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Abstract of the Dissertation

Analysis and Application of Autofocusing
and Three-Dimensional Shape Recovery
Techniques based on Image Focus and
Defocus

by
Jenn-Kwei Tyan
Doctor of Philosophy
in
Electrical Engineering
State University of New York at Stony Brook

1997

Autofocusing and three-dimensional (3D) shape recovery
techniques based on image focus and defocus are analyzed
and their practical applications are demonstrated. Focus
measures based on summing the absolute values of image
derivatives are used by many researchers in the past. We
first investigated the unsoundness of those focus measures.

We also argued that energy of the Laplacian of the image is
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a good focus measure and is recommended for use in practi-
cal applications. Important properties of the Laplacian focus
measure are investigated. Application of the Laplacian focus

measure to 3D microscopy is demonstrated.

The optimal focus measure for a noisy camera in passive
search based autofocusing (AF) and depth-from-focus (DFF)
applications depends not only the camera characteristics but
also the image of the object being focused or ranged. In the
early stage of this research, a new metric named Autofocus-
ing Uncertainty Measure (AUM) was defined which is useful
in selecting the most accurate focus measure from a given set
of focus measures. AUM is a metric for comparing the noise
sensitivity of different focus measures. In the later stage of
this research, an improved metric named Autofocusing Root-
Mean-Square Error (ARMS error) was defined. Explicit ex-
pressions have been derived for both AUM and ARMS error,
and the two metrics are shown to be related by a monotonic
expression. The theories are verified by experiments as well

as computer simulations.

Another ranging method, depth-from-defocus (DFD) us-
ing the Spatial Domain Convolution/Deconvolution Transform
Method (STM), is an useful technique for autofocusing and 3D
shape recovery. The noise sensitivity analysis of STM is in-

vestigated. A theoretical treatment of this problem provides

iv



the accuracy check of STM in the presence of noise which has
been done only under experimental observation. The derived
theoretical results and supporting experimental results are
presented.

Finally, the integration of DFF and DFD methods is devel-
oped for fast and accurate 3D shape recovery. This has been
demonstrated successfully with experiments on a prototype

camera system.



To my parents, wife and son
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Chapter 1

Introduction

1.1 Motivation

The recovery of three-dimensional (3D) scene information from two-
dimensional (2D) images is a fundamentally important problem for ma-
chine vision inspection and measurement tasks. The 3D scene informa-
tion consists of photometric information (i.e. scene radiance along dif-
ferent directions of view) and geomeiric information (i.e. the distance of
visible surfaces along different viewing direction). The 2D image formed
by an optical lens contains both photometric and geometric information.
The research on this problem in computer vision so far, has resulted in
a variety of sensors and algorithms [24, 5] that can be broadly classify
into two categories: active and passive. Active techniques such as point
triangulation and laser radar produce relatively reliable depth maps,

and have been applied to many industrial applications. However, when



the environment cannot be controlled, as in the case of distant objects in
large-scale scenes, active methods prove impractical. As a consequence,

passive techniques are desirable.

Passive sensing methods, such as stereo and structure from motion,
rely on algorithms that establish local correspondences between two or
more images. From the resulting disparity estimates or motion vectors,
the depths of points in the scene are computed. The process of determin-
ing correspondence is widely acknowledged as being computationally
expensive. In addition, the above techniques suffer from the occlusion
or missing part problems. In fact, it is not possible to compute depths
of scene points that are visible in only one of the images. Other pas-
sive techniques are based on image focus analysis. Depth From Focus
(DFF) uses a sequence of images taken by changing the focus setting of
the imaging optics in small steps. For each pixel, the focus setting that
maximizes image contrast is determined. In turn, this can be used to
compute the depth of the corresponding scene point and provide highly

accurate measurement

In contrast, Depth From Defocus (DFD) uses only two images with
different optical settings . The objects need not be focused. The relative
defocus in the two images can be used to determine 3D depth. The
focus level in the two images can be varied by changing focus setting of
the lens, by moving the image detector with respect to the lens, or by
changing the aperture size. Depth from defocus is not confronted with

the above mentioned missing part and correspondence problems. This



makes it an attractive method for depth measurement.

The goal of the research presented here is to investigate and develop
robust techniques for determining the distance of objects in a scene and
reconstructing the focused images based on image focus and defocus
analysis. In machine vision applications, a typical CCD video camera
system used in passive techniques involve several sources of signal noise
such as optical noise or electronic noise. As a result of signal noise, no two
images, regardless of how carefully the image acquisition environment
is controlled, will have identical grey level values for each pixel position.
Thus, the errors in depth measurement are inevitable. The performance
of DFF and DFD due to noise effects has been evaluated through ex-
perimental observation. The methods for evaluation usually need large
samples and many trials. In this approach, the evaluation becomes sub-
jective and the experiments are time consuming. The noise sensitivity
analysis of DFF and DFD is an important problem and is the topic of
this research. The analysis presented in this thesis provides efficient
and accurate solution for uncertainty in depth measurement. Another
important goal is to implement a fast and accurate autofocusing and
3D shape recovery algorithm. Since DFF and DFD have some advan-
tages and disadvantages, an integrated method with DFF and DFD is
proposed. The theories developed here are verified by experiments and

computer simulations.



1.2 Literature Review

Using image focus and defocus analysis to obtain depth information
from the observed scene has been addressed by many researchers. Here

we briefly summarize the previous work in this area.

1..2.1 Depth from Focus (DFF)

The basis of DFF methods is the focus measure which measures the
focus quality. One goal of this research is how to evaluate and develop
effective focus criteria. In 1968, Horn proposed an automatic focusing
algorithm by using the Fourier transform and analyzing the frequency
spectrum of the image [21]. In principle, this was a good approach but
not practical, because the computed information was computationally
expensive. Another approach which was easy to calculate, explored by
Tenenbaum in 1970 [76], examined the effect of defocusing an edge im-
age. He developed the gradient magnitude as a focus measure to be
maximized.

After Tenenbaum, several researchers proposed different focus mea-
sure functions based on spatial domain analysis. In 1974, Muller and
Buffington [37] implemented squared gradient, Laplacian and signal
power as focus measures for automatic focusing. Javis, two years later
[23] proposed three more focus measures: histogram entropy, grey level

variance and sum-modulus-difference. He found that all three focus



measures were promising in focus optimization. Of the three, the sum-
modulus-difference formulated from image gradient was the least am-

biguous for the image tested.

Ligthart and Groen in 1982 [35] performed a concise comparison of
most of focus measure functions. They concluded that the squared gra-
dient magnitude and grey level variance methods gave the best results.
One year later, Schlag et al. [52] evaluated five automatic focusing algo-

rithms, and found the magnitude of the gradient to be best.

In the eighties, Krotkov [30, 29] compared the performance of differ-
ent focus measures with several images. He found that magnitude of the
gradient with the kernel of the Sobel operator was superior to the others

in monotonicity about the peak and robustness in the presence of noise.

Darrell and Wohn [9] developed a new depth from focus method
that obtained an image of a scene at different lens positions. Then using
Laplacian and Gaussian pyramids to isolate frequency ranges, they were

able to interpolate depth to various points in the scene.

More recently, Nayar [40] proposed the sum-modified-Laplacian fo-
cus function to measure the relative degree of focus between images.
He also developed a Gaussian model that describes focus measure vari-
ations due to defocusing. This model is used to interpolate between a

finite number of focus measures to obtain accurate depth estimates.

Subbarao and Choi [60, 61] derived a class of focus measures based
on band-pass filtering analysis. They assumed that the side lobes in the

optical transfer function of the camera system can be neglected and the



focus measure has global maximum for the best focused images. The de-
rived focus measures were evaluated experimentally, and concluded that
the energy of low pass filtered image gradient had the best performance
overall. In addition, they proposed a new concept named Focused Image
Surface (FIS). The shape of an object was determined by searching for
the maximum of focus measure over the FIS rather than the planar im-
age detector of the camera. This results in more accurate shape recovery

than the traditional methods.

1..2.2 Depth from Defocus (DFD)

If the level of defocus could be measured throughout the images,
then a few images would be sufficient to determine the distance of all
objects in the scene. This forms the basis of DFD methods. The degree
of defocus can be characterized by the spread parameter of the Point
Spread Function (PSF) which corresponds to the blur parameter of the
image. How these spread parameters can be solved for and mapped to
depth estimate are the central problem in DFD.

Pentland [45] in 1982 introduced the work by assuming the PSF
as a Gaussian model and the object as a sharp step edge. He used the
Laplacian to measure the width of the blurring edge. The depth recovery
was then computed from the spread parameter of the Gaussian. In 1988,
Subbarao and Gurumoorthy [62] removed the assumption about the PSF

so that any rotationally symmetric function could be used. Based on the



image of step edge, they presented the Line Spread Function (LSF) to
characterize the camera system, and showed that the spread paramenter

of LSF is related to the distance of the object.

In order to apply to arbitrary scenes, Pentland’s technique [46] was
extended in 1987. He used two images of the scene, one taken with a
pinhole aperture and the other with a wide aperture. He estimated the
signal power in one or more frequency bandwidths in each image, then
two values were compared to a lookup table to produce an estimate of
range. The main disadvantage of his algorithm was to adopt the pin-hole

camera which is sensitive to signal noises.

Assuming that the point spread function was a Gaussian, Subbarao
derived the equations which related changes in each of these parameters
to the Gaussian spread parameter and hence the distance to the scene.
These parameters were allowed for both infinitesimal change [54] and
finite change [55]. In a follow-up paper [56] this was also extended to

other point spread functions.

In the early nineties, Ens and Lawrence [10] provided a depth from
defocus method based on a matrix regularization method. They esti-
mated a convolution matrix, which is convolved with one of the images
to produce the other image. The matrix corresponds to the relative blur
between the two images. Once the matrix is computed, it can be mapped
to depth estimates. This method produced accurate depth maps, but
the iterative nature of the convolution matrix made it computationally

expensive.



Subbarao and Surya [66, 75] proposed the S-Transform Method
(STM) and applied it to depth from defocus. They modeled the image
as a third-order polynomial in small image region in the spatial domain,
and generalized the spread parameters to be the square root of the sec-
ond central moment of the PSF. A simple and elegant expression was
derived by them (see Chapter 4 for details). This method produces rea-
sonable depth estimates in 48x48 image regions. The overall RMS error
of 2.3 percent in lens position was reported. However, it does not yield
depth maps with high spatial resolution that are needed when depth

variations in the scene are significant.

In the same period, Subbarao and Wei performed the theoretical
and experimental work for a more general solution in the Fourier do-
main [57, 56, 73]. They removed Pentland’s constraint of one image
being formed by a pin-hole camera and gave a closed form solution as-
suming a Gaussian PSF. The spread parameter is measured from the
ratio of the one-dimensional Fourier coefficients of the two images. They
implemented their method on an actual camera system and reported a
RMS error of 3.5 percent in lens position, over a large number of experi-
ments. A relatively large window size of about 128x128 pixels was used

for computation.

Since the frequency characteristics of general scenes are unpre-
dictable, it is difficult to obtain accurate depth estimates. Recently,
Xiong and Shafer [87] implemented the moment filter to compensate the

response of the PSF changing with image frequency and compute depth



in a least-squares sense using all dominant frequencies of the image.
Nayaret al. [41] developed the focus range sensor using active illumina-
tion pattern to constrain the dominant frequencies in the scene. Their

methods maximized the accuracy and robustness of depth from defocus.

1..2.3 Combining with Stereo Ranging

Due to the weakness of stereo ranging, several researchers have
already begun to combine it with depth from focus or defocus for a robust
vision systems. Krotkov and Kories have integrated their depth from
focus system with a stereo ranging system [29, 31]. Abbott and Ahuja
[1] have sought to dynamically integrate focus, camera vergence and
stereo. Choi and Wei [8, 81] also proposed a simple method to integrate
depth from focus or defocus with stereo method in their dissertations,
respectively. Recently, Subbarao et al. [71] proposed a new algorithm
which combined depth form focus, defocus and stereo in a monocular
camera with stage motion system for 3D shape recovery and focused

image reconstruction.

1.3 Dissertation Overview

This dissertation is based on our research works [67, 68, 69, 70, 71,

72, 78] and is organized as follows.



Chapter 2 discusses the shape from focus methods for microscope
objects. We first review the image formation process and describe defo-
cused images as processed versions of focused images. The concepts of
focused and defocused images give us the background for DFF and DFD
techniques. Then the theory of focusing is summarized and the model of
focus measure is introduced. Some of the sound focus measures which
has been proposed and commonly used in the past for focusing analy-
sis are also surveyed. In particular, we do not consider focus measures
based on summing the absolute values of derivatives of the image. Such
filters can be proved to be unsound through our counter examples. In ad-
dition, we argue that energy of the Laplacian of the image is a good focus
measure to use, because it has some important desirable characteristics
based on a spatial domain analysis. We address those characteristics
in detail and recommend it for use in most scenes. If the scene infor-
mation contains low contrast, the depth measurement based on DFF
becomes unreliable. A thresholding technique is then developed to elim-
inate image regions susceptible to noise effects. Based on the shape
focus focus algorithms, we implemented a fully automated shape from
focus system for recovering 3D shape and reconstructing focused image
of microscopic objects in our computer vision laboratory. The description
of this system is given and the experiments with several microscopic ob-
jects are presented. The experimental results demonstrate the value of
the application of image focusing theory in microscopy going beyond the

conventional sample inspection.
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Evaluating the performance of focus measures is an important issue
in DFF research. In chapter 3, a method is described for selecting the
optimal focus measure with respect to grey-level noise from a given set
of focus measures in passive autofocusing and DFF applications. The
method is based on two new metrics that have been defined for estimating
the noise-sensitivity of different focus measures. The first metric — the
Autofocusing Uncertainty Measure (AUM)- was developed in the early
stage of this research. It is introduced here in order to illustrate some
underlying concepts on the relation between the grey-level noise and the
resulting error in lens position for autofocusing. The second metric—
Autofocusing Root-Mean-Square Error (ARMS error)- is an improved
metric closely related to AUM. AUM and ARMS error metrics are based
on a theoretical noise sensitivity analysis of focus measures, and they
are related by a monotonic expression. We validate our theory on AUM
and ARMS error through actual and simulation experiments. It is shown
that the theoretically estimated and experimentally measured values of
the standard deviation of a set of focus measures are in agreement. In
comparison, all known prior work on comparing the noise sensitivity of
focus measures have been a combination of subjective judgement and
experimental observations. Our results show that for a given camera
the optimally accurate focus measure may change from one object to the
other depending on their focused images. Therefore selecting the optimal
focus measure from a given set involves computing all focus measures in

the set. However, if computation needs to be minimized, as mentioned

11



previously, the Laplacian of the image is superior to the others and is

suggested for use in practical applications.

Chapter 4 provides a theoretical treatment of the noise sensitiv-
ity analysis of depth from defocus using the Spatial-Domain Convolu-
tion/Deconvolution Transform Method (STM). STM is a useful technique
for 3D vision. Unlike DFD based on frequency domain approach, STM
does not require information about the actual form of the camera’s PSF
and involves simple local operations to measure defocus level in the spa-
tial domain on only two images recorded with different camera param-
eters (e.g. by changing lens position or changing aperture diameter).
The theory we derived fills an important gap in the current research
literature wherein the noise sensitivity analysis of STM is limited to
experimental observations. Given the image and noise characteristics,
an expression for the Root Mean Square (RMS) error is derived in lens
position for focusing an object. This RMS error is useful in estimat-
ing the uncertainty in depth obtained by STM. The results of computer
simulation experiments for different noise levels and real camera exper-
iments for one noise level are presented. The experiments validate the

theoretical results.

The integration of DFF and DFD with experiments on the proto-
type vision system is provided in Chapter 5. DFF algorithms involve
the search for a set of camera parameters corresponding to the sharpest
image of the scene. Thus, a large number of images recorded with dif-

ferent camera parameters setting are required in DFF methods, which

12



limits the speed in computer vision application. In contrast, DFD meth-
ods need only 2 or 3 blurred images with different degrees of defocus
for depth estimate, which can be processed faster than DFF methods.
However, accuracy-wise, DFF methods are better than DFD methods.
Since DFF and DFD methods have some pros and cons, autofocusing
and 3D shape recovery can be faster and more accurate by integrating
DFF and DFD methods. We combine DFD methods using STM with DFF
methods on a vision system named SVIS. SVIS is a new camera system
built in our computer vision lab. It has no lens data available. Thus,
a robust calibration procedure has been developed for SVIS. We provide
the implementation details and experimental results.

Finally, a summary, conclusions and future research are presented

in Chapter 6.
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Chapter 2

Shape from Focus and its Application to 3D

Microscopy

2.1 Introduction

Several techniques for three dimensional (3D) shape recovery of mi-
croscopic objects have been developed in the past such as interferometry
and confocal microscopy. In this chapter, we develop the shape from fo-
cus (SFF) technique that uses image focus analysis to recover 3D shape
of microscopic objects.

The SFF needs to record a large sequence of image frames of a 3D
scene with different camera parameters (e.g. focal length or/and lens to
image detector distance). In each image frame, different objects in the
scene will be blurred by different degrees depending on their distance
from the camera lens. Each object will be in best focus in only one image
frame in the image sequence. The entire image sequence is processed

by using the focus measure filter to find the best focused image of each
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object in the 3D scene. The distance of each object in the scene is then
found from the camera parameters that correspond to the image frame

that contains the best focused image of the object.

The SFF approach can be applied in a microscope equipped with a
CCD camera for the object in micrometer range. In contrast to camera
system for the macroscopic object, a sequence of image frames of the
microscopic object are acquired by moving the object itself (translational
stage) rather than by changing camera parameter settings. All camera
parameters are fixed during the image acquisition and processing. Due
to different image acquisition approach, the distance of each object in

the scene is measured by a relative value rather than a absolute value.

Next, we review the image formation process and show that a defo-
cused imaging system plays the role of a low-pass filter. The theory of
focus measure is also reviewed. The focus measures considered in this
chapter are only those which have been proved to be sound [60] based on
the effect of the OTF main lobe. The focus measures based on summing
the absolute values of the derivatives of the image [76, 30, 39] are un-
sound. We provide the proof through counter examples. The Laplacian
operator is a good focus measure and is used in our experiments. Some
important properties about the Laplacian operator are provided. We
conclude this chapter with several results produced by the automated

SFF microscope system.
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Figure 2.1: Image Formation in a Convex Lens

2.2 Focused and Defocused Images

The image of a scene sensed by an optical system consists of the ge-
ometric and photometric information about the scene. The distance and
radiance of objects are associated with geometric and photometric in-
formation, respectively [21]. According to paraxial-geometric optics, the
basic image formation process is shown in Fig. 2.1. For an aberration-
free convex lens, light beams that are radiated by the object point P and
intercepted by the lens are refracted by the lens to converge at a point
P’ on the image plane. The distance of the point P can be determined by

the well-known lens formula

! (2.1)
v

1
- = - 4
U

where | is the focal length, « is the distance between the object plane and

the lens plane, and v is the distance between the image plane and the
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lens plane. If the image detector (CCD array) coincides with the image
plane, a clear or focused image f(x,y) is sensed by the image detector.
The radiance of the point P is proportional to the irradiance at its focused
image. In a 3D scene, each point on the object surface corresponding to a
single point on the image surface is according to the above relationship.
The image surface is known as Focused Image Surface (FIS).

