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ABSTRACT

Depth-from-Defocus (DFD) using the Spatial-Domain Convolution/Deconvolution Transform Method
(STM) is a useful technique for 3D vision. STM involves simple local operations in the spatial domain on
only two images recorded with different camera parameters (e.g. by changing lens position or changing
aperture diameter). In this paper we provide a theoretical treatment of the noise sensitivity analysis of
STM and verify the theoretical results with experiments. This fills an important gap in the current re-
search literature wherein the noise sensitivity analysis of STM is limited to experimental observations.
Given the image and noise characteristics, here we derive an expression for the Root Mean Square
(RMS) error in lens lens position for focusing an object. This RMS error is useful in estimating the
uncertainty in depth obtained by STM. We present the results of computer simulation experiments for
different noise levels. The experiments validate the theoretical results.
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1 Introduction

Three-dimensional (3D) shape recovery through image defocus analysis has been called Depth-from-
Defocus (DFD). In DFD methods, unlike Depth-from-Focus (DFF) methods, it is not required to focus
an object in order to find the distance of the object. DFD has been investigated by many researchers.®"
In image defocus analysis or DFD, a few images (about 2-3) of a 3D scene are acquired by a camera
with different degrees of defocus. The distance of an object is directly estimated from a measure of the
level of defocus in the images. DFD methods do not involve searching for camera parameters (e.g. lens
position or focal length) in contrast with Depth-from-Focus methods which require a large number of
images recorded with different camera parameters, and searching for the parameters that result in the
sharpest focused image.® !

In DFD, a method based on a new Spatial Domain Convolution/Deconvolution Transform was
proposed by Subbarao and Surya.”'* This method, named S Transform Method or STM, requires
only two images taken with different camera parameters such as lens position, focal length and aperture
diameter. Both images can be arbitrarily blurred and neither of them needs to be a focused image. STM
is faster in comparison with DFF methods, but less accurate. Earlier, we have provided a theoretical
and experimental treatment of noise sensitivity of DFF methods.'! In this paper we address the noise
sensitivity of the DFD approach based on STM. A theoretical treatment of this problem is presented,
and a method is developed for estimating the Root-Mean Square (RMS) error for STM. In the existing
literature, noise sensitivity of DFD methods is limited to experimental observations only. In this context,
the theory developed in this paper is new, and it facilitates estimating errors under various levels of noise
and image contrast (as measured by its Laplacian). In order to verify our theory easily and precisely, we
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Figure 1: Image Formation in a Convex Lens

use sampled images of a blurred step edge and a cubic polynomial function in simulation experiments.
In our analysis, random noise is assumed to be additive, zero-mean, and uncorrelated. Our analysis
shows that the RMS error of STM in terms of the focused lens position of an object is linearly related
to the noise standard deviation.

Next section describes the camera model. Section 3 provides a summary of STM approach to DFD.
The noise sensitivity analysis of STM is presented in Section 4, and experimental results in Section 5.

2 Camera Model and Defocused Image

The image formation in a camera with variable camera parameters (s, f, D) is shown in Fig. 1. Here
s specifies the lens position, f the focal length, and D the aperture diameter. The camera parameter
setting is denoted by e; where e; = (s;, fi, D;) is a vector representing the i-th camera parameter setting.
The relationship between the focused lens position v, the focal length of the lens f, and the distance of
the object u, is given by the well-known lens formula
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According to paraxial geometric optics, it can be shown using the lens formula and similar triangles in
Fig. 1 that the radius R of the blur circle is
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where u is the object distance. Image magnification varies with the distance s between the lens and the
image detector in Fig. 1. Therefore the magnification is normalized corresponding to some standard
distance sg. After this normalization, the blur circle radius R’ becomes

v- 2251l



The blur circle corresponds to the Point Spread Function (PSF) of the camera. Let the PSF be denoted
by h(x,y). If the object surface is approximated to be planar and parallel to the image detector plane
in a small image region, then the observed image g(z,y) is the convolution of the focused image f(z,y)
with the PSF h(z,y). Denoting the convolution operation by %, we can write:

g(z,y) = h(z,y) * f(z,y) (4)

Circularly symmetric PSFs are parameterized in terms of a spread parameter o defined by

o= [T e de dy (5)

It can be shown that o is related to the blur circle radius R’ by
R/

o =
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For two camera parameter settings eq, ey, we obtain from Eqs. (3) and (6):
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Eliminating 1/u from the above two relations we obtain
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3 STM: A Spatial Domain Approach to Depth-from-Defocus

In this section we provide a very brief summary of STM. Full details of this method can be found
in.”!2 A new spatial-domain convolution/deconvolution transform (S Transform) is defined in.!* The
definition of the transform for the general case is quite complicated. However, a special case of the
transform suffices for image defocus analysis. This case turns out to be particularly simple.

