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ABSTRACT 

A new passive ranging technique named Robust Depth-from-Defocus (RDFD) is presented for autofocusing in digital 
cameras. It is adapted to work in the presence of image shift and scale change caused by camera/hand/object motion. 
RDFD is similar to spatial-domain Depth-from-Defocus (DFD) techniques in terms of computational efficiency, but it 
does not require pixel correspondence between two images captured with different defocus levels. It requires 
approximate correspondence between image regions in different image frames as in the case of Depth-from-Focus (DFF) 
techniques.  Theory and computational algorithm are presented for two different variations of RDFD. Experimental 
results are presented to show that RDFD is robust against image shifts and useful in practical applications. RDFD also 
provides insight into the close relation between DFF and DFD techniques. 
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1. INTRODUCTION 
Passive ranging and autofocusing techniques based on image focus and defocus analysis have been investigated by many 
researchers [1-11]. Depth-from-Focus (DFF) [1,3] is a technique based on image focus analysis. It requires capturing and 
computing focus measures for many (about 10 in a typical application) images. It involves searching for a camera 
parameter setting that maximizes the focus measure in a small image block. It is slow and provides a low resolution 
depth (one estimate in each image block), but it does not need camera calibration or pixel correspondence. It needs only 
image region correspondence. DFF is relatively robust and accurate. Depth-from-Defocus (DFD) [4-11] is a technique 
based on image defocus analysis. It uses only two or three images captured with different camera parameter settings.  It 
compares the change in blur to estimate depth. It is fast and efficient but requires camera calibration.  Spatial domain 
DFD techniques provide a denser depth-map (upto one depth estimate at each pixel) than DFF techniques, but they need 
pixel correspondence between different image frames. DFD is also less accurate and robust than DFF unless more 
images (about 5) are used. Fourier domain DFD [10] techniques provide lower resolution depth-maps and require more 
computation than spatial domain DFD techniques [5,11]. 

In this paper a new passive ranging technique named Robust Depth-from-Defocus (RDFD) is presented for  
autofocusing in digital still/video cameras. RDFD is similar to spatial-domain DFD techniques [5,11] in terms of 
computational efficiency and the use of only two images, but it does not require pixel correspondence between two 
images captured with different defocus levels. It requires approximate correspondence between small image regions in 
different image frames as in the case of DFF techniques. This is an important advantage because, in autofocusing 
applications, small image shifts between different captured image frames are caused by many unavoidable factors such 
as hand shake, camera vibration, magnification change (due to lens motion), and object motion. Both RDFD and spatial-
domain DFD use a local deconvolution formula involving image derivatives for estimating an image defocus parameter. 
However, unlike DFD techniques, RDFD relies on computations at corresponding small image regions instead of 
corresponding pixels. RDFD is suitable for real-time autofocusing in digital still and video cameras where the number of 
image frames captured and computational resources are limited, and accurate pixel correspondence is not available. 

It should be noted that Fourier domain DFD techniques [10] do not need pixel correspondence but only region 
correspondence (as with DFF) and therefore less sensitive to image shift caused by camera vibration, etc. However, 
Fourier domain techniques have other problems. First, they require more computation as Fourier coefficients will have to 
be computed. Next, unlike local spatial domain DFD techniques such as STM [5,11], Fourier domain techniques are 



 
 

 
 

global and less accurate as they ignore the image overlap problem. Fourier domain techniques use windowing to extract 
image blocks and compute Fourier coefficients of the image blocks as an estimate of local Fourier coefficients. As 
blurring just outside the border of the image blocks changes the images inside the image blocks, errors will be 
introduced in these techniques. RDFD uses local spatial domain computations similar to DFD-STM [5,11] at each pixel, 
and is therefore less affected by the image overlap problem. 
 
This paper presents the theory and a computational algorithm for two different variations of RDFD. One of the variation 
uses Greene’s identity to avoid the use of second-order image derivatives which are highly noise sensitive. Instead, it 
relies more on first-order image derivatives which are a lot less sensitive to noise. Greene’s identity provides a relation 
between the area integral involving second-order image derivatives to a boundary integral involving only first-order 
image derivatives. Experimental results are presented to compare the performance of RDFD with DFD in [5,11] (STM). 
These results show that RDFD is more resistant to small image shifts than DFD-STM, and it is useful in practical 
applications. 