If, however, the image detector does not coincide with the image
plane and is displaced from it by a distance s — v, the light received from
the object point P by the lens is distributed over a circular patch on the
image detector. Thus, the point object P is blurred or defocused on the
image detector (see Fig. 2.1) and it is imaged as a blur circle P” of radius
R. This blurred image h(z,y) is the Point Spread Function (PSF) of the
camera system. The PSF can be modeled using physical or geometric
optics [21, 46, 56, 57]. In a small image region if the imaged object
surface is (approximately) a plane normal to the optical axis, then the
PSF is the same for all points on the plane. Then the defocused image
g(x,y) in the small image region on the image detector is equal to the

convolution of the focused image f(x,y) and the PSF h(z,y):

glx,y) = h(x,y) = f(x,y) (2.2)

where * denotes the convolution operator.

From Fig. 2.1, it is seen that a defocused image of the object can be
obtained in several ways: by changing the distance s between the lens
and the image detector, by changing the distance u between the lens and

the objects, by changing the aperture diameter D, or/and by varying the
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focal length f. Note that defocusing is observed for both positive and

negative image detector displacements.

From the above discussion, given the irradiance and the position of
the focused image of a point, its geometric and photometric information
in the scene can be uniquely determined. In traditional shape from focus
methods (e.g. [30, 39, 60, 67]), the focused image is obtained by search-
ing a sequence of defocused images which are obtained by continuously
varying camera parameter settings (either s or/and f). Thereafter, a
criterion function called focus measure is computed for each image in
the sequence to determine whether the image is focused or not. A focus
measure is computed at each pixel (i.e. each direction of view) in a small
(about 15 x 15) image neighborhood around the pixel. At each pixel,
that image frame among the image sequence which has the maximum
focus measure is found by a optimized search technique such as a binary
search, Fibonacci search [25] or combining search (see later Chapter 4).
The grey level (which is proportional to image irradiance) of the pixel in
the image frame thus found gives the grey level of the focused image for
that pixel. The values of s and f for this image frame are used to compute
the distance of the object point corresponding to the pixel. Since there
is an one to one correspondence between FIS and the object surface, the
search procedure can be repeated for every pixel in the image frame.
Then the 3D shape and the focused image of the object can be obtained.
Therefore, DFF methods involve a search for the values of s,u or/and f

that results in a maximum focus measure and these methods require the
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Figure 2.2: The OTF of a blurred camera attenuates high frequencies.
The attenuation effect increases with increasing value of the blur circle

radius R.

acquisition and processing of a large number of images.

2.3 Model of Focus Measures

As mentioned previously, the position of the focused image for each
pixel in the image frame is determined by searching the maximum focus
measure among a sequence of images. The accuracy of autofocusing and
3D shape measurement using the image focus analysis technique de-
pends on the particular focus measure that is used. Here we summarize
some relevant results about theory and model of focus measure based
on geometric optics. A detailed discussion of this topic can be found in

several papers including [60, 30, 23, 76].



Let us analyze the defocusing process in the frequency domain (w, v).
If G(w,v), F(w,v), and H(w,v) are the Fourier transforms of ¢(z,y),

f(z,y), and h(z,y), respectively, we can express Eq.(2.2) as:
Glw,v) = Hw,v) - F(w,v) (2.3)

The OTF H(w, v) corresponding to h(x,y) is circularly symmetric and its
cross section has a form similar to the sinc function (see Fig. 2.2). For a
focused image, the first zero crossing of the OTF is very far from the zero
spatial frequency and this zero crossing moves closer to the zero spatial
frequency as the blur increases. Therefore the effect of blurring is to
attenuate higher frequencies. The attenuation increases monotonically
within the main lobe of the sinc-like OTF. The effect of the main lobe on
the computed focus measures usually dominates that of the side lobes.
This model of image sensing is summarized in Fig. 2.3. A more detailed
model of image sensing is described in [64].

A general focus measure is modeled as follows (see Fig. 2.4). First
the image for which the focus measure needs to be computed is normal-
ized for brightness by dividing the image by its mean brightness. Then
it is convolved with a focus measure filter (FMF). Then the energy (sum
of squared values) of the filtered image is computed. This energy is the
focus measure. Most FMF's correspond to filters that emphasize (or am-
plify) high frequencies. This seems appropriate since blurring has the
opposite effect, i.e. high frequency attenuation.

The focus measures modeled here cover most of the focus measures

that have been used by many researchers so far [60] except those based
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on sum of absolute values of image derivatives [76, 30, 39]. We will see
in the later section that such filters are proved to be unsound through

counter examples.

2.3.1 Review of Focus Measures

In this section we list some general and sound focus measures. The

symbol v is used to represent focus measures.

1. Gray Level Variance

This focus measure is computed as

T A// z,y) d:)cdy (2.4)

where 1 is the mean value of the gray level in the image region A. This
focus measure is the grey level variance of the image [23]. It is linearly

related to the integral of the power spectrum of the intensity distribution.

2. Gradient Magnitude Squared
The integral of gradient magnitude squared is defined as [52, 76, 7]

- // [(69 T,y ) n (%y’y))?] dxdy (2.5)
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3. Laplacian Squared

The focus measure based on Laplacian filter [9, 37] is defined as

9%z, 9q(z,y)\"
o[ e e

The Laplacian is a high pass filter which computes the second order

derivative of the image.

4. Bandpass Filtering
Bandpass filtering as a focus measure is obtained by smoothing the im-
ages first with a low pass filter such as a Gaussian and then applying

one of the above high pass filters [60]. One example is
2 2

742//[aa—;(hb(xay)*g(xay)%raa—yz(hb(%y)*g(%y)) dedy — (2.7)

where /, is a Gaussian low-pass filter. Fig. 2.5 shows those focus mea-
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sures corresponding to the filtering characteristics exhibiting in the fre-

quency spectrum.

2.3.2 Unsound Focus Measures

Some researchers in the past [76, 23, 30, 39] have used focus mea-
sures based on integral of the absolute value of image derivatives such
as sum modulus difference and sum modified laplacian. The soundness
of these focus measures has not been investigated in the past. In this
section this class of focus measures are shown to be unsound by con-
structing a class of images for which these focus measures do not exhibit
a maximum for the focused image.

First we consider the case of a one-dimensional signal and then
indicate how it can be extended to two-dimensional images.

A PSF h(z) has the following properties that
h(z) > 0 for all « (2.8)

and

/OO h(x)dx =1 (2.9)

Now consider an arbitrary function p(z) with properties p(z) > 0 for
all x and [*7_p(z)dx = 1. Let ~; be a focus measure defined as the integral

of the absolute value of the i-th derivative of a blurred signal ¢(x), i.e.
< |dig(x
%:Am (z)

T dx (2.10)




Let g(z) = h(z) * f(z) where f(xz) is the focused signal corresponding to

g(x). Therefore

o= [ () S| de
— /_0; h(z) * %ﬂij‘;) dx (2.11)

Let p(x) be the solution of the differential equation

L Apt) (2.12)

where A is any positive constant, i.e. A > 0. We have

o= A Ie) s pla)] de
A

(2.13)

The last step of the derivation above can be justified by the following
well-known result in the probability theory. If 2(x) and p(x) are the
probability density functions of two independent random variables ),
and z, respectively, then the probability density function of their sum,

i.e. xp + xp, 18 h(x) * p(x), h(x) * p(x) > 0 for all x, and

/Oo h(z) * p(e)dz = 1 (2.14)

Therefore, for a focused signal f(x) given by the solution of Eq. (2.12), the
focus measure v; remains the same no matter what %(x) is. Therefore +;
is not sound in that it does not have a maximum when & (z) = 6(z) (dirac
delta function). Two particular examples are p(z) = é(x) for v and ~,
where f(x) will be A - u(x) and A - ramp(z) respectively (see Fig. 2.6).

Note that u(xz) is the unit step function and ramp(z) is the unit ramp
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function defined as

x ifz >0
ramp(x) =

0 otherwise

The one-dimensional case above can be easily extended to two-dimensional

(2.15)

images by assuming that the image changes along only one of the di-

mensions and is a constant along the other dimension. A more general

counter example can be constructed as follows: Let

glx,y)=0 if|z| > Bor|y| > B

Vi = Vei T Vyi
1 B B |0g(x,y)
L TILY g d
T 2By Lo Lo | o do

=7l L

Let the PSF be separable

d'g(x,y)
— Y dxd
oy’ vy

h(z,y) = ha(x) - hy(y)

and
O fx
" f(x,
% Ay py(y)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

where p.(z) and p,(y) have the properties of a probability density function

(i.e. they are always positive and they integrate to unity). Therefore
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e = (2;)2 /_B/_B

= [ ) Bl (A ()] e dy

((haf) - by () * f(x,y))‘ 4o dy

(2B)" J-BJ-B
= I R N R
— A,

(2.23)

Similarly we can obtain v,;, = A,. Hence the proof.

2.3.3 The Laplacian Filter

The Laplacian FMF has some desirable properties which makes it
suitable for practical applications. It is sound, simple, rotationally sym-
metric, and is a linear filter (unlike the gradient magnitude). In addition
it has two additional properties under the geometric optics model of im-
age formation not shared by other filters based on image derivatives.
The two properties correspond to the two cases of a noise free image:
(i) when the image does not change due to blurring as is the case when
the grey level variation is linear, the value of the focus measure is zero,
and (ii) when the image does change as is the case when the grey level
variation is a polynomial of second or higher degree, the focus measure is
non-zero (see Figs. 2.7 and 2.8). When the grey level variation in a noise

free image is linear, then the image does not change due to blurring
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under geometric optics model of image formation . The two properties of
the Laplacian based focus measure are proved as following:

First it is shown that: (i) the image does not change due to blurring
when the grey level variation is linear, and in this case, (ii) the focus
measures based on grey level variance and energy of the image gradient
are in general non-zero, but the focus measure based on the Laplacian is
Zero.

It is shown in [66] that when an image f(x,y) given by a third order
polynomial is blurred to obtain ¢(x,y) by a rotationally symmetric PSF

h(z,y), we have
o(0.9) = flroy) + 209 () (2.20

where h, is the second moment of i(x,y) defined by

hao = /°° /°° “*h(z,y) de dy (2.25)

Eq. (2.24) can be used to obtain an expression for g(x,y) when f(z,y) is
linear by setting the coefficients of second and third order terms in » and

y to be zero. Therefore, if

fla,y) = ao + a1z + aqzy (2.26)

we have
gz, y) = flz,y) (2.27)

because
V2 f(x,y) =0 (2.28)

Eq. (2.27) proves that the image does not change due to blurring when

the grey level variation is linear (Eq. (2.26)). The brightness normalized
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image ¢,(x,y) is obtained by dividing ¢(x,y) by its mean in an interval
—A<x <A —-A<y<A. Wehave

ag + a1x + asy
g

gn(z,y) = (2.29)

It can be easily verified that, in general, the focus measures of ¢, (z,y)
computed in the interval —A4 < z < A, —A < y < A, is non-zero for
image grey level variance, and energy of image gradient along » and y

directions, but the Laplacian based focus measure is zero since
VZgn(z,y) =0 (2.30)

Nextitis shown that: (i) when the image is a second order polynomial
(quadratic), it changes due to blurring, (ii) the Laplacian based focus
measure of the image is non-zero, and (iii) focus measures based on third

and higher order derivatives are zero. Let
flz,y) = ao + a1 + agy + asx?® + asxy + asy’ (2.31)

Setting the coefficients of third order terms in » and y to be zero in Eq.

(2.24), we obtain
g(x,y) = ao + (as + as) hoo + a1x + azy + azx® + asxy + asy’ (2.32)

After normalizing the image by dividing it by its mean we have

9(z,y)
G, Y) = 5 (2.33)
( ) ap+ (as + as) hao + A?(Cl:a—l-as)

The Laplacian of the normalized image can be expressed as

2 (Clg + Cl5)

. (2.34)
ap + (a3 + as) 4 (1+ 23

Viga(z,y) =
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Eq. (2.33) proves that the image in general changes due to blurring.
Eq. (2.34) shows that the Laplacian based focus measure is in general
non-zero. In Eq. (2.33), we see that third and higher order derivatives of
gn(z,y) are all zero. This proves that focus measures based on third and
higher order derivatives are zero, even though the image has changed
due to blurring. If g(x,y) is not normalized for brightness, then f(z,y)
has to be at least a 4-th order polynomial in order for the Laplacian focus
measure to change for ¢(x,y) as compared with f(x,y).

Therefore the first property is not shared by the grey-level variance
and image gradient focus measures corresponding to zeroth and first
order derivatives respectively. FMFs based on third and higher order
derivatives do not share the second property because when the grey
level variation is only quadratic, the corresponding focus measures are
zero even though the images change due to blurring. This is because the
third and higher order derivatives of a quadratically varying grey level
image is zero everywhere.

The first property makes it easy to test the hypothesis whether a
given image region has the necessary “contrast” so that autofocusing is
possible. The confidence level of the hypothesis that the “contrast signal”
is indeed present in a given image region and therefore autofocusing is

possible can be estimated from the quantity:

YT
ﬂ B Std(’ynoise) (2.35)

where 7 is the computed focus measure, v, is the expected value of the

focus measure if only noise was present, and std(v,.:s.) is the standard
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deviation of the focus measure if only noise was present. If the focus
measure due to noise alone v, has a normal distribution with mean ~,
and standard deviation std(7,.s. ), then § must be 3.0 or more for 99.9%
confidence that some contrast information is present in the image region

for autofocusing.

In a sense the Laplacian eliminates all unnecessary information (the
constant and linear components of grey level variation in the focused
image and therefore their contribution to the focus measure) and retains
all necessary information (the quadratic and higher level components in
the focused image and therefore their contribution to the focus measure).
Therefore we recommend the Laplacian FMF for autofocusing and depth-
from-focus in practical applications. In the presence of high noise levels,
we recommend the Laplacian of the Gaussian (LOG) filter [17] as the
FMF.

2.4 Shape from Focus (SFF)

Next we describe the algorithm of microscope-based shape and fo-
cused image recovery. Fig. 2.9 shows a rough surface of unknown object
placed on the translational stage. The object is magnified using the ob-
jective lens of the microscope and imaged by a standard CCD camera.
The degree of focus in the image is varied by displacing the translational
stage (i.e. the object) in the vertical direction with respect to a fixed con-

figuration of camera system and image detector. This is different with
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the camera system for macroscopic objects where camera parameters

were changed to acquire defocused images [74, 811].

Let us consider the surface patch, Ap, that lies on the unknown
surface of the object. Ap is assumed a planar surface corresponding to
a small window size in the image. Each image contains many surface
patches. If the stage is moved towards the focal plane, the image of Ap
will gradually increase in its degree of focus and will be perfectly focused
when Ap lies on the focal plane. Further movements of the patch Ap
will again increase the defocusing of its image. If the stage motion
and image acquisition are continuous process, a sequence of images N
can be obtained as the stage is moved in increments of 6 and an image
is acquired at each stage position. To automatically detect the focus
position, a focus measure operator is applied on Ap in the sequence of
images. At ¢, we can search that image frame among the image sequence
which has the maximum focus measure. If the position associated with
that image frame is found, the height or standard offset of Apis computed
with respect to the arbitrary selected position where we usually define
the first image taken. In fact, the distance of Ap from focal plane, image
detector, or any other coordinate systems can be determined with respect
to the imaging system. This procedure may be applied independently to
all surface patches to obtain the shape of the entire surface. Besides, the
reconstructed image for the object can be synthesized from those focused

patches in a set of images.

An accurate shape recovery from image focus analysis depends on
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that the spatial surface variation of an object. There are two trade-offs
in the shape from focus algorithm. The first, if 6 is displaced between
the two consecutive images and a set of images /V is obtained, the total
displacement that is (N — 1) - 6 has to be greater than a maximum depth
d of the object so that the shape of an object can be completely covered in
an image volume. Usually, we want to achieve the best shape recovery
results that ¢ is as small as possible (i.e. increasing resolution in field
of depth), but it will sacrifice the computational efficiency which needs
to process a more number of images. The acceptable choice in the depth
resolution depends on surface slope, depth range and algorithm itself.
Typically, frame number N from 30 to 40 and 6 from 1 um and 10 um
are suitable for most of microscopic objects in micro-meter range. In
practice, due to the behavior of the focus measure, if the interpolation
function such as Gaussian or quadratic is used to localize the peak about
several largest focus measures in computing depth estimates, it can
benefit in increasing depth resolution but remains the same acquired
image frames. Note that if a sequence of defocused images are obtained
by changing the camera parameters, the resolution of depth will depend

on the resolution of camera parameters.

The second trade-offis the window size versus the spatial resolution
in field of view (FOV). As focus measure is computed for each image in a
small window size, the window size corresponding to surface patch has
to be big enough in order to contain some spatial frequency information.

The focus measure is more sensitive to noise and image overlap problem
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as if the window size is smaller , and it can result to the wrong depth
estimate. The larger window size has more scene information is espe-
cially needed for those images with low contrast region. The compromise
depends on signal-to-noise ratios and image details. The suggested win-
dow size is about 16x16 pixels based on the experiments for the most of
well-textured image. An improved method showing more accurate shape
recovery has been proposed in [61] which the focus measure should be
computed over the focused image surface (FIS) rather than the planar

surface.

2.5 Implementation

2.5.1 Microscope Camera System

SFF described above was implemented on a fully automated camera
system for the shape recovery of microscopic objects. The system was
built over the last three years in our Computer Vision Laboratory. Figs.
2.10 and 2.11 show a block diagram and a photograph of the system
respectively. A Olympus BH-2 model microscope is used to image the
objects. Objects can be magnified using objective lenses with 5x, 10x,
20x, 50x and 100x magnification. The object can be illuminated using

bright field illumination where light energy is focused on the object by the
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same lenses that are used to magnify the object. A SONY XC-711 color
CCD camera mounted on the microscope is capable of imaging a total
of 768x493 pixels with each pixel 13 um in size. The pictures from the
camera module through an RGB signal output are captured by a frame
grabber board (QuickCapture DT55 of Data Translation). The DT55
board resided in a personal computer with an Intel Pentium 166 MHz
processor is able to digitize images with 640x480 square pixel resolution
and 256 gray levels. The captured pictures are processed and stored
in the computer. In addition to the computer display, a color monitor
(SONY PVM-1342Q) which is connected directly to the DT55 board is
added. The incoming video signal then can be viewed in real-time on

this monitor.