For two-dimensional images, under a local cubic polynomial model, the transform is defined as
follows. If a focused image f is blurred by convolution with a circularly symmetric PSF £ to result in
the blurred image ¢, then g is the forward S transform of f with respect to the kernel function h, and
it is given by:

2
o
g(w,y)zf(x,y)—l—ZVQf(x,y) (9)
where /2 is the Laplacian operator.

The inverse S transform of g with respect to the moment vector (1,02/2) is equal to f and it is

defined as )
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Therefore, if two blurred images g1 and gy are acquired with different camera parameter settings e; and
ey corresponding to blur parameters oy and o5, we obtain
ot o3 2
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Eliminating f(z,y) from the above two relations, and using Eq. (8), and the fact that 7%g; = V2ge
(which can be proved using Eq. (9) where f(x,y) is a cubic polynomial), we obtain

8(g1 — 92)
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(o7 = Loy + 2030, + 57 = V201 + 2o (12)

where o and  are as defined in the previous section.

In the above equation o9 is the only unknown. The equation is quadratic and therefore o5 is easily
obtained by solving it. The two solutions result in a two-fold ambiguity. Methods for resolving this
ambiguity are discussed in.>7!1213 From the solution for oy, the distance u of the object is obtained
from Eq. (7).

The above discussion illustrates the conceptual feasibility of determining distance from two defocused
images. Repeating the above procedure in all image neighborhoods, the depth-map of an entire scene
can be obtained from only two blurred images in parallel.

4 Noise Sensitivity Analysis of STM

In this section we derive expressions for the expected value (mean) and variance of the focused lens
position v in the lens formula (Fig. 1) for STM. The mean and variance will be expressed in terms of
the camera parameters e; and the noise variance o2. These expressions are useful in computing the root
mean square (RMS) error for STM in estimating the focused lens position v due to noise. We start the
derivation from the right hand side of Eq. (12).

Let g1 be the blurred noise free discrete images, n; be the additive noise for k£ = 1, 2. The two noisy
blurred digital images recorded by the camera are

G = 9k + Mk fork=1,2 (13)

The noise 7, at different pixels are assumed to be independent, identically distributed (i.i.d.) random
variables with zero mean and standard deviation o,,.

In STM the assumption of local cubic polynomial model for the focused image is relaxed by using a
set of discrete image smoothing filters. The recorded images are convolved with a smoothing kernel L,
in this case as

g%k =g, * L, (14)

where * denotes convolution. Another filter L is used for estimating the second order image derivatives
for computing the Laplacian of the image. Denoting the image Laplacian by g%’k, we have

g%’k = gp, * L2 (15)

Using Eqs. (13), (14) and (15), we can rewrite the right hand side of Eq. (12) as

/ /
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In the above equation, there are two components in both the numerator and the denominator where
one component depends on image signal only (but not noise) and the other component on noise only.
Let P and () denote the numerator and the denominator respectively in the above equation, and let

P=P+ P and Q =Q+ Q’, where

F = gl*Lo_,QZ*Lo (18)
Pl = 771*LO—772*LO (19)
@ = gl*L2—|—gg*L2 (20)
Q/ = m* L2 —|— 2 * L2 (21)
Now we can write
P P+ P
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Assuming @ > Q' and P Q > P’ Q' (which will be true when the signal-to-noise ratio is sufficiently
large), we obtain

G ~ 8%(1+%—%) (23)

Note that we cannot assume that P > P’ because, the two images may have similar blur level although
they correspond to quite different camera parameter settings, and therefore P may be close to zero.

Now the expected value of GG is

E{G}—8@+ QE{P}— — 5P pQn) (24)

Since we assume 7, to be zero mean, the last two terms of the above equation will vanish. (Note that
the expectation operator F is linear and commutes with summation.) Therefore we obtain

E{G} = 8% (25)

This result shows that the expected value E{G} depends only on the signal, but not noise.