2. ROBUST DEPTH FROM DEFOCUS (RDFD) 

RDFD theory is an extension of the DFD theory based on the S Transform Method (STM) [5,11]. Let 1( , )g x y and 

2 ( , )g x y be two defocused images captured with two different camera parameter settings such as two different lens 

positions. Let ( , )f x y  be the focused image and 1( , )h x y ,  and 2 ( , )h x y , be the two point spread functions (PSFs) so 
that 

1 1( , ) ( , )* ( , )g x y h x y f x y=         (1),   and      2 2( , ) ( , )* ( , )g x y h x y f x y=            (2) 

where * denotes the convolution operation. Let 1σ and 2σ  be the blur parameters given by the square root of the 

second-central moment of the PSFs  1( , )h x y ,  2 ( , )h x y , respectively (see Eq. (A11) in Appendix). The spatial domain 
DFD technique STM [5,11] uses the following expression to compute a change in the blur parameters (assuming a local 
cubic polynomial model of the images): 
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Spatial domain DFD methods such as STM [5,11] require pixel correspondence between two images captured with 
different camera settings. Pixel correspondence is needed because the expression used in solving for depth include 
mixed-image terms such as 1 2( , ) ( , )g x y g x y−  in the above equation. These mixed terms need the value of two 

different images 1g  and 2g  at the same corresponding pixel position specified by ( , )x y . In RDFD, such terms 
involving both images at the same corresponding pixel are avoided.  Instead focus measure terms computed over 
corresponding image regions are used as in the case of DFF methods. The expressions for the focus measures are derived 
from the local spatial-domain deconvolution (inverse S Transform) expressions [5,11] (see Appendix): 
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The right hand sides in the above two equations express the same focused image, and equating them is called the Focus 
Equalization Technique. Equating the two right hand sides and squaring both sides to compute focus measures, and then 
neglecting the higher order terms, we obtain:  
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We use squaring to avoid adding positive and negative Laplacian quantities to get a small sum that is sensitive to noise. 
We integrate over an image region R to avoid needing pixel correspondence to solve for depth. We need only image 
region correspondence for the region R.  Larger the size of image region R, smaller is the sensitivity of the solution to 
errors in establishing accurate region correspondence. Increasing the size of R also reduces spatial-resolution of depth-
map in 3D shape recovery applications. 

Next consider an equally blurred image 3( , )g x y obtained from 1( , )g x y and 2 ( , )g x y : 

 3 1 2 1 2( , ) ( , )* ( , ) ( , )* ( , )* ( , )g x y g x y h x y h x y h x y f x y= =  (7) 

 3 2 1 1 2( , ) ( , )* ( , ) ( , )* ( , )* ( , )g x y g x y h x y h x y h x y f x y= =  (8) 

 1 2 2 1( , )* ( , ) ( , )* ( , )g x y h x y g x y h x y=  (9) 
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The right hand sides in  Eq. (10) and Eq. (11)  express the same defocused image 3( , )g x y , and equating them is called 
the Blur or Defocus Equalization Technique (BET/DET) [7]. Equating the two right hand sides, squaring both sides,  
integrating to compute focus measures, and then neglecting higher order terms, we obtain:  
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Subtracting Eq. (12) from Eq. (6) and simplifying, we obtain 
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Note the similarity between Eq. (3) and Eq. (13).  Equation (13) forms the basis of RDFD for computing the quantity 
2 2
1 2σ σ− . It is the same quantity used in DFD-STM [5,11], but computed using a different approximation over a small 

image region, and hence more robust. DFD based on STM uses a local cubic approximation for images which results in 
the Laplacians of the two images to be equal, i.e. 2

2
1

2 gg ∇=∇ . But, RDFD uses a better approximation allowing the 

two Laplacians to be different, i.e. 2 2
1 2g g∇ ≠ ∇ .  If we substitute  2

2
1

2 gg ∇=∇  in Eq. (13) of RDFD, then Eq. 

(13) becomes similar to Eq. (3) except for integration. Equation (13) can be solved by substituting for 1σ in terms of 2σ  

using the known camera constants (obtained by calibration) α  and  β  as: 

 1 2σ ασ β= +  (14) 

 



 
 

 
 

We get a quadratic equation in 2σ  which can be solved in closed-form. If the camera aperture diameter is not changed, 

then 1α = and the equation becomes linear with a unique solution. In all our experiments, aperture diameter remains 
the same and therefore 1α = , and a unique solution is obtained for  2σ . From a solution for 2σ , we obtain the 
distance u of the object from the relation 

 1
2 2 2m u cσ −= +  (15) 

and the known camera constants 2m  and 2c (obtained by calibration). In the experiments, we use a lookup table 

obtained through calibration to solve for 2σ  and u after computing the quantity G from images using Eq. (13). 
Experimental results comparing the DFD with RDFD implemented directly using Eq. (13) is presented later. In the next 
section we present another interesting variation of RDFD. 