Instead of moving the lens system, the autofocusing is done by mov-
ing the microscope stage upward and downward. A MD-2 stepper motor
of Arrick Robotics Inc. is attached to the focus adjustment knob of the
microscope to perform the motorization, and its driver system is con-
nected to the parallel printer port of the computer. The position of the
stage can be computer controlled with a resolution and accuracy up to 0.5
um. The shape from focus algorithm can be programmed and executed
on the computer. The system has been tested to recover the shape of a

variety of industrial, metallic as well as mineral samples.
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2.5.2 Experimental Results

In this section we present and describe experimental results pro-
duced by the above microscope camera system. Due to various spatial
resolution and surface reflectance between the objects, we need to ad-
just the appropriate illumination and magnification lens for each object
placed on the microscope stage. Several parameters such as total re-
quired image numbers N, stage displacement +é and threshold value
also need to be determined and provided into the shape from focus pro-
gram, where the sign of é represents the direction of the stage motion
which we define the stage downward with the positive sign and vice versa.
The program then automatically increments/decrements the stage posi-
tion, digitizes and processes an 640x480 image for each position. In the
experiments, each image was obtained after four time-averaged as well
as image brightness was normalized with respect to its mean value. In
fact, the magnification between defocused images depends on their dis-
tance from the scene. We may assume the magnification factor for small
displacement 6 to be constant. The Laplacian focus measure and the
quadratic interpolation technique are then used in searching the best
focus position from a sequence of images. The window size of focus mea-
sure is 16x16 which resolves an image with a 40x30 depth map. There
are two monitors served for display: the analog monitor receives video
signal from camera and displays a real-time picture taken at each stage
position, and the computer monitor shows an updated focused image

right after the processing. The complete process including image acqui-
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sition, stage motion, and computation of depth map and focused image

takes a total of about 40 seconds for a sequence of 30 defocused images.

The three samples of the application of shape from focus to 3D
microscopy were conducted. In the experimental results, we use step
number to represent the recorded image position and define one step in-
crement corresponding to move the stage about 1 um. Step number 0 is
defined as the position where the first image is obtained. Each increment
step is then referred to step number 0. For instance, step 30 stands for
the stage moved down about 30 um from step 0 and so on. The first sam-
ple is a mustard seed. Fig. 2.12 (a) to (f) shows some defocused images
of the mustard seed taken at different stage position. As we see, each
image frame in the image sequence is mostly blurred by varying degrees
in different regions , and only focused in some regions corresponding to
those parts of the object which are in the focal plane of the microscope.
Shape from focus program is used to identify these focused regions. A
total of 30 images were obtained with stage position increments of 8 um
for this sample. Figs. 2.13 and 2.14 show the reconstructed image and
3D shape profile under the 10x magnification and the 0.8 mm x 0.6 mm

field of view.

The second experiment was conducted to recover the 3D shape from
a scratch defect on the metallic surface. The sample shows its several
defocused images in Fig. 2.15 (a) to (f). In this case, a total of 36 image
were obtained with using stage position increments of 4 um. The optical

setup is the same as the previous experiment. Though some region of
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the scratch surface produces images with low contrast, the reconstructed
image and 3D shape profile showing in Figs. 2.16 and 2.17 generated by
the system are accurate and detailed.

The shape from focus program has also been applied to a variety
of industrial samples. Some modern VLSI chips have a Ball Grid Ar-
ray (BGA) as a pin-out connectors. Each connector or “ball” needs to be
inspected for any defects in its roughly hemi-spherical shape. Several
defocused images of one BGA ball obtained at different stage positions
show in Fig. 2.18 (a) to (f). For this sample, we used a very low illu-
mination to reduce the specular reflection on the top of the ball surface.
However, it made the boundary of an image dimmer. A threshold value
6.0 was selected to classify the region with very weak texture as back-
ground and a zero depth value was assigned to the background region.
This allows to remove a few scattered erroneous depth estimates that
result from the lack of texture in some image region. This thresholding
number is based on per pixel of focus measure (i.e. normalized to win-
dow size) and is obtained from an empirical data. The entire 40 image
sequence using stage position increments of 2 um is processed to produce
the 3D shape of the ball and also its image which is focused everywhere
(see Figs. 2.19 and 2.20). In this case, the BGA ball is magnified by
20x lens and viewed in the 0.4 mm x 0.3 mm field of view. Unlike the
previous experiments, a repeatability test of ball height can be carried
out on this sample by autofocusing the image regions at the substrate

position and then at the ball top position through 20 trials. The mean
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Figure 2.10: Block diagram

Figure 2.11: Automated SFF microscope system
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Figure 2.12: Some defocused images of a mustard seed
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Figure 2.13: Reconstructed image of a mustard seed

Figure 2.14: Depth map of the mustard seed
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Figure 2.15: Some defocused images of a metal scratch
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Figure 2.16: Reconstructed image of a metal scratch

Figure 2.17: Depth map of the metal scratch
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Figure 2.18: Some defocused images of a BGA ball
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Figure 2.19: Reconstructed image of a BGA ball

Figure 2.20: Depth map of the BGA ball
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and standard deviation of ball height from these 20 trials were found

about 51.8 um and 1.67 um, respectively.

2.6 Summary and Conclusion

In this chapter we have presented shape from focus method for re-
covering 3D shape and reconstructing the focused image of objects under
a microscope. The algorithm itself is based on searching the focus po-
sition which we use the Laplacian operator to identify and distinguish
it in the image sequence. The refined depth estimate is computed by
a quadratic interpolation. We also provided some spatial characteristic
analysis about the Laplacian operator and recommended it for use in
practical application. The automated microscope system built by us per-
forms the shape from focus technique proved to work well. The system
is applicable to objects that are up to a few hundred microns in size.
We are able to have the results in a robust, repeatable way and within

reasonable time delays.

In the current system, the experiments were conducted on high tex-
tured opaque objects. For the objects with non-textured surface, or the
surface with specular reflectance, this technique is difficult to work well.
Better illumination techniques are needed to facilitate the measure-
ments for those objects with no high frequency contents in their image.

For instance, projecting a texture patterns on non-textured surface, or



to utilize an uniform illuminator for shinning surface. The shape from
focus method is therefore directly applicable. Our results demonstrate
that the shape from focus method is a powerful technique for the micro-

scopic objects.
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Chapter 3

Noise Sensitivity Analysis of Depth from

Focus

3.1 Introduction

Experimental evaluations of different focus measures have been re-
ported in [30, 35, 52, 39, 60, 76]. So far there has not been any theoreti-
cal treatment of the noise sensitivity of focus measures. In the existing
literature, all known work have been a combination of experimental ob-
servations and subjective judgement. In this chapter we show that the
noise sensitivity of a focus measure depends not only on the noise char-
acteristics but also on the image itself. The optimally accurate focus
measure for a given noise characteristics may change from one object to
the other depending on its image. This makes it difficult to arrive at

general conclusions from experiments alone.
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For a given camera and object, the most accurate focus measure can
be selected from a given set through experiments as follows. For each
focus measure, the object is autofocused several times, say 10, starting
with an arbitrary default lens position. The mean of the 10 focused
positions and their standard deviation are an estimate of the correct
focused position and root-mean-square (RMS) error respectively. The
focus measure with the minimum estimate of RMS error is taken to be
the optimal. In practical applications such as consumer video cameras
or digital still cameras, it is desirable to find the best focus measure from
a given set by autofocusing only once. It is quite undesirable to repeat

10 or several trials.

If one has a detailed and accurate information on the focused image
of the object to be focused and the camera characteristics such as its
OTF, noise behaviour, and camera parameters, then it would be possible
to estimate the RMS error theoretically with only one trial. However

such information is rarely available in practical applications.

In the absence of such detailed and accurate information, we propose
two new metrics named Autofocusing Uncertainty Measure (AUM) and
Autofocusing Root-Mean-Square Error (ARMS error) both of which can
be computed with only one trial of autofocusing. In DFF applications,
AUM and ARMS error can both be easily translated into uncertainties
in depth using Eq. (2.1). The key assumption underlying the definition
of AUM and ARMS error is that the mean value of focus measures are

locally smooth with respect to lens position (e.g. quadratic near the
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peak). AUM and ARMS error metrics are general and applicable to any
focus measure satisfying the local smoothness assumption. The analysis
here deals with focusing errors caused only by grey-level noise and not
other factors such as non-front parallel surfaces [28]. The analysis here
shows that the autofocusing noise sensitivity of a focus measure depends
on the image of the object to be autofocused in addition to the camera

characteristics.

For an object with unknown focused image, finding the optimally
accurate focus measure involves computing all the candidate focus mea-
sures at a set of lens positions and computing AUM/ARMS error for each
of the lens positions. Then the lens is moved to the focused position esti-
mated by the optimal focus measure (which has minimum AUM/ARMS
error ). Usually the number of candidate focus measures that should be
considered for good performance is only a few (about 3). Also, almost
all focus measures require only a modest amount of computing. There-
fore selecting the optimal focus measure from a candidate set comes at a
small computational cost. However, if it is necessary to use minimal com-
puting in autofocusing by using the same focus measure for all objects,
then as mentioned in Chapter 2 we argue that the energy of the image
Laplacian is a good focus measure to use because it is shown to have
some important desirable characteristics based on our spatial domain

analysis.

Note that AUM and ARMS error metrics are applicable to those focus

measures which are based on sum of absolute values of image derivatives,
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Figure 3.1: Autofocusing Algorithm

but we have not carried out a complete analysis of them here. Since they
have been proved to be unsound [67, 60] based on the effect of the OTF
main lobe. These unsound focus measures may be optimal for some
scenes, but for some other scenes they can give incorrect results even in
the absence of all noise. Such filters are proved to be unsound through

counter examples in Chapter 2.

3.2 Autofocusing Algorithm

We have introduced the concept of DFF method in the previous chap-
ter. Generally speaking, DFF method is a “search focusing technique”
which necessarily involves a search of the camera parameter space. In

this section, we proposed an autofocusing algorithm to assist this search



to be done in a rapid way.

In a typical passive autofocusing application such as a consumer
video camera, autofocusing is done by moving the lens with respect to
the image detector in a narrow range of about a few millimeters or about
one tenth of an inch. Let this range be [s,,:., sm4.] (see Fig. 3.1). A typical
value for the limits of the range is s,,;, = f and s,,,, = 1.1f where [ is the
focal length of the lens. Within the range limits, the problem is to find the
lens position s; where the image in a specified part of the image detector
is in best focus. Due to the limited depth-of-field caused by diffraction
effects, the change in the best focused image is indistinguishable by the
image detector when the lens is moved in a small range of size ¢ around
the best focused position s;. Therefore there is no benefit in achieving
autofocusing accuracy better than +¢/2. We only need to move the lens
to an arbitrary position in the range [s; — ¢/2,s; + ¢/2]. Typically e is
about one part in 200 of s,,., — sn,. Therefore the range [s,.in, Smaz
can be divided into n intervals I, = [s;in + ¢ - € 8min + (¢ + 1) - €) for
i =0,1,2,---.n — 1 with s, = $pin + n - €. It is sufficient to compute
the focus measures at only one point in each of these intervals during

autofocusing.

In real-time autofocusing applications, the bottle-neck is not the
computational time but the time taken for the mechanical motion of the
lens to move from one position to the other. Therefore it is important to
minimize this time at the cost of some additional computation. Search

algorithms such as Fibonacci search and binary search are optimal com-
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putationally but not necessarily in the time consumed in lens motion.
Also, in consumer applications like hand-held video cameras, it is un-
desirable for the lens to oscillate between extreme focus and defocus
conditions rapidly. People find it uncomfortable. It is desirable for the
image to gradually come to focus with only minor overshoots near the

focused condition.

Based on the above discussion we propose the following algorithm
for autofocusing. First the focus measure is computed at the current
lens position and the lens is moved by about 10¢ to another position. The
focus measure is again computed. The sign of the change in the two focus
measures is used to determine the direction in which the lens should be
moved. Then a sequential search is begun by moving the lens in steps of
about (n/8)¢ in the correct direction until the focus measure decreases for
the first time. Then a binary search is initiated in the interval containing
the last three lens positions until the search interval has been narrowed
to about 10e. Then a quadratic or a Gaussian is fitted to three or more
points which are about 5¢ apart to find the focused position. Note that,
according to geometric optics, the focus measure curve will be symmetric
about the focus position s;. Also, shifting focus position s; will shift the
curve by the same amount with only small change in its shape. This
algorithm combines sequential search, binary search, and interpolation,
to minimize the lens motion. Additional improvement can be obtained if

more information is available about the particular application.

As an alternative to the above algorithm, one may use a depth-
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from-defocus algorithm [73, 66] when possible to obtain an estimate of
the focus position, and then refine this estimate by computing a focus
measure at several points near the estimated position, fitting a curve
to the points, and finding the position of the curve maximum. The
initial estimate is improved by this method because depth-from-defocus
methods are less accurate than the search based method above. After
improving the initial estimate of the depth-from-defocus method as here,
one can compute AUM/ARMS error for the focus measure used in refining

the initial estimate.

3.3 A Metric for Focus Measures

A metric is needed for comparing the noise sensitivity of focus mea-
sures both at the focused lens position and at an arbitrary lens position.
In Section 3.1, an experimental method was described briefly for finding
the focus measure with minimum RMS autofocusing error. The method
involves repeatedly autofocusing a given object. Performance of a fo-
cus measure at an arbitrary lens position is of interest for the following
reason. In practical applications it will be necessary to determine the
direction in which the lens should be moved from an arbitrary initial
lens position for autofocusing. The desired direction is the direction in
which the best focused lens position is located (Fig. 3.1). This direction

is found by computing the focus measure at the current lens position
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and at another position a small distance away. The direction in which
the focus measure increases is the direction in which the lens should be
moved. This method will give the correct direction for any sound focus
measure in the absence of noise (because the focus measure increases
monotonically), but in the presence of noise, some focus measures may
be more prone to give the wrong direction than others. The best focus
measure for this purpose can be once again determined experimentally.
For a given camera system, object, object distance, and lens position,
the sign of the finite differences of the focus measure is used to find the
direction in which the lens should move in a large number of trials. The
percentage of times the correct direction is found is a measure of noise
sensitivity. It will be seen later that the best focus measure depends
both on the camera PSF and the image of the object. For a given focus
measure, the RMS error will change with the camera PSF and the image

of the object.

In practical autofocusing applications, autofocusing of an object has
to be done in a few seconds or less in only one trial. Trials cannot
be repeated physically to determine the best focus measure. Therefore
we need a theoretical metric that can be computed in only one trial of
autofocusing. The metric should ideally require as little information
about the camera system and the object as possible. It should also be
simple and not require much computational resources. These desirable

characteristics motivate the metric proposed here.
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3.3.1 Autofocusing Uncertainty Measure (AUM)

First we introduce AUM as a metric for focus measures to illustrate
some underlying concepts. Later we introduce the ARMS error which
is based on weaker assumptions than AUM. At any lens position s, (see
Fig. 3.2), each focus measure v is associated with a probability density
function p(v(so)), an expected value (mean) E{v(s¢)}, and a standard
deviation std{~(so)}. However, the focus measure with the minimum
standard deviation is not necessarily the best because we are not inter-
ested in the accuracy of the focus measure itself, but in the corresponding
mean lens position and its standard deviation. Estimating the standard
deviation of the lens position requires a knowledge of the function that
relates the expected value of the focus measure to the lens position (see
Fig. 3.2). This function depends on the camera PSF as a function of cam-
era parameters and the focused image of the object. In the absence of
accurate information about the camera PSF and the object, the function
is estimated in a desired interval through sampling and interpolation.
For example, near the maximum, the focus measure may be computed
at 3 to 5 nearby lens positions and a smooth function such as a quadratic
polynomial or a Gaussian is fitted. The assumption is that the computed
values of the focus measure are (nearly) the expected values of the focus
measure. This assumption will be removed later in defining the ARMS

error.

Referring to Fig. 3.2, the AUM at the maximum of the focus measure
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~ is defined as follows:

Vs ="7(s5) (3.1)
o =7(s5) =7(s1) = 7(s5) —7(s2) (3.2)
AUM = S92 — 51 (3-3)

where o is the standard deviation of the focus measure. In order to
compute AUM, we need to know o. In the next section we derive a
general formula that can be used to estimate o as a function of the image
and its noise level. Further we need to know the shape of the curve 7(s)
near the peak. As discussed earlier, the position of 7, and the function
7(s) near 7 ; are estimated by fitting a curve (quadratic or Gaussian) to a
few points (at least 3) near the maximum. Intuitively, AUM is a measure
similar to the RMS error in lens position that can be determined through
repeated trials.

Fig. 3.3 shows a typical comparison of two focus measures. The
maximum values of the two focus measures have been normalized to be
the same. We see that although o, > oy, AUM, < AUM,, implying that
~, is better than ~,.

Referring to figure 3.6, focus measure 7 is modeled to be locally
quadratic in a small interval of size 26 with respect to lens position near

the focused position:

7(s) = as® +bs + ¢ (3.4)
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Let the focus measure be given at three arbitrary positions which are
6 apart. Without loss of generality, let the three positions be s_ = -4,
so=0,and s; = +6. Let T_ = 7(s_), To = ¥(s0) and T’y = ¥(s4). Near the
focused position, 'y > I'_ and Ty > I',.. Solving for the coefficients of the

quadratic expression, we obtain

T, 4T T,
¢ = 252
T, -T_
R
2
¢c = Ty (3.5)

Let s; be the lens position where the focus measure becomes the

maximum and I'; = F(s;). At s;, the derivative of T vanishes. Therefore

we obtain
_ b
5= 2a
§ T, —T_
= 2 _( t )_ (3.6)
2 (2 — T, —T_)
Substituting the above equation in (3.4) we obtain
= b —4
T, = — ac (3.7)
da

Giventhat AUM = s,—s;, we obtain s; and s, as the roots of the equation
r(s) = Tf —0
= as’+bs+c (3.8)

Thus solving the above equation, we obtain

¢62—4a(c—|—a—ff)

a

AUM = (3.9
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Substituting with Egs. (3.5) and (3.7) in the above equation yields

1

AUM =268 [ — 27 (3.10)
My Ty —T_

At a position far away from the focused lens position s;, AUM is

defined as in Fig. 3.4. This is somewhat similar to that near the peak:
o = (Y(s2) —7(s1))/2 (3.11)

AUM = S9 — 851 (3-12)

Once again, ¢ is computed from the known noise characteristics and the
image. The shape of the focus measure curve is estimated by a linear (2
points) interpolation using the values of the focus measure at s_ and s,
that are 6 apart. Without loss of generality, let s_ = —¢/2 and s, = +¢6/2
and the focus measures at these points be I'_ and I'; respectively (see

Fig. 3.7). The linear model yields the expression

— 5_ I'—-T_
ST T (3.13)
Sy — S— F_|_ — F_
The above equation can be rewritten as:
I'—T_ )
r,-T.) 2
We obtain s; and s, by solving
_ T,.+T_
[(s)= +*1 1= ; +o (3.15)

where ¢ is the standard deviation of the focus measure. Using equation

(3.14) and solving for AUM, we obtain

AUM == |81 — 82|

= T%% (3.16)
_|_ - —
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Fig. 3.5 shows a comparison of two focus measures far away from
the focused position. Once again We see that although o, > o1, AUM, <
AU My, implying that +, is better than ~,.