Now we consider the variance of G. Using Eqs (23) and (25), and noting that E{P'} = E{Q'} =0,
we obtain

Var{G} = E{G*} —(B{G})’
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In the Appendix, it is shown that the term E{P'Q’} vanishes, and the term E{P?} and E{Q"?} will
depend on the standard deviation o, of the noise and the coefficients of the filters. Denoting the
coefficients of Lg filter by ag(¢,7) and the coefficients of Lj filter by az(¢, ), we obtain

Var{G)} = Ac? (27)
where " o w
128 . 128 P .
A= =D ad(i )+ —— > a3(i.j) (28)
Q i Q%
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We see that A is independent of noise and therefore Var((G) is proportional to noise variance o;;.

Next we consider the left hand side of Eq (12). We limit our analysis to the case where the aperture
diameter is not changed (i.e. Dy = D3), but the lens position and/or the focal length are changed (i.e.
fi # f2 and/or s # s3). In this case, the quadratic equation reduces to a linear equation because
a = 1.0. Therefore we get the unique solution:
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(29)
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From Eq (7) and the lens formula, we derive an approximate linear expression for focused lens

position v:
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where we assumed syv & s. This approximation is valid for most camera systems in machine vision.

Now substituting for oy using the above equation into Eq. (29), we obtain

_ _zﬁso(G Jé; Dsz)
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where Y Y
. 280 . 250ﬁ
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B and C depend only on the camera parameters. Thus, the expected value and the variance of v are
obtained by combining Eqs. (27) and (31) as:

E{v} = 88% +C and Var{v} = AB%? (33)

The above equations show that the standard deviation of focused lens position v is linearly related to
the standard deviation of noise. Given the noise standard deviation o,, the camera parameters, and
the defocused images, we can directly compute the RMS error for STM using the above formula. In
addition, we can use this equation to select pixels with good signal-to-noise ratio in order to obtain
reliable depth estimates.



5 Experiments

The validity of Eq. (33) for the expected value and variance of the focused lens position v was verified
through simulation experiments. The experiments were carried out for two objects, one a step edge
and another a cubic polynomial. The blurred images of the test objects were obtained by simulating
a camera system similar to the one used in the original implementation of STM reported in.” The
parameters of the camera system were— focal length 35 mm, F-number 4, and pixel (CCD) size 0.013
mm X 0.013 mm. The distance s (see Fig. 1) between the lens and the image detector was assumed to
be varied by a stepper motor with each step corresponding to a displacement of 0.030 mm. The distance
s and the focused lens position v are expressed in terms of the step number of the stepper motor with
step 0 corresponding a distance of focal length f. Therefore when the lens was at step 0, objects at
infinity were focused on the image detector and at step 90 objects at about 49 cm were focused. For
convenience, we specify the distance of objects in terms of the lens step number for which it is in focus.

In the first experiment, we used a step function as an input object (Fig. 2). A vertically oriented
step edge is defined as

A forz >0
flz,y)=4 222 forz=0 (34)
B forz <0

where A and B represent the uniform brightness for two regions. We chose A = 176 and B = 80 and
an image of size 64 x 64 in our experiment. The edge is a vertical line located in the middle of the
image. For a given distance of this object from the camera, the corresponding blur circle radius R can be
calculated using the camera parameters. Next the blurred image sensed by the camera can be computed
by convolving the focused image with the point spread function corresponding to a blur circle radius of
R. In the case of a step edge, as an alternative to numerical convolution, an analytical expression can
be obtained for the blurred image and the expression can be evaluated and sampled at discrete points.
This latter approach was followed in our experiments. It can be shown! that the defocused image of

the step edge defined above will be!:
1_|_1 ,_1<x)+x . <$)2
—+ — [ sin — —/1-=
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where R is the radius of the blur circle. Two defocused images g1 and g, were computed for two different
lens positions of step number 10 and 40 respectively (all other camera parameters were left unchanged).
A zero-mean Gaussian random noise was then added to both defocused images ¢; and g5.

g(z,y)= B+ (A— B) for |z| < R (35)