 

2.1 RDFD based on Greene’s Identity 

Image noise is dramatically amplified in the computed derivatives of images, and it becomes progressively hopeless as 
the order of image derivatives increases. Equation (13) for implementing RDFD involves the computation of second-
order image derivatives (Laplacians) which yield very noisy estimates. In order to reduce the effects of noise, a new 
technique was used to compute the right hand side of Eq. (13). It uses  the first-order image derivatives which are much 
less noise sensitive in comparison with the second-order derivatives (Laplacian). The well-known Greene’s identity in 
Calculus is used to reduce the reliance on computing second order image derivatives by replacing some terms with 
equivalent terms involving only the first-order derivatives. Greene’s identity is  
 2 ( ) ( )

R B R
g g g g n g g∇ = ∇ − ∇ ∇∫∫ ∫ ∫∫

G G GGi i  (16) 

where R  is an image region and B is the boundary of  R ,  nG  is the unit outward normal vector to the boundary, and 

g∇
G

 denotes the gradient vector of the blurred image ( , )g x y . This identity is widely used in the theory of partial 
differential equations.  In the case of one dimension this result can be derived as follows. Assume ℜ→],[: bag   be a 
twice differentiable function from an interval[ , ]a b  to the real numbers. An expression of the derivative of the product 
term ( . )g g′ ′  can be rearranged to obtain 

 2)().(. ggggg ′−′′=′′  (17) 

Integrating, 
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Applying the two-dimensional equivalent of this formula to Eq. (13), we obtain 
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In the numerator of the above equation, terms in the original equation (Eq. (13)) with area integrals involving image 
Laplacians (second-order derivatives) have been replaced by terms with boundary and area integrals of only the first-
order image derivatives. Computationally, it may be more robust, but this conclusion is not certain because boundary 
integral of first-order derivatives may be as noise sensitive as area integral of second-order derivatives, especially when 
there is image shift due to camera shake or motion.  Experimental results did not show significant improvement of 
accuracy, but the method is included here as future improvements may be possible. 
 



 
 

 
 

2.2 Two Variations of DFD: FET and BET 

Two other variations of DFD were investigated. Both are closely related to DFD STM [5,7,11] but vary in some detail. 
The first one, Focus Equalization Technique (FET), is based on solving the following equation obtained by equating the 
right hand sides of equations (4) and (5): 

FET:       ),(),()),(),((4 2
2
21

2
121 yxgyxgyxgyxg Δ−Δ=− σσ                                 (20) 

The second one, Blur Equalization Technique (BET) [7], is based on solving the following equation obtained by 
equating the right hand sides of equations (10) and (11): 

BET:       ),(),()),(),((4 1
2
22

2
121 yxgyxgyxgyxg Δ−Δ=− σσ                                  (21) 

The above equations are solved by substituting 2σ  with 1ασ β+  (with 1α = ) and solving for 1σ . Effect of noise is 

reduced by computing  1σ  at only those pixels where the Laplacian magnitude is more than a preset threshold. 1σ  is 
averaged over a small image window to obtain a better estimate. These two methods give results that are comparable or 
sometimes better than the DFD STM, and they are both sensitive to image shifts as is the case with DFD STM. But these 
two methods are of interest as alternatives to DFD in the absence of image shifts. 

2.3 Relation Between DFF and the Blur Parameter σ  of DFD 

DFF techniques [3] are based on computing a focus measure of blurred images. An example of a focus measure is the 
energy (i.e. integral of square) of image intensity or energy (integral of square) of derivatives of image intensity.  The 
local convolution expression derived in the Appendix section can be used to derive a relation between these focus 
measures and the blur parameter σ on which the the DFD techniques are based. Using Eq. (A12) in the Appendix we 
obtain the following expression for the focus measure based on image energy: 
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Similarly, for the focus measure based on the energy of image gradient magnitude, we obtain 
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And for the focus measure based on the energy of image Laplacian we obtain 
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In all the above three cases,  the focus measure of the blurred image can be expressed in terms of the focused image and 
the blur parameter sigma as a polynomial of 2σ  