3.4 ARMS Error

In this section, an explicit expression for the Autofocusing Root-
Mean Square Error (ARMS error) is derived, which is based on weaker
assumptions than AUM. An exact expression for the RMS error depends
on the Optical Transfer Function (OTF) of the camera and the Fourier
spectrum of the focused image. Deriving such an exact expression is
complicated because of the nature of the camera’s OTF and the variabil-
ity of the Fourier spectrum of the focused image for different objects.
Further, usefulness of such an expression in practical applications is
limited since all the information necessary to evaluate the expression
(e.g. OTF and camera parameters) may not be available. However, an
approximate expression that is very useful in practical applications can
be derived under some weak assumptions. The assumption we use is
that the expected value of the focus measure is locally smooth with respect
to lens position. We model this local smoothness by a quadratic polyno-
mial, but the analysis here can be extended to other models (e.g. cubic
or Gaussian). However such extensions do not appear to offer significant

advantages compared to the quadratic model in practical applications.
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We are interested in the RMS value of s,,,,.. For this reason, the
focus measure I'; will be expressed as the summation of their expected

value I'; and their noise component n;:
Fi :TZ—I-TLZ fOT 1= —,0,—|—. (317)

In this case we obtain a set of equations similar to Eqs (3.4) to (3.7) with

the difference that I'; are replaced by I'; , therefore we obtain

I, —I._
o — I, —I_

o
2
0 Iy —T_+4+ng—n_
. )
o
2

Smaz =

2y — Ty —T_ 4 2ng —ny — n_

Ll S Y PR NN TR
My—T, —T_ T, —T_ My—T, —T_

(3.18)

Near the focused position we have I'y; > ', and Ty > I'_. Therefore, if

the signal to noise ratio is sufficiently large, we have
12T — T —T_| > |2n0 — ny — n_| (3.19)

We obtain s,,,, ~ s’ where

maxr

’ _ ny —n_
— Smazx 1 = = 3.20
Smal’ 5 ( —I_ F_l_ _ F_) ( )

Note: we cannot assume that [, — T_| > |n, — n_| because, near

the focused position, I';, and I'_ may be nearly equal. Simplifying the

!
maxr

expression for s’  we obtain

5 n — nN_
/ _ +
S ar Smaz - =3 = 3.21
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Now the ARMS error is defined as the standard deviation of s’ i.e.

max?

) 1
ARMS error = ——————==-std(ny —n_)
2 (2 —T, —T_)
6 1 2 2\
- 3 (o} +02) (3.22)

(2Fg T —T_)

where o, and o_ are the standard deviations of the focus measures I',

and I'_ respectively.

For a lens position away from the maximum focused position, the
above expression for ARMS error will not be valid since the assumption in
Equation (3.19) will not be valid. In this case we find that I'_ < T'y < 1",
the local linear model for the focus measure will be better than the local
quadratic model. The ARMS error for this case is defined based on
focus measures at only two lens positions (rather than three) that are
6 apart. Without loss of generality, let the two positions be s_ = —§/2
and s, = 46/2 and the focus measures at these points be I'_ and '}

respectively (similar to Fig. 3.7). The linear model yields the expression

—S_ r-1_
bRy (3.23)

Sy — S— F_|_ — F_

The above equation can be rewritten as:
r—-r1_ )

=5|—=) -2 24
i (r+ - r_) 2 (3.24)
Once again, we express 'y and I'_as ', =T, +nyandI'_ =T_ + n_

where ', and I'_ are the expected values and n, and n_ are the noise

components.
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Now the ARMS error is defined as the standard deviation of s’ where

s’ is the solution of I'(s) = @ Solving this equation we obtain

2n_ ny —n_ -
(o) (o) ] o

Assuming [Ty —T_|> |ny —n_|and [T, —T_| > |2n_|, we obtain

, 1) 2n_ ny —n_
s &~ —|1—= _ M |
2 T, - T. T, T
N O [ne e (3.26)
2\T_ —T, '
Hence, the ARMS error would be
) (03_ + 03) ?
ARMS error = std(s') = —=———=—2— (3.27)
20, —T'_|

3.4.1 Relation between AUM and ARMS Error

Comparing the expressions for AUM and ARMS error from equations

(3.10) and (3.22) we find

AUM? Y o
ARMS Vol +o?
~ 826 if o, ~o_=o0 (3.28)

The ratio of the square of AUM and ARMS error is a constant.
Therefore AUM and ARMS error are monotonically related. If we re-
define AUM so that instead of using equation (3.8) we obtain s; and s,
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by solving
[(s) =gy — 02 (3.29)

then we find that AUM and ARMS error are linearly related for a given
focus measure and focused image.

For a lens position far away from the focused position, comparing

the expressions (3.16) and (3.27) for AUM and ARMS error yields

AUM 4o
ARMS /52 4 52
~ 2V2 if o, ~x0c_=~0 (3.30)

For this case, they are linearly related.

3.5 Noise Sensitivity Analysis

In this section we derive expressions for the expected value (mean)
and variance of the focus measures modeled in Chapter 2. These are
useful in computing the standard deviation o of the focus measure and
its AUM/ARMS error.

Let f(m,n) be the blurred noise free discrete image and n(m, n) be the
additive noise. The noisy blurred digital image recorded by the camera
is

fy(m,n) = f(m,n) +n(m,n) (3.31)
The noise n(m,n) at different pixels are assumed to be independent,

identically distributed random variables with zero mean and standard
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deviation o,,. This o, can be easily estimated for a camera by imaging a
uniformly bright object and computing the standard deviation of the grey
level distribution. The images are assumed to be of size (2N +1) x (2N +1)
and focus measure filter (FMF) a(z, j) of size (2M + 1) x (2M + 1). With-
out loss of generality, the filtering operation will be represented by the
moving weighted sum (MWS) operator instead of the usual convolution
operator. MWS is correlation and is equivalent to convolution if, for ex-
ample, the FMF is rotated by 180 degrees about its center by assigning
a(—i,—j) to a(7, j). Denoting the MWS operator by * it is defined by
M M
a(i,j)x fo(m,n) = 3 > a(i,j)fy(m+1in+j) (3.32)
i=—M j=—M

In the remaining part of this paper we shall use the following convention
to simplify notation. A double summation will be abbreviated with a
single summation as:

N N N M M M
> > =2 and 33 =3 (3.33)

m=—N n=—N i=—M j=—M

Let g(m, n) be the image obtained by filtering the noisy blurred image
fo(m,n) with the FMF a(z, j):

g(m,n) = a(i, j)  fy(myn) = F(m,n) + N(m, n) (3.34)
where

F(m,n) = a(i,j)* f(m,n) (3.35)

N(m,n) = a(i,7)*n(m,n) (3.36)
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The focus measure ~ is defined as

v o= 229 mn

(2N +1)
9 N
= Ysignal + Ynoise + m T; F(m n)N(m n) (3 37)

where ~;;yn. and v,,.:5. are defined by:

1 N

stgnal — F2 5 3.38
notse — 3.39
! (2N + 1) Z ( )

Now the expected value of the focus measure F{+} is (note that the

expectation operator / is linear and commutes with summation):

2 ZF m,n)E{N(m,n)} (3.40)

o) = “Ysignal T + —
17} = Ysignat + N 1 1)

where

Tn = E{’ynoise} (3.41)

Since we assume 7(m,n) is zero mean, the last term of equation (3.40)

will vanish. Now the second term can be written as

N M M

Yo = 2 Y2003 alin, ji)aliz, j2) E{n(m+i1, n+j1)n(m+iz,n+j2)}
(2N+1 LT 4,01 12,02
(3.42)

In the above equation, if i1 # iy or j; # j2, then, since noise in different

pixels are independent and zero mean, we obtain

E{n(m+i,n+ ji)n(m+iz,n+ j2)}
= E{n(m+i,n+n) E{n(m+iz,n+j2)}

= 0 (3.43)
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However, if iy = 5, and j; = j,, then

E{nZ(m+i1,n—|-j1)} = o’ (3.44)
Therefore, we get
1 N M
= ov e (i,j)or = Ao, 3.45
Tn (2N+1)2%%:a(l ])Un g, ( )
where
M
A, = Z a*(i,7) (3.46)
0]
Therefore
E{’V} = Ysignal + Yy = Vsignal + AnUZL (3.47)

The above equation is a fundamental result. It shows that the expected
value of the focus measure is a sum of two components— one due to signal
alone and another due to noise alone. Therefore, if a focus measure is
computed on a set of images for autofocusing, the effect of noise is to
increase the computed focus measure by the same value on average for
all images. The reason for this is that while the image signal changes
in blur level with lens position, the noise characteristics of the camera
remains the same. Therefore, the average increase in focus measure due
to noise does not change the location of the focus measure peak. It is
the variance of the focus measure that changes the location of the focus
measure peak and therefore introduces error in autofocusing.

Now consider the variance of the focus measure:

Var{y} = B{y*} - (E{7})’ (3.48)
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From Eq.(3.37), noting that E{\N(m,n)} = 0and E{N?(mq,n1)N (mq,ny)} =

0, we obtain

4

E{,}/Q} = Vgignal + 275igna1777 + E{’yzoise} + mx

Z Z ml,nl mg,ng)E{N(ml,nl)N(mg,ng)} (3.49)

mi,n1 mM2,n2

From Eqs. (3.47, 3.48, 3.49) we obtain

vy

_ 2 Y2
VGT{’Y} - E{’}/nozse} 777 (2N _I_ 1) i
F(my,n ) F(mg,ng) E{N (my,n1)N (ma, n2)} (3.50)

Note that £{~2,,.} —~; is the variance of v,.;,c which is independent of

signal. Therefore , equation (3.50) can be written as:

Var{’y} = Var{’ynoise} + (2N n 1 Toar a4 m;“ m;2
F(my,n ) F(mg,ng) E{N (my,n1)N (ma, n2)} (3.51)

The equation above shows that the variance of a focus measure depends
on the image signal in addition to noise level. Further simplification of
the above expression is presented in Appendix A.1. The formula pre-
sented there can be applied directly in practical applications. Now we
consider 3 examples to illustrate the application of the formula. In these
examples, the noise will be modeled as Gaussian. For a zero mean
Gaussian random variable  with standard deviation o, we have [44]

E{n*} = 30!, This result will be used in the following examples.

1. Gray Level Variance
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The image is normalized by subtracting the mean grey value from

the grey level of each pixel. The focus measure filter in this case is

1 ifi=j=0
ali,j) = (3.52)

0 otherwise

Using the formula (A.16) for variance derived in Appendix A.1 we obtain

B 207% 2
Vartd = Gy (2N—|—1 ) Zf ™) (3:53)

2. Gradient Magnitude Squared

For gradient squared along x-axis
az(1,7)=[-1 1] (3.54)

Substituting a(z, j) above in Eq. (A.16) for variance in Appendix A.1 we

obtain:
120.4 do 2 M+N 5
V v = - , 3.55
= on s T o 1) ﬂ; ) (39
where

Ay ) =[-1 2 —1] (3.56)

For gradient squared along y-axis
ay(i,j) = [=1 1] (3.57)

In the same manner, we have

1204 4g? MV ,
V = n \ 3.58
ar{,} oN + 1)2 + OGN + 1) 7 ; (m,n)] ( )
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where

A y=[-1 2 —1]" (3.59)

A cross item Var{y,,} is generated by the effect of noise on ~, and
v, which are not independent (see Appendix A.2 for more details). The

expression of Var{y,,} can be derived as

S 2 M+N

Var{ysy} = GN 1 1) — ; # f(m,n)][Ay(,7) % f(m,n)] (3.60)

Therefore, combining above equations, we obtain

Var{y} = Var{y}+ Var{y,} + Var{v.,}

2407 102 MY
T ANt N+l ﬂ; * fmn)+
Ay(i,5) * f(m,n))? (3.61)

3. Laplacian

The discrete Laplacian is approximated by

0 1 0
ai)=11 _4 (3.62)
0 1 0

Substituting this a(¢, j) into the formula (A.16) for variance we obtain

135204 4g?  MIN )
1% = n , 3.63
= vy TN ) ﬂ; ) 69
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where

A =11 _3 20 s 1 (3.64)

3.6 Experiments

In the first set of experiments, Eq. (3.51) for the variance of focus
measures was verified as follows. The autofocusing algorithm described
earlier was implemented on a system named Stony Brook Passive Aut-
ofocusing and Ranging Camera System (SPARCS) [60]. In SPARCS, a
35 mm focal length lens is used. The lens is driven by a stepper motor
that can move the lens to 97 different step positions. The standard devi-
ation of the camera noise was estimated by imaging a flat and uniformly
bright object and then computing the grey level variance of the recorded
image. The noise characteristics of the camera is shown in Figure 3.11
by plotting the grey level profile of one row of pixels at two different
illumination levels (300 and 500 lux). Three objects labeled A,B, and C

(see Fig. 3.12) were used in the experiments.

An object was placed in front of the camera, and for some fixed lens
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position, 10 images of size 32 x 32 of the object were recorded. These
images slightly differed from each other due to electronic noise. A given
focus measure was computed for each of the 10 images. The standard
deviation of the resulting 10 focus measures was then computed. This
was the experimentally determined standard deviation of the focus mea-
sure. The theoretical estimation of the standard deviation of the focus
measure was computed using equation (3.51). For this purpose, the stan-
dard deviation of the noise was obtained as mentioned earlier using a flat
uniformly bright object. The noise-free image needed in equation (3.51)
was obtained by averaging 4 noisy images of the object. The procedure
for this experiment is shown in Fig. 3.8. Table 3.1 shows the experi-
mentally computed and theoretically estimated standard deviations of
different focus measures. We see that the two values are close thus

verifying Equation (3.51).

In the next experiment, the objects A, B, and C, were autofocused
using the algorithm described in section 3.2. In each case, the exper-
imental and theoretical ARMS error were computed (the unit is lens
steps). Near the focus position, images were recorded at 3 positions s_,
so and s, which were 5 steps apart. At each position, 10 images were
recorded, and using these the mean and the standard deviation of the
focus measure there were computed. Then the theoretically estimated
ARMS error was computed using Eq. (3.22). The same data was used to
compute 10 experimental focus positions using Eq. (3.18). The standard

deviation of these 10 positions was the experimental ARMS error. Fig.
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3.9 shows the procedure for experimental verification. The resulting val-
ues are shown in the last two columns of Table 3.1 We see that they are
very close. These values also indicate the relative autofocusing accuracy
of the three focus measure filters— grey level variance, gradient mag-
nitude squared, and Laplacian squared. The measured noise standard
deviation was 0.95 (grey level units) for the camera, and the SNR for the
three objects were 35 dB, 28 dB and 20 dB respectively.

Three main conclusions can be drawn from the experimental results.
First, for a given object (i.e. fixed image content), ARMS error decreases
with increasing signal-to-noise ratio (SNR). This implies that low con-
trast objects and noisy cameras have more autofocusing error. Second,
the focus measure with minimum standard deviation is not necessarily
the focus measure that gives minimum error in autofocusing. Third, best
focus measure could be different for different objects depending on both
image content and noise characteristics; SNR alone cannot be used to de-
termine the best focus measure. For example, the best focus measure for
the objects with SNR 35 dB and SNR 28 dB are the Laplacian squared,
but for the object with SNR 20 dB, the best focus measure is gradient
magnitude squared. The gray level variance performed very poorly for
object C and the autofocusing was totally unreliable due to the absence

of a well defined peak. This is indicated by the N/A entries in the table.
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3.6.1 Computer Simulation Experiments

Experiments similar to the ones above were carried out on simulated
image data. The purpose of these experiments was to further verify our
theoretical results. In these experiments, unlike in the previous experi-
ments, the noise-free image data and precise characteristics of noise were
known accurately. Therefore we expected a closer agreement than pre-
vious experiments between theoretically estimated and experimentally
determined values of the standard deviation of focus measures. This
expectation was satisfied thus verifying our theory more accurately. In
addition, unlike the previous experiments, the simulation experiments
were carried out at many different levels of noise rather than at only one
level of noise. The theory was verified to be correct at all noise levels.
The test object shown in Fig. 3.13.a was added with various levels of
zero-mean Gaussian random noise to get a set of noisy images. At each
noise level, the mean and the standard deviation of the focus measure
were computed using 10 noisy images. Then the standard deviation of
the focus measures were estimated theoretically using Eqgs. (3.53), (3.61)
and (3.63). The above procedure is shown in Fig. 3.10. The plots in Fig.
3.13 from (b) to (d) show that the experimental and theoretical standard
deviation are in close agreement at all noise levels for all three focus

measures.

Another experiment similar to the second experiment for real data
described earlier was conducted to verify Equation (3.22) for ARMS error

on simulation data as follows. The focused image of a planar object
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normal to the optical axis was used as input to a program that models
image sensing in a CCD video camera. The program was a modified
version of the Image Defocus Simulator (IDS) developed by Lu [64]. The
IDS program was modified to improve the accuracy of blurred images
computed for small degrees of blur. The improved accuracy was achieved
by increasing the sampling rate and by using a wave optics model [20]
of the camera’s PSF (see Appendix A.4). A sequence of blurred images
were generated corresponding to different lens positions in the SPARCS
camera system in our laboratory.