According to Eq. (29) we only need to compute the value of o3 at one pixel (z,y) in the image to
obtain an estimate of the distance. This pixel should be chosen such that it is blurred in both ¢ and
g2 and the signal to noise ratio is sufficiently high in both g; and g, as required by Eq. (23). Also the
images should be such that their Laplacians should be roughly the same in order for the local cubic
polynomial model assumption used by STM to be applicable. Further the degree of blur should not be
too high in either of the two images (the blur circle diameter should not exceed about 12 pixels) so that
the error due to the image overlap problem” remains low. In the experiments, when one of the image
was blurred too much, then a third image g3 with a lower level of blur was used in place of the highly
blurred image. More specifically, the images ¢; and ¢, were computed for lens position of step 10 and
40 respectively. When the focused position v predicted by these two images was more than step 50,
then g; was considered to be blurred too much and therefore a third image gs corresponding to lens



position at step 70 was computed and used. Fig. 2 shows three defocused images for lens positions at
steps 10, 40 and 70, respectively when the object focused position was at step 0. The corresponding
widths of the blur edge for the three images were 6, 24 and 40 pixels respectively (Fig. 4).

We compute GG in Eq. (12) from two defocused images, and the camera constant 3 is computed from
a knowledge of the camera parameters. Then an estimate of the focused lens position v is calculated
from Eq. (31). This procedure for estimating distance v is repeated 20 times at a given noise level
and camera parameter setting. The experimental mean and standard deviation of v are calculated from
these 20 trials. The theoretical mean and standard deviation of v is computed based on Eq. (33). Table
1, 2 and 3 show the results of the experimental and theoretical computations at three noise levels for
various distances of the object (from focused position of step 0 to step 90). These tables also show for
each case the signal-to-noise ratio defined by

Q’ )
SNR = 10 log (7 (36)
PALSN, Q7

where @ and ()’; are as defined in Eqs (20) and (21). A comparison of results in the tables shows that
the experimental and theoretical results are in close agreement thus verifying the theory. In particular,
as predicted by theory, we see that the standard deviation of v (i.e. the RMS error of focused lens
position) is linearly related to noise standard deviation.

In the second experiment, an object having an image brightness corresponding to a cubic polynomial
was used. The procedure was similar to the first experiment. The coefficients of the cubic polynomial
were taken to be those that modeled the step edge in the first experiment. The coeflicients were obtained
by using a least squares error fitting technique.? The resulting image was

f(z,y) = aza® + aza® + a1z + ao (37)

where as = —0.003, ay = 0.313, a; = —5.957 and ap = 101.031. In this case, by convolving f(z,y)
with the PSF of the camera corresponding to a blur circle of radius R, it can be shown that the blurred
image is given by
2 2

g(z,y) = az2® + aza® + (%ag + a1) x + Rjaz + ag (38)
The blurred images ¢y and g, are computed by discrete sampling of the above function for two different
blur circle radii Ry and R9 respectively. These are then filtered with Ly and Lo filters to obtain
smoothed images and their Laplacians. In this experiment, unlike the previous one, almost any pixel
can be selected for computing v, and a third image is not needed. The results are good even for highly
blurred cases. However, as mentioned before, we use the third image just to reduce the variance of v.
Three sampled images computed for lens positions at step 10, 40 and 70, when the object is focused at
step 90, are shown in Fig. 3. The blur circle radii corresponding to these images are respectively 22, 13
and 5 pixels respectively. Fig. 5 shows their gray-level profile. Table 4,5 and 6 show the experimental
and theoretical results. Once again, we see that the results are in a good agreement.

6 Conclusion

Eq. (33) provides a method for estimating the uncertainty in the focused position v for an object
as a function of the camera parameters, noise level, and image signal. This can be used to select those
pixels that yield relaible estimates of depth of objects and ignore the unreliable pixels in the application



of STM. As expected, the reliability of pixels increases with increasing value of image Laplacian at those
pixels but decreases with increase in noise standard deviation. If an object is planar, or has a known
shape form (e.g. spherical), then Eq. (33) can be used to combine the depth information provided by
different pixels in some optimal manner to infer the actual shape parameters of the object.

Acknowledgement: The support of this research in part by a grant from Olympus Optical Co. is
gratefully acknowledged.

