrate how the object generation program can be used
to generate a 3-D object. This approach can be used to generate arbitrary-
shape artifical objects. Figure 15 shows the depth stop machine part and its

composite tree. The corresponding input description file is:

17

dept h_st op
0
conposite
di fference
cone

30. -25. -10.
4. 4. 4.

0. 0. 160.
ds

00

22

r&r

2

@A
%4%&

@A@

Figure 15: Depth stop machine part and its composite tree.

23

conposite
di fference
cone
0. O.
1. 1.
0. O.
ds
01
primtive
uni on
cyl i nder
0. 90. O.

0.
1
0.

4.25 4.25 40.

7. 31. -4.
ds

000
conposite
uni on
cone

0. 0. 0.
1. 1. 1.
0. 0. O.
ds

001
conposite
uni on
cone

0. 0. O.
1. 1. 1.
0. 0. O.
ds

0000
conposite
uni on
cone

0. 0. 0.
1. 1. 1.
0. 0. 0.
ds

0001
primtive
uni on

bl ock

24

0. 0. O.
35. 6. 24.

-30. -12. -12.

ds

0010
conposite
uni on
cone

0. 0. O.
1. 1. 1.
0. 0. O.
ds

0011
primtive
uni on
cyl i nder
0. 0. O.
9. 9. 28.
-39. -9. -14.
ds

00000
conposite
uni on
cone

0. 0. O.
1. 1. 1.
0. 0. 0.
ds

00001
conposite
uni on
cone

0. 0. O.
1. 1. 1.
0. 0. O.
ds

00100
primtive
uni on
cyl i nder
0. 0. O.
20. 20. 28.
25. -9. -14.

25

ds

00101
primtive
uni on

bl ock

0. 0. O.

4. 32. 28.
23. 9. -14.
ds

000000
primtive
uni on
cyl i nder

0. 0. O.
30. 30. 24.
25. -9. -12.
ds

000001
primtive
uni on

bl ock

0. 0. O.
36. 28. 24.
7. 11. -12.
ds

000010
primtive
uni on

bl ock

0. 0. O.
64. 32. 6.
-39. -25. -3.
ds

000011
primtive
uni on
cyl i nder

0. 0. O.
16. 16. 24.
-39. -9. -12.

26

Appendix B Syntax

B.1 Line/Batch Mode Command Syntax

The syntax of the line/batch mode commands in AVS can be expressed as
the following context-free grammar where non-terminals are enclosed by left-

and right-angle pairs.

(exit) m=exit | quit

(shell) z=shel | | {![(shell. command)]}

(echo) ::= echo (string)

(help) == hel p [object | camera | options]

(read) z=read { { obj ect (filename) (width) (height) } |
{[paraneters | dept h.map] (filename) } }

(write) z=write (Filename) [from(x) (y) [si ze (width) (height)]1]

(view) z=view{ {{object | left | right } (x)(y)}|

{ dept h_map (x) (y) } |
{ spect rum(xf) (yf) [normalized]}}
(show) z=show{status | options | paraneters}
(set) nm=set {{{canmera| object } (param_id)=(param value) } |
{def {object | left | right }}|
{ node { nono | stereo } } |
{ obj ect (x) (y) (gray._value) } |
{ opti on (option key) } |
{ dept h_map scal e (real number) } }

(run) z=run[spectrum{object | left | right }]
(step) n=step
(goto) ::= got 0 (step-num)
(stepmum) ==1]2|3|4|5|6] 7| 8| 9| 10|
11| 12| 13| 14| 15| 16
(x) := 0| (positive_integer)
(y) := 0| (positive_integer)
(xf) =X | -(x)
(yf) =) | -)
(gray_value> = 0..255
(param.id) ::= (optical.info) | (obj.info) | (samp_info) | (CCD_info) |

27

(positionInfo) | (misc_info)

(optlcal_lnfo> :=f | s| f/nunber | deltas | psf
(obj_info) :=u| Lanmbda | Vx| W | Vz | dt
(samp.info) ==Ts2 | Ts3
(CCD.info) =TS| TAS| Xs| Ys| Tsl| R| S| ccd.si ze
(positionInfo)::=0x | Oy | Oz | &x | Cy | Cz
(misc_info) ==T.LF| T_.V| T_.FS| (noise) | (transfer)
(noise) x=Nsh | NA| NC| NS
(transfer) :=h=sh| h.a| h_c
(option key> ::= (border) | (method) | (io)
(border) = border { (mirroring) | (periodical) | (zero_pad) }
(method) == met hod { (smart) | (fft) | (direct) }
(io) =i 0 { (ByteChar) | (ASCInt) | (BinFItMSB) |
(BinFItLSB) | (ASCFloat) | (BinDbIMSB) }
mirroring) =0
periodical) =1
zero_pad) =2
smart) x=0
t) n=1
direct) =2

(
(
(
(
a
(ByteChar) =0
(ASCInt) =1
(B1nFltMSB> 2
(
(
(
(
(

BinFItLSB) :

ASCFloat) := 4
B1nDb1MSB>

width) = 0..1024
height) == 0..1024

B.2 Parameter Syntax

The syntax of the user adjustable parameters in AVS can be expressed as

the following rules.

Focal length (mm) : f =(number)
F/number : f/ nunber =(number)
s(mm) : S=(number)

s=st ep (integer)
Delta s (mm) : del t a_s=(number)

28

Wavelength Lambda (A)
CCD pixel size (mm/pixel) :
: u=<number>[<unit>]
Motion parameter (mm/s) :

Object distance (mm)

Camera position (mm)

Camera orientation (deg) :

psf

Light Filtering
Vignetting

Field Stop

Sensor spectral sensitivity :

Aperture stop

Integration over space
Sampling (spatial domain) :

Sampling (time domain)

Sensor response
Sample-and-hold
Amplifier

Cable

'9@99@§§s§

: Lanmbda=(number)[(unit)]

ccd_si ze=(number)

*psf =del ta((i),§))

psf=fil e (filename) (width) (height)
psf =gaussi an((sigma x),(sigma_y))
psf =wave optics

: T.LF(| anbda) =(number)
: TV(t het a, phi) =const ant (number)

T_V(t het a, phi) =gaussi an((sigma x),
(sigma.y))
T_V(t heta, phi)=fil e (filename) (width)
(height)

: T.FS(X, y) =r ect (X/ (number), y/ (number))

T_S(| anbda) =(number)

: TAAS(t) =rect (t/ (number))
: R(x, y) =rect (x/ (number), y/ (number))

R(x,y)=fil e (filename) (width) (height)
Xs=(number)[(unit)]
Ys=(number)[(unit)]

: Ts1=(number)[(unit)]

Ts2=(number)[(unit)]
Ts3=(number)[(unit)]

:S(1) =l

S(1) =I " (number)

: h.sh(t)=0-order

h_sh(t) =(number)

: h_a(t) =(number)

h_a(t) =[(number)ldel t a(t)

: h_c(t)=(number)

h_c(t) =[(number)ldel ta(t)

29