Three images near the focused position were selected from the image
sequence generated above and a specified level of zero-mean Gaussian
random noise was added to these. Then the focused position was com-
puted using Eq. (3.18). The above step was repeated 10 times, and the
standard deviation of the resulting 10 values of the focused positions
was calculated to obtain experimental value of the ARMS error. Then
the ARMS error was estimated theoretically using Eq. (3.22). The pro-
cess above was repeated for various noise levels and three different focus
measures. The results are plotted in Fig. 3.14. We see that the two
ARMS error are in good agreement. In a similar manner, a plot of the
two AUMs for various noise levels are shown in Fig. 3.15. The mono-
tonic relation between ARMS error and AUM are also demonstrated from

those two plots.
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Object C

Object A || Theoretical | Experiment | Theoretical | Experiment
SNR: 35dB || std of FM std of FM ARMS ARMS
Laplacian 18.92 17.27 0.020 0.018
Gradient 5.87 6.31 0.023 0.024
Variance 1.82 2.13 0.025 0.028
Object B Theoretical | Experiment | Theoretical | Experiment
SNR: 28dB || std of FM std of FM ARMS ARMS
Laplacian 3.71 4.05 0.044 0.043
Gradient 1.06 1.25 0.048 0.049
Variance 0.85 1.02 0.10 0.11
Object C Theoretical | Experiment | Theoretical | Experiment
SNR: 20dB || std of FM std of FM ARMS ARMS
Laplacian 1.67 1.37 0.09 0.10
Gradient 0.32 0.46 0.06 0.07
Variance N/A N/A N/A N/A

Table 3.1: Experimental results

86



Test object

(@)

STD of Grd. FM

70

60

50

40

30

20

10

0

o gditheo —
T g exp e
o T
4 [ R N R I IR M S

0O 05 1 15 2 25 3 35 4 45 5
STD of noise

(©

87

STD of Lap. FM

450
400
350
300
250
200
150
100
50
0

T T T T T T T 1
5 A4
[N U U N SR S S g
%
I S U Ut SO SO SEUUU SO 2 S B
¢
o lap_theo —
L o7 lap_exp re—i _
&/ : : : : : : : :
2 i i i i i i i i

0 05 1 15 2 25 3 35 4 45 5
STD of noise

(b)
STD of Var. FM

16 T T T T T T T T T

| b
14 A S A S g -
12
10 bbb R _
8 b b g _
6
4 R g T

oS : : : Var_theo ‘*

2 varexp e o

8 : : : : : : : :
7 i i i i i i i i i

0 05 1 15 2 25 3 35 4 45 5
STD of noise

(d)

Figure 3.13: Simulation records



ARMS (steps)

AUM (steps)

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

| N N e
Lap_theo —
"Grd“theo
Var_theo ---- | | i i m
FLapexp o g
Grd_exp + =
- Varexp oo

85 . . . . . ' ' '

0 05 1 15 2 25 3 35 4 45 5
STD of Noise

Figure 3.14: ARMS vs Noise

Lap_theo ——

7 Grd_theg -
R Var_theo e

S lap.exp ©
S ... Grdexp + |

Jjo. . VNarexp O

S T T T T S T A

0 05 1 15 2 25 3 35 4 45 5
STD of Noise

Figure 3.15: AUM vs Noise

88



3.7 Conclusion

ARMS error has been defined as a metric for selecting the optimal
focus measure for autofocusing with respect to grey-level noise from a
given set of focus measures. It is based on the assumption of local
smoothness of focus measures with respect to lens position. ARMS error
can be applied to any focus measure whose variance can be expressed
explicitly as a function of grey-level noise variance. Such an expression
has been derived for a large class of focus measures that can be modeled
as the energy of filtered images. Equations 3.47 and A.16 for the mean
and variance respectively of a focus measure along with Equations 3.22
and 3.27 for ARMS error completely specify the dependence of autofocus-
ing error on both grey-level noise and image content. These equations
can be used to estimate the autofocusing accuracy of different focus mea-
sures, and the one with minimum error can be selected for application.
In applications where computation needs to be minimized by computing
only one focus measure, we recommend the use of the Laplacian as the
focus measure filter. Laplacian has some desirable properties such as
simplicity, rotational symmetry, elimination of unnecessary information

and retaining of necessary information.

This work can be extended in several ways. First, explicit expres-

sions for the variance of other focus measures such as sum of absolute
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values of image derivatives could be derived so that ARMS error can be
used to estimate their autofocusing accuracy. Second, in the definition
of ARMS error, the local smoothness of focus measures could be modeled
by an n-th order polynomial or a continuous function with » + 1 parame-
ters instead of the quadratic polynomial. In this case, the focus measure
will need to be measured at n» + 1 points (instead of 3 for the quadratic
model) in local intervals of interest. Third, deriving an optimal focus
measure filter for a given image and noise level remains to be investi-
gated. One way to approach this problem would be to first minimize
noise in images using an optimal noise-reduction filter such as Weiner
filter or matched filter [50, 77] and then applying the Laplacian focus
measure filter. This involves additional computation, but it will improve

autofocusing accuracy in most cases.

90



Chapter 4

Noise Sensitivity Analysis of Depth from

Defocus

4.1 Introduction

Three-dimensional (3D) shape recovery through image defocus anal-
ysis has been called Depth-from-Defocus (DFD). In DFD methods, unlike
Depth-from-Focus (DFF) methods, it is not required to focus an object in
order to find the distance of the object. DFD has been investigated by
many researchers [10, 46, 73, 56, 57, 66, 32]. In image defocus analysis
or DFD, a few images (about 2-3) of a 3D scene are acquired by a camera
with different degrees of defocus. The distance of an object is directly
estimated from a measure of the level of defocus in the images. DFD
methods do not involve searching for camera parameters (e.g. lens posi-

tion or focal length) in contrast with Depth-from-Focus methods which
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require a large number of images recorded with different camera pa-
rameters, and searching for the parameters that result in the sharpest

focused image [30, 39, 60, 671.

In DFD, a method based on a new Spatial Domain Convolution /
Deconvolution Transform was proposed by Subbarao and Surya [66, 59].
This method, named S Transform Method or STM, involves simple local
operations in the spatial domain on only two images. The operations
correspond to extracting depth information by cancelling the effect of
focused image of an object through local deconvolution. In STM, the
acquisition of two images can be taken with changing different camera
parameters such as lens position, focal length and aperture diameter.
Both images can be arbitrarily blurred and neither of them needs to
be a focused image. STM is faster in comparison with DFF methods,
but less accurate. In Chapter 3, we have provided a theoretical and
experimental treatment of noise sensitivity of DFF methods [67]. In this
chapter we address the noise sensitivity of the DFD approach based on
STM. A theoretical treatment of this problem is presented, and a method
is developed for estimating the Root-Mean-Square (RMS) error for STM.
In the existing literature, noise sensitivity of DFD methods is limited
to experimental observations only. In this context, the theory developed
in this chapter is new, and it facilitates estimating errors under various
levels of noise and image contrast (as measured by its Laplacian). In
order to verify our theory easily and precisely, we use sampled images

of a blurred step edge and a cubic polynomial function in simulation
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experiments. In addition, experiments conducted on real images are
implemented. In our analysis, random noise is assumed to be additive,
zero-mean, and uncorrelated. Our analysis shows that the RMS error of
STM in terms of the focused lens position of an object is linearly related
to the noise standard deviation.

Next section describes the camera model and defocused image. Sec-
tion 4.3 provides a summary of STM approach to DFD. The noise sen-
sitivity analysis of STM is presented in Section 4.4, and experimental

results in Section 4.5.

4.2 Camera Model and Defocused Image

As mentioned in Chapter 2, the image formation in a camera with
variable camera parameters (s, f, D) is shown in Fig. 2.1. The camera
parameter setting is denoted by e; where e; = (s;, f;, D;) is a vector rep-
resenting the :;-th camera parameter setting. The relationship between
the focused lens position v, the focal length of the lens f, and the dis-
tance of the object u, is given by the well-known lens formula (see Eq.
2.1). In Fig. 2.1, there is the radius R of blur circle which is a size of
blurred image on the image detector as if the object point is not in focus.
According to paraxial geometric optics, it can be shown using the lens
formula and similar triangles that the radius R of the blur circle can be

expressed as a function of the camera setting and object distance u as

we (il )
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Image magnification varies with the distance s between the lens and the
image detector in Fig. 2.1. Therefore the magnification is normalized
corresponding to some standard distance s,. After this normalization,

the blur circle radius i’ becomes
R/:%(l_l_l) (4.2)

The blur circle corresponds to the Point Spread Function (PSF) of the
camera. Let the PSF be denoted by A(x,y). If the object surface is
approximated to be planar and parallel to the image detector plane in
a small image region, then the observed image ¢g(x,y) is the convolution
of the focused image f(x,y) with the PSF h(x,y) (also see in Chapter
2). Circularly symmetric PSFs are parameterized in terms of a spread
parameter o which is the standard deviation of distribution of A(z,y). It

is defined as
+o0 +oo
ol = / / (2* +y*) h(z,y) dx dy (4.3)
It can be found that o is proportional to the blur circle radius £'. The

constant of proportionality is dependent on the optics. In most practical

cases except as o is very small, it is shown that

R/
0'r'\.47§

is a good approximation [62, 58]. Combining Eqs (4.2) and (4.4), ¢ is the

(4.4)

function of camera parameters (s, f, D) and the distance of the object «

which can be expressed as

o= mu l+c (4.5)
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where

B Dsg Ds [1 1] (4.6)

T2 TR s
It is shown that o linearly depends on inverse distance u~! for a given
camera setting. Note that the sign of ¢ depends on the direction of

defocusing observed on the image detector.

If there are two camera parameter settings e;, e;, we have

D180 1 1 1 D280 1 1 1 (4 7)
o1 = _—— = = — T9 = W T — .
T \A u os) T T 2R\ u s

Eliminating 1/u from the above two relations we obtain

o1 = aoy + 3 (4.8)
where
Dl D180 1 1 1 1
=1 3= S 4.9
“ Dy b 2V/2 (fl fa s 51) (4.9)

4.3 STM: A Spatial Domain Approach to DFD

The central problem in depth from defocus is to measure the amount
of blur in a small region of an image. The solution for the depth of the
object is to find out the relation from the blurred (observed) image and
the parameter (i.e. radius) of blur circle. STM method based on such a
concept provides a useful solution. In this section we provide a very brief
summary of STM. Full details of this method can be found in [66, 74]. A
new spatial-domain convolution/deconvolution transform (S Transform)

is defined in [59]. The definition of the transform for the general case is
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quite complicated. However, a special case of the transform suffices for
image defocus analysis. This case turns out to be particularly simple.
For two-dimensional images, under a local cubic polynomial model,
the transform is defined as follows. If a focused image f is blurred by
convolution with a circularly symmetric PSF / to result in the blurred
image ¢, then ¢ is the forward S transform of [ with respect to the kernel

function %, and it is given by:

2

gla,y) = fla,y) + 7=V flay) (4.10)

where /2 is the Laplacian operator. The inverse S transform of ¢ with
respect to the moment vector (1,02/2) is equal to f and it is defined as

0_2

f@wzg@w—zﬁﬂmo (4.11)

In the general case, neither the object function f(x,y) nor the PSF
h(x,y) (i.e. blur circle) is known, resulting in two unknown function and
hence requiring two images for a solution. Let two blurred images ¢,
and ¢, are acquired with different camera parameter settings e, and e,

corresponding to blur parameters o; and o,, we obtain

2

f@wzm@w—%wm@w (4.12)
2
f@wzm@w—%wm@w (4.13)

Eliminating f(x, y) from the above two relations, and using Eq. (4.8),
and the fact that ?¢g; = v?¢. (which can be proved using Eq. (4.10)

where f(x,y) is a cubic polynomial), we obtain

S(aq —
(o = 1)os + 2afB0; + 37 = % (4.14)
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where o and /3 are as defined in the previous section.

In the above equation o, is the only unknown. The equation is
quadratic and therefore o, is easily obtained by solving it. The two solu-
tions result in a two-fold ambiguity. Methods for resolving this ambiguity
are discussed in [73, 66, 74, 81]. From the solution for o,, the distance «

of the object is obtained from Eq. (4.7).

The above discussion illustrates the conceptual feasibility of deter-
mining distance from two defocused images. Repeating the above proce-
dure in all image neighborhoods, the depth-map of an entire scene can
be obtained from only two blurred images in parallel. In fact, in order to
minimize the image overlap problem and make the method robust in the
presence of noise, Eq. 4.14 can be modified by squaring first and then
integrating over a small region around the point (x, y). The best estimate

of o, is then taken by the mode of the histogram distribution [74].

4.4 Noise Sensitivity Analysis of STM

In this section we derive expressions for the expected value (mean)
and variance of the focused lens position v in the lens formula (Fig. 2.1)
for STM. The mean and variance will be expressed in terms of the camera
parameters e; and the noise variance 2. These expressions are useful
in computing the root-mean-square (RMS) error for STM in estimating

the focused lens position v due to noise. We start the derivation from the
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right hand side of Eq. (4.14). Note that we do not consider the integrated
version of STM here [74].

Let g; be the blurred noise free discrete images, n, be the additive
noise for £ = 1,2. The two noisy blurred digital images recorded by the

camera are
o = gk + i fork=1,2 (4.15)

The noise 7, at different pixels are assumed to be independent, identi-
cally distributed (i.i.d.) random variables with zero mean and standard
deviation o,,.

In STM the assumption of local cubic polynomial model for the fo-
cused image is relaxed by using a set of discrete image smoothing filters
[36, 66]. The recorded images are convolved with a smoothing kernel 7,
in this case as

9y, = Gn * Lo (4.16)

where * denotes convolution. Another filter 1, is used for estimating
the second order image derivatives for computing the Laplacian of the

image. Denoting the image Laplacian by g, , we have
G = i * Lo (4.17)

Using Eqgs. (4.15), (4.16) and (4.17), we can rewrite the right hand
side of Eq. (4.14) as

I~ I,
9o T Iy
(91 % Lo — g2 Lo) + (1 * Ly — 2% L)
(g1 % Lo+ g2 % La) 4+ (g1 * Lo + 12 % L2)

G =

(4.18)

98



In the above equation, there are two components in both the numerator
and the denominator where one component depends on image signal
only (but not noise) and the other component on noise only. Let P and
() denote the numerator and the denominator respectively in the above

equation, andlet P = P + P’ and Q = Q + ', where

F = g1 % Lo — g2 * Lo (4:.19)
Pl = Mm* Lo — M2 * Lo (4.20)
Q = gixlatgr*ly (4.21)
Q = mkLotm Ly (4.22)
Now we can write
P P+ P
G = 8— = —
Q Q+Q
P P Q\™
= 8—= |1+ :) (1 + :) (4.23)
Q ( P Q

Assuming Q > Q' and P Q) > P’ )’ (which will be true when the signal-

to-noise ratio is sufficiently large), we obtain
F P/ /

Note that we cannot assume that P >> P’ because, the two images may
have similar blur level although they correspond to quite different cam-
era parameter settings, and therefore P may be close to zero.

Now the expected value of (& is

S pepny - 8@—1215{@'} (4.25)

P
B{G} = 8=
{G} 3

Q
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Since we assume 7, to be zero mean, the last two terms of the above
equation will vanish. (Note that the expectation operator F is linear and

commutes with summation.) Therefore we obtain

P
E{G} =8 4.26
{a} =385 (4.26)

This result shows that the expected value F{G} depends only on the
signal, but not noise.

Now we consider the variance of (. Using Eqs (4.24) and (4.26), and
noting that £{P'} = F{Q'} = 0, we obtain

Var{G} = B{G*) - (B{G) B
- (5201 ()

64 647" 1287
= SE{P*}+ —F{Q"} — ——E{P'Q (4.27)
7 {P=} . {Q"™} . {P'Q'}

In the Appendix B.1, it is shown that the term F{FP’'Q)’'} vanishes, and
the term F{P?*} and F{Q"?} will depend on the standard deviation o, of
the noise and the coefficients of the filters. Denoting the coefficients of

Lo filter by ao(7, j) and the coefficients of L, filter by a1 (¢, j), we obtain

Var{G} = Ao’ (4.28)
where
128 M 98Pt M
A= ?ZG(Z)(%J)JFTZCL%(%J) (4.29)
0rj 0rj

We see that A is independent of noise and therefore Var((') is propor-

tional to noise variance o2,
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Next we consider the left hand side of Eq (4.14). We limit our analysis
to the case where the aperture diameter is not changed (i.e. D, = D,),
but the lens position and/or the focal length are changed (i.e. f1 # [,
and/or s; # s2). In this case, the quadratic equation reduces to a linear

equation because o = 1.0. Therefore we get the unique solution:

G
oy = 25

From Eq (4.7) and the lens formula, we derive an approximate linear

(4.30)

expression for focused lens position v:

Dsoll 1 1]
oy = —_——— = —

W2 |2 u o s
_ Dl 1)
2V2 v sy
D
~ 2\/550(82_1)) (4.31)

where we assumed s,v &~ s3. This approximation is valid for most camera
systems in machine vision.

Now substituting for o, using the above equation into Eq. (4.30), we

obtain
020 (G Ds,
v o= — S i
D Qﬂ 2 2\/550
= BGH+C (4.32)
where
\/580 \/5506
B=— 3D and C =sy+ ) (4.33)

B and C depend only on the camera parameters. Thus, the expected

value and the variance of v are obtained by combining Eqs. (4.28) and
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(4.32) as:
E{v} = 86% +C and Var{v} = AB%? (4.34)

The above equations show that the standard deviation of focused lens
position v is linearly related to the standard deviation of noise. Given the
noise standard deviation o, the camera parameters, and the defocused
images, we can directly compute the RMS error for STM using the above
formula. In addition, we can use this equation to select pixels with good

signal-to-noise ratio in order to obtain reliable depth estimates.

4.5 Experiments

4.5.1 Experiments with Synthetic Images

The validity of Eq. (4.34) for the expected value and variance of
the focused lens position v was verified through simulation experiments.
The experiments were carried out for two objects, one a step edge and
another a cubic polynomial. The blurred images of the test objects were
obtained by simulating a camera system similar to the one used in the
original implementation of STM reported in [66]. The parameters of
the camera system were— focal length 35 mm, F-number 4, and pixel
(CCD) size 0.013 mm X 0.013 mm. The distance s (see Fig. 2.1) between

the lens and the image detector was assumed to be varied by a stepper
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motor with each step corresponding to a displacement of 0.030 mm. The
distance s and the focused lens position v are expressed in terms of the
step number of the stepper motor with step 0 corresponding a distance of
focal length f. Therefore when the lens was at step 0, objects at infinity
were focused on the image detector and at step 90 objects at about 49
cm were focused. For convenience, we specify the distance of objects in
terms of the lens step number for which it is in focus.

In the first experiment, we used a step function as an input object.

A vertically oriented step edge is defined as

A forx >0
B forx < 0

where A and B represent the uniform brightness for two regions. We
chose A = 176 and B = 80 and an image of size 64 x 64 in our experiment.
The edge is a vertical line located in the middle of the image. For a
given distance of this object from the camera, the corresponding blur
circle radius R can be calculated using the camera parameters. Next
the blurred image sensed by the camera can be computed by convolving
the focused image with the point spread function corresponding to a
blur circle radius of R. In the case of a step edge, as an alternative
to numerical convolution, an analytical expression can be obtained for

the blurred image and the expression can be evaluated and sampled at
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discrete points. This latter approach was followed in our experiments.
It can be shown [22] that the defocused image of the step edge defined

above will be:

glx,y) =B+ (A—B) for |z| < R

(4.36)

L -—1<1)+£1 (z)
2 T\ \R) TR R

where R is the radius of the blur circle. Two defocused images ¢; and ¢,

were computed for two different lens positions of step number 10 and 40
respectively (all other camera parameters were left unchanged). A zero-
mean Gaussian random noise was then added to both defocused images
g1 and g,.

According to Eq. (4.30) we only need to compute the value of o, at one
pixel (z,y) in the image to obtain an estimate of the distance. This pixel
should be chosen such that it is blurred in both ¢, and ¢, and the signal to
noise ratio is sufficiently high in both ¢, and ¢, as required by Eq. (4.24).
Also the images should be such that their Laplacians should be roughly
the same in order for the local cubic polynomial model assumption used
by STM to be applicable. Further the degree of blur should not be too high
in either of the two images (the blur circle diameter should not exceed
about 12 pixels) so that the error due to the image overlap problem [66]
remains low. In the experiments, when one of the image was blurred
too much, then a third image ¢; with a lower level of blur was used in
place of the highly blurred image. More specifically, the images ¢; and
g, were computed for lens position of step 10 and 40 respectively. When

the focused position v predicted by these two images was more than step
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50, then ¢; was considered to be blurred too much and therefore a third
image ¢3 corresponding to lens position at step 70 was computed and
used. Fig. 4.2 shows three defocused images for lens positions at steps
10, 40 and 70, respectively when the object focused position was at step
0. The corresponding widths of the blur edge for the three images were
6, 24 and 40 pixels respectively (Fig. 4.4).