7 Appendix A

In this section we discuss the derivation of Eq (27) by simplifying Eq (26). Let the smoothing filter
Lo and the Laplacian filter Ly both be of size (2M + 1)x(2M 4 1). Let the coefficients of the two filters
be ag(i,7) and ag(i, ) respectively. Also, let Z% denote M _ ., Z]’]\i—M' Then filtering with Lo and
Lo are convolution operations defined respectively by

me* L, = ZaOZJnk m—1i,n—j) (39)

e * Ly = Za22]77k m—1i,n—j) (40)

There are three terms— E{P"?}, E{Q"*} and E{P'Q'}- that need to be discussed in Eq (26). We
start from the term E{P"*}. Using Eqs. (19, 21) we obtain

E{P?} = E{(m*L,—m2%L,)*}
= E{(m* Lo)"} + E{(n2 * Lo)*} = 2E{(m + Lo) (112 * L)} (41)
In the above equation, the first term can be written as
M M
E{(m +Lo)*} = 3> aoliv, j1)aoliz, j2) E{m(m — iv,n — j1)n(m — iz,n — j2)} (42)
i1,41 12,52
If 41 # i3 or j1 # jo, then, since noise in different pixels are independent and zero mean,
E{m(m +a,n+ j1)m(m + iz, + j2)} = E{m(m + i, n 4+ j) E{m(m + i2,n+ j2)} =0 (43)
However, if i1 = 75 and j; = jo, then
E{(m —ii,n—j1)} = o (44)
Therefore, we get

E{(m + L)’} = Zaow (45)

Similarly, for the second term E{(ny * L,)*} in Eq (41), we obtain the same result as above. For the
remaining term we have

2B{(m * Lo) (g Lo)} = 2(E{m} + Lo) (E{na} * Lo) = 0 (46)



Thus, we obtain

M
PP} =23 a}(i,j)o? (47)

The derivation for E{Q'?} is similar to that for E{P"?} above, and therefore we have
M
E{Q"} =23 a3(i, oy (48)
]
Now consider the term E{P'Q'},

E{P'Q"} = FE{(m*L,—m2#*L,)(m * Ly+n2*Ly)}
= E{(m *Lo)(m * La)} + E{(m * Lo) (2 * L2)}
—E{(n2* Lo) (m * L2)} — E{(n2 % Lo) (2 * L2)} (49)

Using arguments similar to those in simplifying Eqs. (42) and (46), we obtain

M
E{(m * Lo) (m + La)} = E{(nz2 * Lo) (m2 * L2)} = ZGO(iaJ)az(id)Ui (50)

as well as
E{(m * Lo)(n2 % La)} = E{(n2 * Lo) (m * L2)} =0 (51)

All the terms cancel out or vanish and result in E{P’Q)’'} to be zero. Therefore, combining all the results
from Eqs. (47, 48 and 49), we can rewrite Eq (26) as

128 M 128P
Var{G} = —02 Z '

22(12 (i,7) (52)
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Figure 2: Step edge focused at step 0 and defocused images at lens steps 10,40,70

Figure 3: Cubic polynomial focused at step 90 and defocused images at lens steps 10,40,70
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Figure 4: Gray-level in edge image
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Figure 5: Gray-level in polynomial image



Object Lap. img | Theo. | Exp. Diff Theo. | Exp. | Diff
Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v} 0
0 28.47 -0.80 | -0.80 0.00 0.78 0.98 -0.20
10 33.54 9.25 9.24 0.01 0.34 0.48 -0.14
20 33.29 19.72 19.74 -0.02 0.41 0.52 -0.11
30 34.35 30.21 | 30.15 0.06 0.29 0.32 -0.03
40 30.82 40.49 40.48 0.01 0.42 0.48 -0.06
50 31.84 51.09 | 51.08 0.01 0.41 0.35 0.06
60 32.12 60.16 | 60.11 0.05 0.30 0.25 0.05
70 29.49 69.08 | 69.12 | -0.04 0.41 0.41 0.00
80 28.78 79.78 | 79.77 0.01 0.57 0.65 -0.08
90 29.94 89.05 | 89.31 | -0.26 0.65 0.87 -0.22
Table 1: Noise std 1.0
Object Lap. img | Theo. | Exp. Diff Theo. | Exp. | Diff
Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v} 0
0 22.45 -0.80 | -0.89 0.09 1.56 2.03 -0.47
10 27.52 9.25 9.21 0.04 0.68 0.99 -0.31
20 27.28 19.72 19.76 -0.04 0.83 1.05 -0.22
30 28.33 30.21 | 30.10 0.11 0.58 0.64 -0.06
40 24.80 40.49 40.49 0.00 0.84 0.98 -0.14
50 25.82 51.09 | 51.05 0.04 0.82 0.77 0.05
60 26.10 60.16 | 60.07 0.09 0.61 0.58 0.03
70 23.47 69.08 | 69.18 | -0.10 0.82 0.81 0.01
80 22.76 79.78 79.92 -0.14 1.14 1.29 -0.15
90 23.92 89.05 | 89.64 | -0.59 1.29 1.69 -0.40
Table 2: Noise std 2.0
Object lap. img || Theo. | Exp. Diff Theo. | Exp. | Diff
Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v 0
0 18.93 -0.80 | -1.07 0.27 2.34 3.05 -0.71
10 23.99 9.25 9.16 0.09 1.02 1.52 -0.50
20 23.75 19.72 19.76 -0.04 1.24 1.60 -0.36
30 24.81 30.21 | 30.04 0.17 0.88 0.97 -0.09
40 21.28 40.49 40.52 -0.03 1.26 1.50 -0.24
50 22.29 51.09 51.02 0.07 1.23 1.02 0.21
60 22.57 60.16 | 60.02 0.14 0.92 0.75 0.17
70 19.94 69.08 | 69.25 | -0.17 1.24 1.24 0.00
80 19.24 79.78 | 80.34 | -0.56 1.72 1.98 -0.26
90 20.39 89.05 | 90.04 | -0.99 1.94 2.75 -0.81
Table 3: Noise std 3.0