 2 2 4
0 2 4( ) . . .F M F F F H O T sσ σ σ= + + +  (25) 

where 0F , 2F , 4F , are constants for a given focused image. For example, we obtain 
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Eq. (25) is a good approximation for small blur (i.e. small σ ) which implies that the camera parameter setting is close 
to the focus setting. This equation establishes an explicit relation between  DFF and DFD techniques. It also provides a 
polynomial model for fitting the focus measures to a function of camera parameters. Such polynomial fitting is often 
done close to the focus setting (therefore σ  will be small) to determine the value of the camera parameter setting that 
maximizes the focus measure. A good approximation to the relation between sigma and the camera parameters (denoted 
by -- s: lens to image detector distance, D: aperture diameter,  f: focal length, and u: object distance) is given by 

 11 1 1
2 2
D s mu c

f s u
σ −⎡ ⎤
= − − = +⎢ ⎥

⎣ ⎦
 (27) 

3. EXPERIMENTS 
Many experiments were carried-out on both simulation and real image data to evaluate the performance of RDFD in 
relation to DFD. Some results on real image data are presented here. Two planar test objects— Checkerboard and 
BigLetter-- shown in Fig. 1 were used. These objects were placed at 9 different distances in the range 300 mm to 600 
mm from a digital camera. The digital camera had a computer controlled stepper motor for changing the lens position to 
focus at different distances. The lens step positions ranged from Step 0 to Step 1500. For each object and distance, two 
images of the test object were captured, one with the lens at step position 800, and another at step position 1100. 
Aperture diameter was not changed. The image captured at Step 1100 was shifted or scaled by different amounts to 
simulate the effect of camera/object motion or camera/hand shake. Note that image scaling simulates the effect of 
relative motion between the camera and the object along the direction of view (optical axis) as this motion results in 
changes in image magnification. The shifting and scaling amounts were limited to be small as in the case of actual 
applications. The image captured at Step 800 was not changed. The resulting images (size 600x480) were used for 
estimating the blur parameter σ and object distance for autofocusing. This estimate was done using both the RDFD and 
the DFD (STM) methods. The results are shown in Fig. 2 and Fig. 3. 

 

  
Fig. 1. Test objects. Left:  “Checkerboard”. Right: “BigLetter”. 

In Fig. 2(a), Fig. 2(b), horizontal axis represents the reciprocal of object distance in meters, and the corresponding blur 
parameter σ is plotted along the vertical axis in pixel units. For an ideal thin-lens camera, this plot is expected to be 
roughly linear, but for practical cameras some deviation from linear behavior is usual. In Fig. 2, the plots labeled “DFD 
by 0” and “RDFD by 0” represent the results for σ when there is no image shift. This is the reference plot and other 
plots should be compared with this plot. For example, the plot labeled “DFD by 10” and “RDFD by 10” correspond to 
shifting the image at Step 1100 by 10 pixels. We see that the plot labeled “DFD by 10” is quite far from the plot labeled 
“DFD by 0”, thus indicating a large error in the presence of 10 pixel image shift. This error for DFD generally increases 
as the shift increases. Therefore the DFD technique is very sensitive to image shifts. On the other hand, the plots labeled 
“RDFD by 0” and “RDFD by 10” almost coincide at different distances thus indicating that RDFD is robust with respect 
to 10 pixel image shifts. This is true even up to 20 pixel image shifts for the objects considered in our experiments. 



 
 

 
 

 

 

 
Fig. 2. Results of DFD and RDFD with “Checkerboard”. (a) Top left: DFD results with image shift. (b) Top right: RDFD 

results with image shift. (c) Bottom left: DFD result with scaling. (d) Bottom right: RDFD results with scaling. 

Fig 2(c) and Fig. 2(d) show the results in the case of scale/magnification changes for the image captured at lens Step 
1100. The magnification was changed by up to 3 percent in the range [0.97, 1.03] where a factor of 1.0 represents no 
change. This simulates change in magnification due to different amounts of relative motion between the camera and the 
object. This motion is expected to occur in the elapsed time interval between the capture of the first image at lens step 
800 and the second image at step 1100. For DFD, Fig. 2(c) shows the deviation of computed σ with respect to the case 
when there is no magnification change (as shown in Fig. 2(a) with label “DFD by 0”). Similarly, Fig. 2(d) shows the 
results for RDFD. We see that the errors for DFD are usually much more than for RDFD leading to the conclusion that 
RDFD is robust against small changes in scaling. 