We compute ¢ in Eq. (4.14) from two defocused images, and the
camera constant 3 is computed from a knowledge of the camera param-
eters. Then an estimate of the focused lens position v is calculated from
Eq. (4.32). This procedure for estimating distance v is repeated 20 times
at a given noise level and camera parameter setting. The experimental
mean and standard deviation of v are calculated from these 20 trials.
The theoretical mean and standard deviation of v is computed based on
Eq. (4.34). Fig. 4.1 illustrates the above procedures. Table 4.1, 4.2 and
4.3 show the results of the experimental and theoretical computations
at three noise levels for various distances of the object (from focused
position of step 0 to step 90). These tables also show for each case the

signal-to-noise ratio defined by

@2
SNR = 10 log,, (7) (4.37)

¥ Sl QF
where Q and ()’; are as defined in Eqs (4.21) and (4.22). A comparison
of results in the tables shows that the experimental and theoretical re-
sults are in close agreement thus verifying the theory. In particular, as
predicted by theory, we see that the standard deviation of v (i.e. the

RMS error of focused lens position) is linearly related to noise standard
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deviation.

In the second experiment, an object having an image brightness
corresponding to a cubic polynomial was used. The procedure was similar
to the first experiment. The coefficients of the cubic polynomial were
taken to be those that modeled the step edge in the first experiment. The
coefficients were obtained by using a least squares error fitting technique

[49]. The resulting image was
fz,y) = azx® + agx® + a1 + ao (4.38)

where a; = —0.003, ay = 0.313, a; = —5.957 and ap = 101.031. In this case,
by convolving f(x,y) with the PSF of the camera corresponding to a blur

circle of radius R, it can be shown that the blurred image is given by
3R? R?
g(x,y) = asz® + aza® + (Tag + al) T+ St ao (4.39)

The blurred images ¢; and ¢, are computed by discrete sampling of the
above function for two different blur circle radii R, and R, respectively.
These are then filtered with L, and L, filters to obtain smoothed images
and their Laplacians. In this experiment, unlike the previous one, almost
any pixel can be selected for computing v, and a third image is not
needed. The results are good even for highly blurred cases. However, as
mentioned before, we use the third image just to reduce the variance of
v. Three sampled images computed for lens positions at step 10, 40 and
70, when the object is focused at step 90, are shown in Fig. 4.3. The blur
circle radii corresponding to these images are respectively 22, 13 and 5

pixels respectively. Fig. 4.5 shows their gray-level profile. Table 4.4,4.5
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and 4.6 show the experimental and theoretical results. Once again, we

see that the results are in a good agreement.

4.5.2 Experiments on Real Images

Images of real scenes were taken by using our SPARCS camera sys-
tem [81]. The camera parameters were set to the same as those synthetic
images used in the previous experiments. The defocused images of the
object obtained by moving the lens causes the variations in image bright-
ness and in image magnification, even though nothing has changed in the
scene. Therefore, normalization with respect to image brightness was
carried out by dividing the image brightness at every point by the mean
brightness of the image. Also, only those pixels in the central region of
images resulting in the least magnification change were chosen for the
experiments. Detail magnification correction can be found [82, 71].

For each of the two focus settings, 20 images were averaged to get
one image with high signal-to-noise ratio. The noise of camera system
was estimated by using a flat and uniformly bright object. The gray level
variance of this image was computed for the standard deviation of the
system noise. In the case of 500 LUX illumination, the standard devia-
tion of the system noise was found about 1.6. The above two averaged
defocused images, an estimated standard deviation of the system noise
and camera parameters were provided for the theoretical calculation in

Eqgs. (4.34). Those recorded 20 pairs of images also were used to compute



20 focus positions by Eq. (4.32). The mean and standard deviation of
these 20 trials give the experimental results. Figure 4.6 shows the focus
images of the test object A and B both taken at step position 50. Again,
a third image was used in place of one of the images blurred too much.
Unlike the previous experiment, three blurred images used for comput-
ing focus position were taken at step position 15, 45 and 75. Tables 4.7
and 4.8 show the experimental and theoretical results. The experiments

conducted on these real images also verify our theory.

4.6 Conclusion

Eq. (4.34) provides a method for estimating the uncertainty in the
focused position v for an object as a function of the camera parameters,
noise level, and image signal. This can be used to select those pixels
that yield reliable estimates of depth of objects and ignore the unreliable
pixels in the application of STM. As expected, the reliability of pixels
increases with increasing value of image Laplacian at those pixels but
decreases with increase in noise standard deviation. If an object is pla-
nar, or has a known shape form (e.g. spherical), then Eq. (4.34) can be
used to combine the depth information provided by different pixels in

some optimal manner to infer the actual shape parameters of the object.

108



Set camera paramters

e,= (s.f, ,D) for g,
e,= (s, f,,D) for g,

Sample images g, and

9> from an analytical
equation

Add Gaussian noise

with zero-mean and
std onto g, and g,

i

Perform Laplacian
operation on g, 0,

i

Apply smoothing
filter on g, g,

!

Calculate focused lens

position v.=B G+ C

Get the experimental
E{v} and Var{ v}

Get the theoretical
E{v} and Var{ v}

Figure 4.1: The flow chart for experimental verification
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Figure 4.2: Step edge focused at step 0 and defocused images at lens
steps 10,40,70

Figure 4.3: Cubic polynomial focused at step 90 and defocused images

at lens steps 10,40,70

200 /N S S B A 200 /N S R A A
180 180
160 160
140 2 140
[%2]
120 3
£ 120 |\
100
100 -
80
80
60 3 3 3 3 3 3 ; ;
| | | | | | 60 | | | | | |
0O 10 20 30 40 50 60 0O 10 20 30 40 50 60
Pixel Pixel

Figure 4.4: Gray-level in edge image Figure 4.5: Gray-level in polynomial image



Object Lap. img | Theo. | Exp. Diff Theo. | Exp. | Diff
Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v} 0
0 28.47 -0.80 | -0.80 0.00 0.78 0.98 -0.20
10 33.54 9.25 9.24 0.01 0.34 0.48 -0.14
20 33.29 19.72 19.74 -0.02 0.41 0.52 -0.11
30 34.35 30.21 | 30.15 0.06 0.29 0.32 -0.03
40 30.82 40.49 40.48 0.01 0.42 0.48 -0.06
50 31.84 51.09 | 51.08 0.01 0.41 0.35 0.06
60 32.12 60.16 | 60.11 0.05 0.30 0.25 0.05
70 29.49 69.08 | 69.12 | -0.04 0.41 0.41 0.00
80 28.78 79.78 | 79.77 | 0.01 0.57 0.65 -0.08
90 29.94 89.05 | 89.31 | -0.26 0.65 0.87 -0.22
Table 4.1: Step edge with noise std. 1.0
Object Lap. img | Theo. | Exp. Diff Theo. | Exp. | Diff
Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v} 0
0 22.45 -0.80 | -0.89 0.09 1.56 2.03 -0.47
10 27.52 9.25 9.21 0.04 0.68 0.99 -0.31
20 27.28 19.72 19.76 -0.04 0.83 1.05 -0.22
30 28.33 30.21 | 30.10 0.11 0.58 0.64 -0.06
40 24.80 40.49 40.49 0.00 0.84 0.98 -0.14
50 25.82 51.09 | 51.05 0.04 0.82 0.77 0.05
60 26.10 60.16 | 60.07 | 0.09 0.61 0.58 0.03
70 23.47 69.08 | 69.18 | -0.10 0.82 0.81 0.01
80 22.76 79.78 79.92 -0.14 1.14 1.29 -0.15
90 23.92 89.05 | 89.64 | -0.59 1.29 1.69 -0.40
Table 4.2: Step edge with noise std. 2.0
Object lap. img || Theo. | Exp. Diff Theo. | Exp. | Diff
Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v} 0
0 18.93 -0.80 | -1.07 0.27 2.34 3.05 -0.71
10 23.99 9.25 9.16 0.09 1.02 1.52 -0.50
20 23.75 19.72 19.76 -0.04 1.24 1.60 -0.36
30 24.81 30.21 | 30.04 | 0.17 0.88 0.97 -0.09
40 21.28 40.49 40.52 -0.03 1.26 1.50 -0.24
50 22.29 51.09 51.02 0.07 1.23 1.02 0.21
60 22.57 60.16 | 60.02 0.14 0.92 0.75 0.17
70 19.94 69.08 | 69.25 | -0.17 1.24 1.24 0.00
80 19.24 79.78 | 80.34 | -0.56 1.72 1.98 -0.26
90 20.39 89.05 | 90.04 | -0.99 1.94 2.75 -0.81

Table 4.3: Step edge with noise std. 3.0
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Object Lap. img | Theo. | Exp. Diff Theo. | Exp. | Diff
Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v} 0
0 30.98 -0.98 | -1.09 0.11 0.61 0.74 -0.13
10 31.84 9.62 9.52 0.10 0.49 0.51 -0.02
20 30.79 20.05 | 20.09 | -0.04 0.42 0.42 0.00
30 29.44 30.29 | 30.43 | -0.14 0.43 0.48 -0.05
40 29.56 40.38 | 40.54 | -0.16 0.49 0.56 -0.07
50 30.42 50.30 | 50.36 | -0.06 0.60 0.64 -0.04
60 32.11 60.04 | 60.10 | -0.06 0.44 0.44 0.00
70 29.04 69.64 | 69.71 | -0.07 0.50 0.51 -0.01
80 27.31 79.08 | 79.22 | -0.14 0.60 0.71 -0.11
90 28.88 89.37 | 89.63 | -0.26 0.72 0.91 -0.19
Table 4.4: Cubic polynomial with noise std. 0.3
Object Lap. img | Theo. | Exp. Diff Theo. | Exp. | Diff
Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v} 0
0 24.96 -0.98 -1.24 0.26 1.22 1.49 -0.27
10 25.82 9.62 9.39 0.23 0.99 1.04 -0.05
20 24.77 20.05 | 20.15 | -0.10 0.85 0.84 0.01
30 23.42 30.29 | 30.59 | -0.30 0.86 0.95 -0.09
40 23.53 40.38 | 40.75 | -0.37 0.99 1.14 -0.15
50 24.39 50.30 | 50.48 | -0.18 1.21 1.31 -0.10
60 26.09 60.04 | 60.18 | -0.14 0.89 0.89 -0.00
70 23.02 69.64 | 69.81 | -0.17 1.01 1.03 -0.02
80 21.28 79.08 79.44 -0.36 1.21 1.41 -0.20
90 22.86 89.37 | 89.73 | -0.36 1.44 1.79 -0.35
Table 4.5: Cubic polynomial with noise std. 0.6
Object Lap. img || Theo. | Exp. Diff Theo. | Exp. | Diff
Distance || SNR (db) || E{v} | E{v} 0 Std{v} | Std{v} 0
0 21.44 -0.98 -1.44 0.46 1.83 2.21 -0.38
10 22.30 9.62 9.24 0.38 1.48 1.59 -0.11
20 21.25 20.05 20.19 -0.14 1.27 1.27 0.00
30 19.89 30.29 | 30.77 | -0.48 1.28 1.48 -0.20
40 20.01 40.38 | 40.98 | -0.60 1.48 1.75 -0.27
50 20.87 50.30 | 50.65 | -0.35 1.81 2.00 -0.19
60 22.56 60.04 60.26 -0.22 1.34 1.34 -0.00
70 19.49 69.64 | 69.95 | -0.31 1.51 1.57 -0.06
80 17.76 79.08 | 79.73 | -0.65 1.81 2.14 -0.33
90 19.33 89.37 | 90.07 | -0.70 2.17 2.59 -0.42

Table 4.6: Cubic polynomial with noise std. 0.9
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Object A

Object B
Figure 4.6: Test images taken at step 50

Object Lap. img | Theo. | Exp. Diff Theo. | Exp. | Diff

Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v} 0
10 20.46 8.99 8.43 0.56 2.20 2.94 -0.74
20 30.99 19.88 | 20.20 | -0.32 1.52 1.80 -0.28
30 33.85 30.15 | 30.26 | -0.11 0.65 0.82 -0.17
40 32.95 40.32 | 40.72 | -0.40 0.96 1.32 -0.36
50 28.21 49.41 49.20 0.21 0.78 1.04 -0.26
60 36.46 61.04 | 61.52 | -0.48 0.49 0.68 -0.19
70 34.89 69.98 | 69.64 | 0.34 0.85 1.48 -0.63
80 22.52 78.39 | 78.99 | -0.60 1.77 2.60 -0.83
90 17.02 87.45 | 87.89 | -0.44 2.60 3.77 -1.17

Table 4.7: The object A with noise std. 1.6

Object Lap. img | Theo. | Exp. Diff Theo. | Exp. | Diff

Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v} 0
10 23.74 9.31 9.59 -0.28 1.62 2.07 -0.45
20 27.12 20.36 20.52 -0.16 0.70 1.02 -0.32
30 31.80 29.85 | 29.75 0.10 0.38 0.48 -0.10
40 39.49 40.62 40.42 0.20 0.49 0.76 -0.27
50 37.51 50.25 | 50.30 | -0.05 0.44 0.64 -0.20
60 32.41 60.21 60.03 0.18 0.31 0.44 -0.13
70 35.33 69.93 | 69.67 | 0.26 0.63 0.97 -0.34
80 23.70 78.68 | 78.88 | -0.20 1.06 1.71 -0.65
90 18.16 88.53 | 88.92 | -0.39 1.82 2.78 -0.96

Table 4.8: The object B with noise std. 1.6
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Chapter 5

Integration of Depth from Focus and

Defocus

5.1 Introduction

In this chapter, we present a method for integrating DFD and DFF
proposed in [71]. Depth from Focus (DFF) and Depth from Defocus
(DFD) each has some advantages and disadvantages. The integration
of DFF and DFD can provide an useful technique for fast and accurate
autofocusing and three-dimensional (3D) shape recovery of objects.

As seen in Chapter 2, DFF methods process a large sequence of
image frames of a 3D scene in order to reconstruct a focused image and
find the depth map of an object. DFD methods require processing only a
few images (about 2-3) which is less computational than DFF methods.

In addition, only a few images are sufficient to determine the distance
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of all objects in a scene using the DFD methods, irrespective of whether
the objects are focused or not. The two main disadvantages of the DFD
methods are (i) they require accurate camera calibration for the camera
characteristics (a blur parameter as a function of camera parameters),

and (ii) they are less accurate than DFF methods.

Therefore, an DFD method can be combined with an DFF method
to reduce the number of images acquired and processed but attain the
same accuracy as DFF. First DFD method is used to obtain a rough
depth-map. This requires acquiring and processing only 2 or 3 images.
Then DFF is applied to a short sequence of images which are acquired
with camera parameters so that only objects in the rough depth-map
range estimated by DFD are focused. Acquiring and processing of image
frames that correspond to focusing objects that are far away from the
depth-map estimated by DFD is avoided. This saves image acquisition
and processing time of unnecessary image frames. The accuracy of the
depth-map obtained will be the same as that of DFF. In comparison with
a bare DFF, the combined DFD-DFF may save much time in the best case
when all objects in a scene are at the same distance, but in the worst
case when objects in scene are at all possible distances, the combined
DFD-DFF will take a bit more time than the bare DFF. In a typical
application, the combined method can be expected to save some modest

time.

The technique described in this chapter is implemented on a camera

system named Stonybrook VIsion System (SVIS). Methods for calibrating
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Figure 5.1: Stonybrook VIsion System (SVIS)

the camera system and results of experiments on SVIS are presented.

5.2 Camera System

The integration of DFD and DFF was implemented on a camera sys-
tem named Stonybrook VIsion System or SVIS (see Fig. 5.1). SVISis a
vision system built over the last 1 year in the Computer Vision Labora-
tory, State University of New York at Stony Brook. SVIS consists of a
digital still camera (DELTIS VC 1000 of Olympus Co.). S-Video signal
from the camera is digitized by a frame grabber board (Matrox Meteor
Standard board). All processing is done on a PC (Intel Pentium, 200
MHz.). The camera is mounted on a linear motion stage driven by a step-
per motor (X-9 stage and MD-2 stepper motor system of Arrick Robotics

Inc.). This stage provides the capability to develop a multiple-baseline
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stereo system using only a single lens configuration. The stepper motor
that moves the camera is controlled through a parallel printer port on
the PC. Focusing of the camera is done by a motorized lens system inside
the camera. The lens motor is controlled from a serial (RS-232) commu-
nication port on the PC. The Matrox frame grabber installed in the PC
is used to record 640 x 480 size monochrome images with 8 bits/pixel. A
user friendly windows software interface has been developed to control
the whole system under MS Windows 95 OS. It includes convenient con-
trols for manipulating (i) the lens system, (ii) digitizer board, (iii) linear
motion stage on which the camera is mounted, and (iv) all the application
programs. In addition, an overhead projector is used to project a high

contrast pattern onto 3D objects that have low contrast.

The camera lens system has separate controls for zooming and fo-
cusing. Zooming can be varied from a focal length of 10.2 mm (WIDE
mode) to 19.6 mm. (TELE mode). The experimental results reported in
this chapter were carried out with a zoom focal length of 19.6 mm (TELE
mode). Focusing is done by driving a stepper motor that controls lens
position with respect to the image sensing CCD in the camera. The step-
per motor has step positions ranging from 0 to 170. Objects at infinity
are focused when the lens stepper motor is at step number 0, and objects
close by (about 25 cm.) are focused when the lens position is at step 170.
Since each lens step number corresponds to focusing objects at some
unique distance, we often use this corresponding step number to specify

the distance of objects. If an object is said to be at a distance of step X, it
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means that the distance of the object is such that the object would be in
best focus if the lens is moved to step number X. Specifying distance of
objects in terms of lens step numbers is particularly convenient in DFF
and DFD. In SVIS, each step corresponding to a displacement of lens is

about 15 um.

5.3 Camera Calibration

The internal parameters of camera system such as focal length, dis-
tance between lens and image detector, aperture diameter etc. were not
known accurately. Therefore SVIS had to be calibrated with respect to
several important factors. The first factor needing calibration was the
relation between the distance of objects from the camera and the corre-
sponding lens step number at which the objects would be in best focus.
The second factor needing calibration was a blur parameter needed for
image defocus analysis. In addition, two thresholds 7 and 7; were cali-
brated for DFF and DFD respectively to identify and ignore regions of low
contrast with respect to noise (i.e. low signal-to-noise ratios). Finally,
some considerations related camera calibration are discussed. Calibra-
tion procedures with respect to each of these factors were carried out as

follows.
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Figure 5.2: Autofocusing Experiment

5.3.1 Lens Step vs Focusing Distance

The lens position in step number and the corresponding focused
distance was obtained using an autofocusing algorithm as follows. A
large planar high contrast object was placed normal to the camera’s
optical axis at a known distance from the camera. The camera was
then autofocused by maximizing a focus measure. The lens position in
step number that resulted in a maximum focus measure was found by a

binary search type of algorithm (see also details in Chapter 3).