Object Lap. img | Theo. | Exp. Diff Theo. | Exp. | Diff
Distance || SNR (dB) || E{v} | E{v} 0 Std{v} | Std{v} 0
0 30.98 -0.98 -1.09 0.11 0.61 0.74 -0.13
10 31.84 9.62 9.52 0.10 0.49 0.51 -0.02
20 30.79 20.05 | 20.09 | -0.04 0.42 0.42 0.00
30 29.44 30.29 | 30.43 | -0.14 0.43 0.48 -0.05
40 29.56 40.38 | 40.54 | -0.16 0.49 0.56 -0.07
50 30.42 50.30 | 50.36 | -0.06 0.60 0.64 -0.04
60 32.11 60.04 | 60.10 | -0.06 0.44 0.44 0.00
70 29.04 69.64 | 69.71 | -0.07 0.50 0.51 -0.01
80 27.31 79.08 | 79.22 | -0.14 0.60 0.71 -0.11
90 28.88 89.37 | 89.63 | -0.26 0.72 0.91 -0.19
Table 4: Noise std 0.3
Object Lap. img | Theo. | Exp. Diff Theo. | Exp. Diff
Distance || SNR (dB) || E{v} E{v} ) Std{v} | Std{v} )
0 24.96 -0.98 -1.24 0.26 1.22 1.49 -0.27
10 25.82 9.62 9.39 0.23 0.99 1.04 -0.05
20 24.77 20.05 | 20.15 | -0.10 0.85 0.84 0.01
30 23.42 30.29 | 30.59 | -0.30 0.86 0.95 -0.09
40 23.53 40.38 | 40.75 | -0.37 0.99 1.14 -0.15
50 24.39 50.30 | 50.48 | -0.18 1.21 1.31 -0.10
60 26.09 60.04 | 60.18 | -0.14 0.89 0.89 -0.00
70 23.02 69.64 | 69.81 | -0.17 1.01 1.03 -0.02
80 21.28 79.08 79.44 -0.36 1.21 1.41 -0.20
90 22.86 89.37 | 89.73 | -0.36 1.44 1.79 -0.35
Table 5: Noise std 0.
Object Lap. img || Theo. | Exp. Diff Theo. | Exp. Diff
Distance || SNR (db) || E{v} E{v} ) Std{v} | Std{v )
0 21.44 -0.98 -1.44 0.46 1.83 2.21 -0.38
10 22.30 9.62 9.24 0.38 1.48 1.59 -0.11
20 21.25 20.05 20.19 -0.14 1.27 1.27 0.00
30 19.89 30.29 | 30.77 | -0.48 1.28 1.48 -0.20
40 20.01 40.38 | 40.98 | -0.60 1.48 1.75 -0.27
50 20.87 50.30 | 50.65 | -0.35 1.81 2.00 -0.19
60 22.56 60.04 60.26 -0.22 1.34 1.34 -0.00
70 19.49 69.64 | 69.95 | -0.31 1.51 1.57 -0.06
80 17.76 79.08 | 79.73 | -0.65 1.81 2.14 -0.33
90 19.33 89.37 | 90.07 | -0.70 2.17 2.59 -0.42

Table 6: Noise std 0.9