Fig. (3) shows the results for the other object BigLetter. The interpretation of the plots is similar to that for Fig. 2. Again, 
the conclusion is the same, that RDFD is far more robust with respect to image shifts and scale changes in comparison 
with DFD. As expected, the actual errors are not the same as in Fig. 2. This indicates that the actual errors are dependent 
on the object pattern and contrast. 

A limited set of experiemnts were carried out for the second version of RDFD that uses Eq. (19). The new version did 
not improve the results in comparison with the first version. In some cases it was worse than the first version. So these 
results are not presented. 

4. CONCLUSION 
A new spatial domain depth-from-defocus technique-- RDFD – is presented for autofocusing in digital cameras. It is 
adapted to be robust against image shifts due to camera/object motion and camera/hand shake.  Its performance has been 
compared with a spatial domain DFD technique and its advantages in the presence of image shift and scale change have 
been demonstrated. RDFD shares some characteristics of both DFF and spatial domain DFD techniques. Investigation of 
RDFD leads to the derivation of an explicit relation between DFF and DFD techniques.  



 
 

 
 

 

 
Fig. 3. Results of DFD and RDFD with “BigLetter”. (a) Top left: DFD results with image shift. (b) Top right: RDFD results 

with image shift. (c) Bottom left: DFD result with scaling. (d) Bottom right: RDFD results with scaling.. 

5. APPENDIX 
A brief summary of the Spatial-domain Convolution/Deconvolution Transform or S-Transform is presented here. S-
Transform [11] has been developed for images and n-dimensional signals for the case of arbitrary order of polynomials. 
It provides a completely local expression for the convolution and deconvolution of an image with respect to a filter or 
Point Spread Function (PSF) in the spatial domain. Using a local polynomial approximation of an image, spatial domain 
formulas are derived for convolution (corresponds to blurring or defocusing) and deconvolution (corresponds to 
deblurring or image restoration) with respect to a PSF.   

Let ),( yxh be a rotationally symmetric PSF. This assumption of rotational symmetry is a useful one, but it can be 
removed easily for theoretical analysis if needed. If we assume the camera to be a lossless system (i.e., no light energy is 
absorbed by the camera system) then 

 ( , ) 1h x y dx dy
∞ ∞

−∞ −∞
=∫ ∫ . (A1) 

The moments of the PSF are defined by 

 , ( , )m n
m nh x y h x y dx dy

∞ ∞

−∞ −∞
= ∫ ∫ . (A2) 

Since the PSF is rotationally symmetric, many odd moments are zero and it can be shown that 

 01,22,10,33,03,01,10,11,0 ======== hhhhhhhh , 2,00,2 hh = , and 10,0 =h  (A3) 

A blurred image ),( yxg  captured by a camera system can be modeled by the convolution of the focused image 
),( yxf  with the corresponding PSF ),( yxh  as: 
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If we approximate the focused image to be a cubic polynomial locally in a small image region corresponding to the size 
of the blur circle region at a pixel, then ),( ης −− yxf  can be expanded up to order 3 in a Taylor series as: 
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This corresponds to the Forward S-Transform. In order to derive the inverse S-Transform, Eq. (A6) is rewritten as 
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Therefore the derivatives of the focused image are given by 
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Recursively substituting for derivatives of ),( yxf  using Eq. (A8) in Eq. (A7), we obtain the inverse S transform which 
gives an expression for the focused image ),( yxf  in terms of the derivatives of the blurred image ),( yxg  and the 

moments ,m nh  of the PSF. In particular we obtain 

 ( )2,0 0,2 22.0 2.0H.O.T.s H.O.T.s( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2 2
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where 2∇  is the Laplacian operator. If we define blur parameter as  

 2 2 2( ) ( , )x y h x y dx dyσ
∞ ∞
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then 2/2
2,00,2 σ== hh . Therefore  Eq. (A9) can be written as  
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2 H.O.T.s( , ) ( , ) ( , )
4

f x y g x y g x yσ
= − ∇ +  (A11) 

Using these results, we can write an expression for the blurred image ),( yxg  in terms of the focused image ),( yxf  
using Eq. (A6) as 

 
2

2 H.O.T.s( , ) ( , ) ( , )
4

g x y f x y f x yσ
= + ∇ +  (A12) 
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