In order to have this search algorithm more robust and faster, we
begun the sequential search by moving the lens from lens position either
0 or 175 in every 32 steps incremented/decremented. It was stopped
until the focus measure decreased its value more than 20% of previous

one. Then a binary search was begun in the interval of 32 steps after

119



sequential search. After the search intervals was narrowed down to 4
steps, the quadratic interpolation was applied to three points with 4 steps
apart around the maximum to obtain the location of actual peak of focus
measure. In this way, it was proved to reduce the required image frames
as well as avoid the false search due to noise. As the focused step position
was found, the distance of the object from the camera was recorded. Fig.
5.2 shows some sample positions used in this search algorithm where the
object was found at focused position 117. This procedure was repeated
for many different distances of the object corresponding to roughly 5 step

intervals for the focused lens position.

Several objects used for this experiment are shown in Fig. 5.5a
to 5.5e. Each image used was the central 128x128 region. The focus
measure was the sum of square of Laplacian of image grey-level. The
relationship between the reciprocal of object distance 1/u versus the step
number X is almost linear and can be expressed as

L ux 4 (5.1)

[

where ¢« = 0.049 and 6 = —4.234 if we fit those data for focal length at
TELE mode end. If at WIDE mode end, the constant / was found -4.108.
This calibration data was used in finding the distance of object points
given the focused lens step number for the object points (see Fig. 5.3).
The experimental results only recorded the ranging distance from step

90 to step 170.
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5.3.2 Blur Parameter vs Focused Lens Step

The DFD used in our implementation is based on STM mentioned
in the previous chapter. In DFD, only one camera parameter, the lens
position (step number) was varied in acquiring the two needed images.
All other parameters (focal length and aperture diameter) were nearly
constant. In this case (o = 1 in Eq. 4.14) we find that a blur parameter
o9 (which is proportional to the diameter of blur circle) is linearly related
to a quantity G’ that can be computed from the two recorded images by:

_G/—52

09 = Qﬂ (5-2)

Note that ¢’ is considered here as the integrated version of STM rather
than the version in Eq. 4.30 [66]. The camera constant 5 in the above
equation is a function of the two camera parameter settings at which the
two images are recorded. It can be computed if the camera parameters
are known. Since they were not known, it was determined experimen-

tally as follows.

The DFD[66] was implemented with two images recorded at lens
positions of step 120 and 155. An object was placed at such a distance
that it was focused when the lens was at step 120. In this case the
blur parameter for the image recorded at step 120 is zero, but the blur
parameter o, for the image recorded at step 155 is —3. Therefore
is obtained directly by computing the square root of —G’ (a quantity
that can be computed from the two observed images) and the sign of 5

is negative (Note that in this case the sign of ' will be negative). This
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method yielded 5 = —2.0 for focal length at WIDE mode end and 5 = —4.0
at TELE mode end. 5 can also be computed by placing an object at a
distance corresponding to the focused lens position 155. In this case, the
blur parameter for the second image is zero, but that for the first image
is equal to 5. Therefore 3 can be estimated as the the negative value of
the square root of .

Another calibration table is needed that relates the blur parameter
of an object in the second image (recorded at step 155) to the focused
lens step number of the object. This table is created as follows. First
an object is placed at a given distance and the DFF method is used to
autofocus the object by a binary search for the maxima of a focus measure.
The lens step number that autofocuses the object is recorded. Then the
DFD method is applied and the blur parameter o, is calculated. This
procedure was repeated for several different objects at the same distance
and the average o, and the average focus step number were recorded.
This gives one entry of the calibration table. This procedure was repeated
for several different object distances at roughly regular intervals in terms
of focused lens step number (about 5). The gap between each entry in the
table were filled by linear interpolation with respect to lens step number

and blur parameter. The resulting data is shown in Fig. 5.4.
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Figure 5.4: Blur Parameter vs Focused Lens Step
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5.3.3 Thresholds vs System Noise

Both of DFF and DFD methods compute the depth based on a small
image window. When a image window does not have enough contrast
information, those methods are susceptible to noise leading to erroneous
results. There are two thresholds 7 and 7}, required for focus measure
in DFF and Laplacian image in DFD, respectively.

In order to estimate those two values, we placed an planar object
of near constant brightness (see Fig. 5.5f) at different focused distances
from the camera. The illumination was controlled about 500 Lux. The
focus measure operator, the sum of square of the Laplacian, was applied
on this image within many 16x16 non overlapping regions. The mean
of these regions was found to be 6.28 and the standard deviation from
this mean value was 0.45. Based on the confidence level of the Laplacian
focus measure defined in Chapter 2, a threshold of this mean plus three
times its standard deviation was chosen for reliable results (see Eq.
2.35). Therefore, we obtained

1M 2
v (Vo) 2 T (5:3)
where 7 = 8.63 used for each image ¢; in the region N,x/N; for one depth
estimate. Any focus measure below this value, the depth for that point
belongs to background.

In Chapter 3, we have given the expression for computing variance
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of focus measures. It can be seen that, by using a larger window size, T}
can be lowered resulting in more reliable depth estimates. However, a
larger window size will reduce the resolution of the depth-map. Hence
there is a trade off between window size for focus measure computation

and the resolution of the depth map.

The second threshold 7, is estimated for the two Laplacian images
used in STM. In Chapter 4, we have verified that the reliable depth
estimates depend on the high signal-to-noise ratios of the Laplacian
images. In this case, we took two blurred images ¢; and ¢, of low contrast
object at lens position 120 and 150. The mean value computed from
many 9x9 regions of sum of square of two Laplacian images was found
3.52 and the standard deviation from this mean value was 4.18. The
same definition as 7 which is the mean plus three times the standard

deviation, we obtained
JRE )
72 (Vo + V) =T (5.4)
2

where 7, = 16.1. The depth is not countable if the computed value is less
than 7,. Note that those thresholds were computed as focal length set
at WIDE mode end which usually are higher results than at TELE mode
end. We picked those higher values for using in any condition of focal

length as well as for both focused and defocused images.
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5.3.4 Other Considerations

The image magnification variation due to change in camera param-
eter settings for autofocusing is another important factor needing cali-
bration. This is because correspondence between different image regions
is needed between image frames recorded with different lens positions.
This facilitates comparison of focus measures computed in different im-
age frames to find the image frame in which a given image region is in
best focus. Several researchers have investigated the effects of magni-
fication change and proposed some solutions such as image warping or
telecentric optics [82, 83, 9, 79]. In our experiments, the approach of
detailed calibration to constant magnification image is described in [71],
which is based on spatial interpolation and resampling techniques.

If SVIS is used for stereo vision, calibration is needed to establish a
relation between object distance and the corresponding stereo disparity.
A careful calibration procedure for stereo ranging can also be found in

some literatures [19, 71, 29, 43].

5.4 The Integration of DFF and DFD

The integration of DFF and DFD for rapid passive autofocusing
and 3D shape recovery were implemented on the SVIS. The following
describes the details of this integration and shows some experimental

results.
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5.4.1 Autofocusing

In the chapter 3 we proposed the autofocusing algorithm based on
searching maximum focus measure among the image sequence. The
search procedure combines sequential search, binary search and quadratic
interpolation to minimize the lens motion and the computation time. In
general, this algorithm purely relies on image focus analysis (i.e. DFF)
and needs to process about 12 to 18 image frames in order to accomplish
autofocusing for a object.

The following an alternative autofocusing method by combining with
DFD algorithm is implemented. First DFD method is used to obtain an
estimated distance. This requires to process only 2 images. Then the
DFF autofocusing algorithm using binary search and quadratic interpo-
lation is applied within + 10 steps of the estimated position rather than
searching the whole lens position. This save image acquisition and pro-
cessing time of unnecessary image frames that correspond to focusing
objects far away from the estimated distance. The accuracy of ranging
obtained will be the same as that of DFF, but the required image frames
reduce to about 5 to 8.

The autofocusing experiments using DFD, DFF and a combined
method (i.e. DFD+DFF) were conducted on the 5 test objects (see Fig.
5.5 a-e). Only the center region of image is processed and the size of

region is 48x48. The object illumination was controlled at about 400
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Lux. The focal length of camera was set at condition of TELE mode end.
In addition, a look-up table associated with focal length at TELE mode
end for DFD is used. The experimental results are tabulated in Table
5.1. The first column of the table shows object distance. Columns 2 to
4 correspond to the results of DFD, DFF and DFD+DFF. Each column
with two subcolumns in the table shows the mean focus position and the
standard deviation in step number for 5 test objects. The last two rows
show the overall RMS error and required image number for each method,
respectively. Note that we use the results from DFF as a benchmark.
The calculation of the standard deviations for DFD and DFD+DFF were
respect to the mean value of DFF rather than the mean value of them-
selves. The RMS error for DFD is 3.14 steps out of about 70 steps. This
corresponds to about 4.48% RMS error in the lens position for autofocus-
ing. The RMS error for DFF and DFD+DFF methods are 0.66 and 0.94
steps out of 70 steps which correspond to about 0.94% and 1.34% RMS
errors in autofocusing, respectively. As expected, The combined method
maintains the similar accuracy to DFF but requires less image frames.
It is noted that the entry of DFD in the table has poorer performance
at far from camera position, which because two images acquired at lens
positions of step 120 and 155 become highly blurred. In this case the
results of ranging were unreliable so that DFF needs to search at least
within £ 10 steps of the estimated position in order to tolerate this un-
certainty. In fact, if the focused lens position of the object is between

at step 120 and at step 155, we found the combined method can further
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reduce the required images to only 5. That is, 2 defocused images using
in STM plus 3 images (with 4 or 5 steps apart) for quadratic interpolation
near that estimated position. In this way the refined result is still able

to maintain similar accuracy as the other.

5.4.2 3D Shape Recovery

First a rough depth-map is obtained using DFD[66]. One estimate
of depth is obtained in each image region of size 48 x 48. The two needed
images were recorded at lens steps 120 and 155. Four image frames
were time-averaged to reduce noise. The magnification of the images
were normalized using the magnification table. The DFD was applied to
images of size 432 x 432. Thus a coarse depth-map array of size 9 x 9 was
obtained. At this stage, the depths were expressed in terms of the lens
step number that focuses objects at that depth. In each image region,
the actual depth-map at higher resolutions was assumed to be within
+10 steps of the estimated depth-map step number. Using this initial
depth-map, a higher resolution depth-map of size 27 x 27 (one estimate
in 16 x 16 image region) was obtained using DFF. The lens step numbers
for which image frames needed to be recorded and processed in DFF
were determined using the following algorithm. The purpose of this
algorithm is to acquire and process only those image frames near the
estimated depth-map values. This avoids processing unnecessary image

frames in which all image regions are highly blurred.



The estimated depth values (in step numbers) is first quantized to
multiples of DEL (=1) steps. Then, for each quantized value s that occurs
in the depth-map, 26 + 1 (6 = 1) lens step positions at s + : x DEL for
i =0,%+1,%2,---, £numdel are marked. If any of these steps are outside
the range of minimum and maximum step positions, they are discarded.
Then image frames are recorded at each marked lens position. All images
are normalized with respect to the magnification corresponding to the
step position at which they are recorded. Then, in the resulting image
sequence, focus measures are computed in image regions of size 16 x
16. The step number where the focus measure is a maximum in each
image region is determined. These image regions with maximum focus
measures are synthesized to obtain a focused image of the entire scene.
Further, the maximum focus measure and the two focus measures in
the preceding image frame (DEL steps below) and the succeeding image
frame (DEL steps above) are taken. A local quadratic curve is fitted to
the three focus measures (the center one being the maximum) and the
position of the maximum of the curve is computed. This position is taken
as an improved estimate of the depth-map. If the focus measure for the
preceding or succeeding image frame is not available, then this last step
is not performed. From the previous experiments, DFF has roughly 1%
RMS errors. If the depth map is filtered with an median filter, we found
that the depth error can be reduced by a factor of 1/3.

Experiments were conducted on three of the objects— prism, cone

and inclined plane, and the results are presented here. The program
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parameters were set to operate well for objects in the depth range of
30cm. to 80 cm. from the camera. In the experiments, those objects
were placed about 60 cm distance from the camera. In general, the
magnification correction data obtained by calibration was sufficiently
accurate for DFF, but not for DFD. The results of DFD was satisfactory
at the center of the image where the effect of magnification change was
minimum, but the results were not satisfactory away from the center.
This was compensated by allowing for error in DFD and applying DFF in
a larger range than necessary, thus increasing the number of images and
computing used. It should be noted that shape of objects is obtained by
looking for changes in scene depth-map. Therefore the percentage error
in depth-map will be much less than that in shape. The focused image
and 3D shape of a prism recovered from DFD/DFF are shown in Figs.
5.6 and 5.7 as well as the results of a cone object are shown in Figs. 5.8
and 5.9. For inclined plane object, there are many regions with almost
constant intensity in the image. The reliable depth map is sparse and
lots of points belong to background after thresholding. If a high contrast
pattern is projected on the object, we obtain a much more dense and
reliable depth map. Results for the inclined plane object are shown in
Figs. 5.10 to 5.13. In general, each object takes about 40 seconds on the

Pentium PC for completing shape recovery tasks.
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Figure 5.5: Test Objects for Experiments



Object DFD DFF DFD+DFF

Distance (cm) mean | std. | mean | std. | mean | std.

26.3 162.00 | 3.55 | 165.00 | 0.63 | 164.60 | 0.89

30.8 152.00 | 1.66 | 152.00 | 0.50 | 151.80 | 0.58

37.4 141.20 | 1.48 | 141.00 | 1.09 | 141.00 | 0.89

49.2 129.20 | 1.82 | 129.80 | 0.75 | 129.60 | 0.75

62.8 120.00 | 2.78 | 118.20 | 0.40 | 118.00 | 0.66

85.3 107.60 | 4.15 | 110.60 | 0.49 | 110.80 | 0.77

130.6 106.40 | 4.27 | 103.00 | 0.00 | 103.20 | 0.45

270.5 95.19 | 3.85 | 94.40 | 0.80 | 95.80 | 1.87
RMS Error 3.14 0.66 0.94
Acquired Images 12-18 5-8

Table 5.1: Autofocusing results. The correct mean was taken to be the

mean of DFF when computing standard deviation for all three methods.
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Figure 5.6: Reconstructed Focused Image of
a Prizm Object
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Figure 5.7: Depth Map of the Prizm Object

Figure 5.8: Reconstructed Focused Image of
a Cone Object
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Figure 5.9: Depth Map of the Cone Object
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Figure 5.10: An Inclined Plane without

Figure 5.12: Reconstructed Focused Image of
Projected Pattern
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5.5 Conclusion

In this chapter, we integrated DFF and DFD methods for recovering
the 3D shape of objects. The integrated method has been implemented
on a vision system—SVIS— and the conceptual feasibility of integrating
DFD and DFF was demonstrated. The main advantage of the method is
the reduction in required image frames but retain the same accuracy as
DFF method. It is found that careful calibration of the camera system
with respect to several factors are very important in building a successful
vision system for integrating depth from defocus and focus. Details on

these calibration methods are presented.

In some vision systems, this method can be further combined with
stereo vision, because DFD and DFF methods are less accurate than
stereo vision in providing the depth-map of a scene. However, unlike
stereo vision, DFF and DFD do not suffer from the correspondence and
occlusion problems. It is well-known in stereo vision that the matching
process for correspondence is computationally intensive since all per-
missible values of stereo disparity need to be searched. In addition,
sometimes there is a possibility that no matching points are present be-
cause of occlusion. In order to simplify the stereo correspondence and
occlusion detection problems, DFD and DFF can provide a rough depth-

map to reduce the searching range of stereo disparity for correspondence
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matching. Besides, false matches due to occlusion are also reduced.
Therefore, stereopsis yields a more reliable and accurate ranging and
3D shape of objects. The detailed technique for integrating DFD and

DFF with stereo vision is described in [71].



Chapter 6

Summary, Conclusions and Future Research

6.1 Overview

The following three sections are provided in this chapter. Section
6.2 gives a summary of depth from focus and defocus methods which
describes their pros and cons. The conclusions based on our research
works are presented in the section 6.3 which outlines the contribution
of this dissertation. In section 6.4, we indicate some opportunities for

extensions and future research.
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6.2 Summary of Depth from Focus and De-

focus

The Depth from Focus (DFF) technique uses a search for the sharpest
focus position over a sequence of images taken at different lens focus
settings or camera positions. The main advantages of this technique as
compare to the others such as stereo vision, optical flow and shading,
there is no correspondence and occlusion problems involved. Since the
depthislocally calculated in small image region, the computational costs
incurred in DFF are lower than the others. The further speedup can be
utilized through parallel processing and hardware implementation. In
addition, DFF working on single imaging system is also suitable for some
applications such as microscope. Consequently, DFF can serve a valuable
method in machine vision for depth recovery. However, the limitation of
this technique was that it required the large number of images obtained
sequentially by adjusting the lens setting. During the image acquisition
and process time, there is no scene motion permitted. It is then difficult

to apply for moving objects or real-time applications.

Alternatively, the Depth from Defocus (DFD) approach attempts to
model the blurring process in a local image region as a function of depth.
Two images are taken with a difference in camera parameters, resulting
in a change in blur over small corresponding regions in the two images.
The depth is then measured from the blur change. In general, DFD has
most of advantages of DFF. The potential advantage of DFD over DFF
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is speed, because image acquisition time is the eventual limiting factor.
For a general scene, however, DFF has greater applicability, since the
only assumption made about the blurring process is that a quantitative
measure of the defocus can be minimized at the position of sharpest
focus. This reveals the problem of DFD which is less accurate than DFF

for most of cases.

6.3 Conclusions

In this dissertation, we have investigated image focus and defocus
analysis for passive autofocusing and three-dimensional shape recovery.
Our research so far has addressed the question of how to select the best
focus measure for autofocusing in the presence of noise. We have shown
that a class of focus measures (those based on summing the absolute
values of image derivatives) used by many researchers in the past are
unsound. These focus measures should not be used since the advantage
of computational savings attributed to them is marginal and is clearly
outweighed by their unsoundness. In the absence of application specific
information, we have argued that the Laplacian focus measure filter
should be used. The properties of the Laplacian filter and its advantages
have been investigated. An automated microscope shape-from-focus sys-
tem has been developed. The system has been used to recover dense and

accurate depth maps for several microscopic objects. The system is ap-
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plicable to variety of industrial inspection tasks.

We have developed a model for focus measure filters, and provided a
theoretical noise sensitivity analysis of these filters. Explicit expressions
have been derived for the mean and variance of the focus measures
computed using the filters. Based on this analysis, we have defined
a metric, the ARMS error, for comparing the relative performance of
different focus measures. ARMS error is useful in selecting the best
focus measure from a given set of focus measures. We have verified our
theoretical results experimentally. The experiments have included those

using an actual camera system and those using computer simulated data.

Noise sensitivity analysis for depth from defocus using Spatial-
Domain Convolution/Deconvolution Transform Methods (STM) is also
given. Thorough theoretical treatment is provided for the accuracy check
of STM in the presence of noise which has been only observed in exper-
imental. We derived explicit expressions using relationships among the
depth, camera parameters and the amount of blurring in images for the
root-mean-square (RMS) error in autofocusing. The analysis is helpful
in presenting the depth errors for a given set of images and noise char-
acteristics. We verified the theory using both synthetic scenes and real
scenes, and found that the experimental results confirm the theoretical
results. Note that the version of STM considered here is a little different
than the one in Surya’s thesis [74]. No integration and mode selection

are done here.

The DFD and the DFF methods have been combined to obtain the
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speed advantage of DFD and the accuracy of DFF. We first used DFD to
obtain a rough estimate of distance, then DFF was applied in a narrow
interval around this estimated distance by acquiring a few more images
and searching for the focus distance. An efficient camera calibration
procedures was developed to obtain camera constants such as 5 and look-
up tables to relate o, to object distance v and lens position s for focusing
the object. We have presented the experimental results obtained from

SVIS camera system.

6.4 Future Research

Some of the problems extended from the research work that we sug-

gest as future research are outlined next.

1. Optimal Focus Measure Solution

Our work so far provides a method for selecting the best focus mea-
sure filter from a given set of focus measure filters. The best filter de-
pends both on image content and noise characteristics. At present, there
is no known method to derive the best focus measure filter for a given se-
quence of noisy blurred images. Although the Laplacian has been shown
to be a good filter, it should be possible to design a better filter using

additional information in the form of the given sequence of noisy blurred
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image. For example the noisy image could be first smoothed to reduce
noise and then a focus measure filter could be applied. The parameters of
the smoothing filter need to be determined. The operations of smoothing

and applying the focus measure filter could be combined.

2. Different Models for ARMS Error

Our expression for ARMS error is based on a local quadratic model
for the focus measure. It may be useful to explore other models, such
as a Gaussian, or a model that is dynamically determined based on the
blurred images processed until the current moment. The obtained solu-
tion will be helpful to apply our analysis of autofocusing method to the

shape from focus and focused image reconstruction problem.

3. Error Sensitivity Analysis of Defocus Module

Error sensitivity analysis of autofocusing methods based on defocus
module using Fourier frequency domain approach is an important prob-
lem. Our analysis has so far been restricted to the method based on
spatial domain approach (i.e. STM). Preliminary analysis and experi-
mental results about this issue are presented in [81]. A more thorough
error analysis, both theoretical and experimental, will be our interest.
The various noise sources such as MTF data, camera parameters, CCD

array need to be modeled.
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4. Speed Up Implementation

Development of parallel algorithms for the image focus and defocus
analysis are of interest in real-time applications such as robot/vehicle
navigation or machine vision inspection. Further, just as special purpose
ASIC and DSP hardware have been investigated by many researchers for
edge detection, stereo vision and optical flow computation [16, 27,47, 12],
we would like to explore hardware implementation of the DFF and DFD

algorithms for fast 3D shape and focused image recovery.

5. Optimal Camera System Design

The accuracy of autofocusing and 3D shape recovery using the DFF
method depends on many things such as the camera parameters, image
content, and noise characteristics. For example, smaller focal length
lenses (e.g. microscope lenses) are useful for depth recovery at shorter
ranges and longer focal length lenses (e.g. binocular/telescope lenses)
are useful at longer ranges. For a given specifications on the range of
operation and accuracy of depth recovery, a camera system with some
particular values for the camera parameters performs optimally. It is
important to develop a method for determining the parameters of such a
camera system, taking into account the available technology (e.g. CCD

pixel size).
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6. Stereo Based Microscope System

In current microscope system, we only use image focus analysis
based on single lens configuration for 3D shape recovery. The similar
concept on SVIS system using a single camera for stereo vision can be
implemented on microscope system. We can use a stepper motor mounted
on a translational stage of microscope to drive the stage with a linear
motion on X-Y plane. The camera is still mounted such that its optical
axis is perpendicular to linear motion of the stage. The right and left
images for stereo disparity analysis are obtained by moving the stage to
different positions and recording images. We are interested in integrat-
ing the stereo vision with DFF and DFD methods to provide fast and

accurate 3D shape measurement on microscope system.

145



Appendix A

Related Derivations in Chapter 3

A.1 Variance of Focus Measures

The term E{+?2 ..} can be shown to be equal to

NMMMM(4

Ly yyyyy Haw)E{n<ml+a,nl+m

(2N F 1) i mams iy e tae ta e

n(my + iz,n1 + J2)n(mae + 13,12 + Js)n(ma + ia,n2 + ja) } (A.1)
The above expression can be evaluated by considering the following
cases.

Case 1: Among the four factors involving 7, at least one of them is
different from the other three. In this case the entire term evaluates to
Zero.

Case 2: All the four factors involving  are the same. Here the

conditions C; and C, will both true where

Cr ot (ir=1i2) & (j1 = J2) & (13 = i4) & (J5 = J4) (A.2)
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Cy i (me=my+i1—13) & (n2 =n1+j1 — Js3) (A.3)

Therefore, the term becomes

E{n4} N M M

Z Z Z Z17]1 l37j3)
1,71 3,73

(2N+1)

B E{n4} N M 2

- a3 (&)

_ M (A4)
(2N +1)

Case 3: Any two pairs among the four factors involving 5 are equal
but not all four are equal. Here we consider two subcases.
Case (a): Condition (' is true and condition C; is false. In this

case we get

2
] (A.5)
Case (b): Define conditions
C3 : (my 401 = mg +13) & (n1 + j1 = ng + J3)
& (my+ia=mg+14) & (N1 + Ja =n2+ ju) (A.6)
Cy : (my+ i1 = mg+14) & (01 + 1 = ng + Ja)
& (my+ia=mg+13) & (N + Ja =n2+ Jjs) (A.7)
From the above conditions we deduce respectively

Cs (i1 — 13 — iy — i4) & (]1 —J3=1J2 _j4) (A.8)
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Ce & (i1 —ia =12 —1i3) & (j1 — Ja = J2 — J3) (A.9)
Let Q be a boolean variable with value 1 if the following condition is true

and zero otherwise:
@ :: (C5 OR Cg) & NOT ¢4 (A.10)

In this case we obtain
o M M M M 4
— Z Z Z Z Q - (H G(ik,jk)) (A.11)
2,J2 13,73 4,74

N+ 1) o Py

Now consider

4 N N
W > Z (1, 11 ) F (12, m) E{N (my, 0 )N (ma, n2)}

N N M M

= Z Z Z ZF my, ny ) F(mg, ng)a(i, ji)a(iz, ja)

(2N —I_ 1 mi,M1 M2,12 11 ]1 i ]2
E{n(m1 +i1,n1 + ji)n(ma + iz, na + j2)} (A.12)
The term involving 7 is non zero only when m, + i, = my + 7, and

ni+ 71 = ny+72. Introducing the change of variables m = m+1i; = my+1,
andn = ny+j; = natje for —2(M+N)—1 < m,n < 2(M+N)+1, therefore
we get

do 2 M4+N M

(2N + 1 myn | 4,0 12,72

Ao 2 M+N

= >I<F 2
(2N—|—14; (m,n)]

Ao 2 M+N

= 4 Z m,n)]2

(2N+1 man
402 M+N

= ZF'an

N+ &
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where * represents the convolution operator and

Combining all the results from eqs. (3.45, A.4, A.5, A.11 and A.13),

we get
A2E 4 A2 4 4
Var(y) = APl Ay On
2N +1)" (2N+1)° (2N+1)
SDIDIDINE (H )) b (A.16)
Zk?jk + 7”,7“ nal .
11,71 12,72 13,73 t4,]4 k=1 (2N + 1)2 !
where
M+N
’}/;ignal (2N—|—1 2 Z (A-17)

In the above equation, the first three terms do not depend on the image
signal. They can be computed and prestored. Among these three terms,
the first two can be computed manually, but the third term may need a
small computer program to evaluate. The last term in the above equa-
tion depends on the image being processed. Exact computation of this
term requires knowledge of the noise-free image which is not possible.
However the value of the term can be approximated using the noisy im-
age ¢g(m,n). The approximation is valid for high signal to noise ratio.
Therefore we have

AR} A o

.

2N +1)2 (2N +1)° + (2N + 1)? %

Var{y} =~

M M M M do 2 M+N 5
>33 30 (I atiein) + Gy e 2 (Alkstonn)
11,01 12,02 13,3 14,74 k=1 (2N+1 m,n

(A.18)
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A.2 Gradient Focus Measure

The accurate derivation for the variance of focus measure using
gradient magnitude squared filter should consider a cross item generated
through x direction and y direction. If we start with our definition from
equation (3.37), the total focus measure v would be sum of along x-axis

7. and y axis v, components and it becomes:

Y= Vet Yy
= s nx F
Vse T (2N—|—1 Z (m, n)Nz(m,n)
+ Yoy + Yy + 2N—|—1 ZF (m, n)N,(m,n) (A.19)

where the suffix sr and nax mean the focus measure component con-

tributed in signal and noise along x axis separately as so do sy and ny.
If the noise characteristics are the same in both of direction, the

expected value of focus measure in the equation (3.47) is able to be

applied here as:

E{’V} = Yso T Vsy + 402 (A.20)
However, a cross item appear as we take square to both of v and
E{~v}. If we define:

N, = (2N—|—1 ZF m,n)Nz(m,n) (A.21)

as well as

F,N, = ZF m,n)N,(m,n) (A.22)

(2N+1
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and substituting to eq. (A.19), then the variance will be written from eq.

(3.48) as:

Var{y} =Var{y.} + Var{y,} + Var{y.,}
2 2
= B{(sx + 202 + FN,) 4 (7 + 202 + N,
+2 (Yo + 202 + o) (7ay + 202 + PN} —

(o +202) "+ (g +202)" 4+ 2 (100 + 207) (7, + 207)} (A.23)

where
Var{s,} = E{(1e + 202 + FN,) ) = (1 4 202) (A.24)

and

Var{z,} = E{ (7, +20% + F,N,) ) = (30 + 202) (A.25)

The Var{~,} and the Var{y,} are exactly same as we derived in egs.

(3.55) and (3.58). Thus, the Var{y.,} is a cross term and equals to:

2B{ (Yo + 202 + o) (1ay + 202 + N} = 2 (70 + 202) (7 + 202)
(A.26)
Because of F{N,} = E{N,} = 0, the above equation can be simplified

and expanded as:

Var{’yxy} = ZE{FNFNy}

B (2N.|_1 (2N +1)* Z Z w(ma, n) Fy(ma, na) E{Nz(my, n1)Ny(ma, na)}

N M M

= Toar a4 Z Z Z Z al’ Zl ]1 ay Z2 ]Z)Fl’(mlvnl)Fy(m?vn?)
(2N —I_ 1) m1,m1 M2,12 11,51 12,]2

E{n(ml+il,nl +j31)n(m2+4:2,n2+ j2)} (A.27)



The term E{n(ml +:1,nl + jl)np(m2 +:2,n2 + j2)} is non zero only when
m:m1—|—i1 :m2+i2 andn:n1+j1 :n2+]2for—2(M+N)—1 <
m,n < 2(M + N) + 1, therefore we have

g 2 MZ-I—:N Z
Var{v.,} = a (11, 1) Fy(m —il,n — j1)| X
(2N+1 e o

M
[Z ay(i2,52)Fy(m —42,n — ]2)]
12,42

802 M+N

= 74 Z axlj)*F(m n)][ay(i,j)*Fy(M,N)]

2N+ 1) o
S 2 M+N
= N & i) e S A )« Sl
(A.28)
where
Al’(lvj) = al’(ivj)*al’(_iv_j) (A29)
Ay(lvj) = Cly(i,j)*ay(—i,—j) (ASO)

, they are the same as Eq. (3.56) and Eq. (3.59) respectively.

A.3 Another Approach for RMS Error in DFF

In chapter 3, we proposed two metrics - AUM and ARMS error for
evaluating the performance of focus measures. During this research,
we investigated another approach based on the density function of focus
measure itself to compute RMS error in autofocusing. The theory is

derived as follows:
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Since autofocusing is done by moving the lens with respect to the
image detector in a narrow range, the distance from focal length to image
detector can be discretized as lens positions sg, s(, -+, sy. At each lens
position, a focus measure +,, is associated with a probability density
function P(~,,) with an expected value 7, and a standard deviation o,,. If
we assume the density function of focus measure is a normal distribution

for any lens positions, it can be expressed as:

1 s; s 2
P(’}/Sz) = o \/ﬁ eXp{—4(7 20_27? ) } (ASl)

For a particular position sy, it is possible to be the focus position only

if it has a maximum focus measure as compared to focus measures at all
of lens positions. Therefore, the probability of maximum focus measure

location can be written as:

P(sx = focus position)

= PO(’}/S;@ > 750)P1(75k > 751)"'PN(75k > 75N)
SN

= H Pi(’VSk > 751‘) (A.32)

si=s0,5#5k

Consider one function with two random variables ~,, and ~,,, we

obtain another random variable =
Pz >0) = Pivs, > 7s:) (A.33)

where

z = ")/Sk — "}/Si (A.34)

If focus measure computed at two different position is independent,

then the joint density function of > is equal to the convolution of the
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density function P(v;,) and P(y;,) Hence, we can obtain

1 &0 (Z‘|’75‘ — s )2 (75' _775‘)2
P = [ e Bl ey
(2) 2r05,05, - exp{ 202 202 b 2 K
(A.35)
the above integral can be simplified as:
_ 1 (= —n)?
P.(z) = Y exp{— 52 } (A.36)
where
= Ms, — s

o = \Jol +ol (A.37)

The density function of z shows itself still a normal distribution with
mean n and standard deviation o. Thus, the probability for all = > 0 can

be integrated from its density function.
P(z>0) = / P.(z)d=
0

. exp{—E= 1y g (A.38)

210 202
Applying the Gaussian function integral [44] and changing with vari-
ables, it yields

Plz>0) = G(1)

775 _775‘
= (G(————= (A.39)
Sy

where the function G is expressed in terms of the error function defined

as

1 z y2
erf(z) = E/O GXP{—E}d?J

— G(a) - % (A.40)
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then equation ( A.32) can be obtained

P(sk = focus position) = ] G(M) (A.41)

2 2
5{=50,5;F5k \/ Usk + 0-51'

Consequently, the expected value and variance can be computed

from the density function P(sy)

SN [ SN
Nsi — Tsq
Els) = 5 X G
SkZZ:So L 51:5012#% \/ Uzk + Uzz‘
i | . ﬁ Ns, = Tls,
Var{si} = (55 — §) x G s )| (A42)
sp=s0 | 5{=50,5;F5k \/ O-LZk + O-Zi

where I/{sy} = S. The RMS error in autofocusing derived here is helpful
to select the most accurate focus measure from all of the focus measures
in a set. However, the above equation needs to be computed by obtaining
the mean and standard deviation of focus measures at all of lens posi-
tions. For practical usage, it is valid to approximate the above equation
by using the range from +5 steps to -5 steps of maximum focus mea-
sure position. As compared to AUM and ARMS error, this approach is

obviously more complex and more computational.

A4 Wave Optics for PSF

The PSF used in our simulation experiment is based on a formula
from the Optical Transfer Function (OTF) of a defocused optical system

derived by Hopkins in his classic paper [20]. A simplification version of
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Hopkins’ OTF is defined as:

Hip,A) = % / T cos [2rAp(t — p)] dt (A.43)

P

where the focus defect A related to camera parameter settings is defined

as:
2
Ag@(l_l_l) (A.44)

where ) is the wavelength of the incident light. The corresponding PSF,
h(r,A), can be obtained by the inverse Fourier-Bessel Transform given
by

h(r.2) =27 [ " H(p, A)Jo(2mpr) pdp (A.45)

where J, is the Zeroth Order Bessel function of the first kind and r is the
reduced radial distance on the image detector plane.

A comparative study of PSF between wave optics and geometric
optics has been carried out earlier by Lee [33]. Note that here the PSF
using wave optics is slightly different with Lu who implemented the

model in the IDS [64].
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Appendix B

Related Derivations in Chapter 4

B.1 The Variance of STM

In this section we discuss the derivation of Eq (4.28) by simplifying
Eq (4.27). Let the smoothing filter L, and the Laplacian filter L, both
be of size (2M + 1)x(2M + 1). Let the coefficients of the two filters be

ao(7,7) and as(i, j) respectively. Also, let - denote Y- |, > . Then

filtering with L, and L, are convolution operations defined respectively

by

M

mer Lo = S aoli,)me(m —in — ) (B.1)
]
M

mer Ly = Y as(i,f)me(m —in — ) (B.2)

%)
There are three terms— F{P"?}, E{Q"*} and E{P'Q’}- that need to
be discussed in Eq (4.27). We start from the term E{P’?}. Using Egs.
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(4.20, 4.22) we obtain

B{P?} = BE{(p*L,—n*L,)"}

= B{(m*L)"} + E{(n2* L)'} = 2E{(m * Lo) (2 * Lo)}

(B.3)
In the above equation, the first term can be written as
M M
E{(m * L,) Z Z (41, 71 )ao(iz, Jo) E{mi(m—ir,n—ji)m(m—iz,n—j2)}
1,71 12,02
(B.4)

If ¢y # iy or j; # jo, then, since noise in different pixels are independent

and zero mean,

E{ni(m+w1,n+ ji)ni(m + 19,0+ j2)}
= E{m(m+i,n+ ) E{m(m +12,n + j2)}

= 0 (B.5)

However, if iy = 5, and j; = j,, then

E{n*(m—ii,n—h)} = o} (B.6)
Therefore, we get
M
E{(n* Lo)*} = > ag(i,j)on (B.7)

0]
Similarly, for the second term E{(1, * L,)’} in Eq (B.3), we obtain the

same result as above. For the remaining term we have

2E{(m = L) (n2* Lo)} = 2(E{m} = L) (E{n2} * L,) =0 (B.8)
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Thus, we obtain

M
E{P"?} =23 aj(i,j)o; (B.9)

The derivation for £{Q)"*} is similar to that for £{P"*} above, and there-

fore we have
M
B(Q?) = 23 i j)o? (8B.10)
0]

Now consider the term EF{P'Q)’'},

E{P'Q'y = E{(m*Lo—n2% L) (m*La+mny*La)}
= E{(n* Lo) (m* L2)} + E{(n1 * Lo) (2 * L2)}

—E{(n2 % L) (m * La)} — E{(n2 % L) (n2 % L)} (B.11)

Using arguments similar to those in simplifying Eqs. (B.4) and (B.8), we
obtain

E{(m * Lo) (i + L)} = E{(n2 * L) (n2 % L2)} =Y ao(t, j)az(i, j)or (B.12)

27]

as well as

E{(m * Lo) (n2 % La)} = E{(n2 % Lo) (i + Ly)} =0 (B.13)

All the terms cancel out or vanish and result in £{P'Q'} to be zero.
Therefore, combining all the results from Eqgs. (B.9, B.10 and B.11), we

can rewrite Eq (4.27) as

128 M 128P° M
Var{G}z@—faiZa%(i,j)—l- S i) B9
0]

]
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