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ABSTRACT

Image focus analysis is an important technique for passive autofocusing and three-dimensional
shape measurement. Electronic noise in digital images introduces errors in this technique. It is
therefore important to derive robust focus measures that minimize error. In our earlier research,
we have developed a method for noise sensitivity analysis of focus measures. In this paper we
derive explicit expressions for the root-mean square (RMS) error in autofocusing based on image
focus analysis. This is motivated by the Autofocusing Uncertainty Measure (AUM) defined earlier
by us as a metric for comparing the noise sensitivity of different focus measures in autofocusing
and 3D shape-from-focus. The RMS error we derive is shown to be proportional to the square
of the AUM. The expression for RMS error derived by us has the same advantage as AUM in
that it can be computed in only one trial of autofocusing. We validate our theory on RMS error
and AUM through experiments. It is shown that the theoretically estimated and experimentally
measured values of the standard deviation of a set of focus measures are in agreement. Our
results are based on a theoretical noise sensitivity analysis of focus measures, and they show
that for a given camera the optimally accurate focus measure may change from one object to the
other depending on their focused images.
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1 INTRODUCTION
Image Focus Anaylsis!®*® is an important technique for passive autofocusing and three-
dimensional (3D) shape recovery of objects. These techniques find applications in machine vision,
consumer video cameras, and video microscopy. In image focus analysis, a sequence of images
of a 3D scene are acquired by a camera with different degrees of blur or defocus. The change
in the level of defocus is obtained by changing either the lens position or the focal length of the
lens in the camera. A focus measure is computed for each of the images in the image sequence in
small image regions. The value of the focus measure increases as the image sharpness or contrast
increases and it attains the maximum for the sharpest focused image. Thus the sharpest focused
image regions can be detected and extracted. This facilitates autofocusing of small image regions
by adjusting the camera parameters (lens position and/or focal length) so that a focus measure
attains a maximum for that image region. Also, such focused image regions can be synthesized
to obtain a large image where all image regions are in focus. Further, the distance or depth of



object surface patches that correspond to small image regions can be obtained from a knowledge
of the lens position and the focal length that result in sharpest focused images of the surface
patches. This is done using the lens formula:

F= ot (1

where fis the focal length, u is the object distance, and v is the distance of the focused image (see
Fig. 1). The three-dimensional shape or depth-map of the scene can be obtained by synthesizing
the depth of small surface patches in the scene.

The accuracy of autofocusing and 3D shape measurement using the image focus analysis
technique depends on the particular focus measure that is used. Experimental evaluations of
different focus measures have been reported in.!™® Until recently, there was no theoretical
treatment of the noise sensitivity of focus measures. The published literature consisted of a
combination of experimental observations and subjective judgement. The noise sensitivity of a
focus measure depends not only on the noise characteristics but also on the image itself. The
optimally accurate focus measure for a given noise characteristics may change from one object to
the other depending on its focused image. This makes it difficult to arrive at general conclusions
from experiments alone.

A rigorous and general noise sensitivity analysis for a large class of focus measures was
provided in.® A new metric named Autofocusing Uncertainty Measure (AUM) was proposed. Here
we propose another new metric named Autofocusing Root-Mean-Square Error (ARMS error).
This metric corresponds to the traditional Root-Mean Square (RMS) error that is widely used
to specify the noise-sensitivity of estimates. ARMS error is similar to AUM and shares the
same advantages. Also, they are related by a monotonic relation. In depth-from-focus (DFF)
applications, AUM and ARMS error can both be easily translated into uncertainties in depth
using Eq. (1).

The analysis here shows that the autofocusing noise sensitivity of a focus measure depends on
the image of the object to be autofocused in addition to the camera characteristics. For an object
with unknown focused image, finding the optimally accurate focus measure involves computing
all the candidate focus measures at a set of lens positions and computing AUM/ARMS error
for each of the lens positions. Then the lens is moved to the focused position estimated by
the optimal focus measure (which has minimum AUM/ARMS error ). Usually the number of
candidate focus measures that should be considered for good performance is only a few (about
3 to 5). Also, almost all focus measures require only a modest amount of computing. Therefore
selecting the optimal focus measure from a candidate set comes at a small computational cost.
However, if it is necessary to use minimal computing in autofocusing by using the same focus
measure for all objects, then it has been argued® that the the energy of the image Laplacian is a
good focus measure to use. This focus measure has been shown to have some important desirable
characteristics based on a spatial domain analysis.
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Figure 1: Image Formation in a Convex Lens Figure 2: Autofocusing Algorithm

2 FOCUS MEASURES AND AUTOFOCUSING

A detailed discussion of the image sensing model can be found in several papers including.*
Here we simply note some relevant results based on geometric optics. In Fig. 1, a blurred image
g(x,y) in a small image region on the image detector is equal to the convolution of the focused
image f(x,y) and the PSF A(x,y). Assuming additive noise n(x,y), this model of image sensing
is summarized by

g(z,y) = h(z,y)* f(z,y) +n(z,y). (2)

A more detailed model of image sensing is described in.?

A general focus measure is modeled as follows. First the image g(x,y) for which the focus
measure needs to be computed is normalized for brightness by dividing the image by its mean
brightness. Then it is convolved with a focus measure filter (FMF) a(x,y). Then the energy
(sum of squared values) of the filtered image is computed. This energy is the focus measure (see
Appendix).

2.1 Autofocusing Algorithm

6 Their general structure can be

Detailed autofocusing algorithms can be found elsewhere.
summarized as follows. First the focus measure is computed at the current lens position and the
lens is moved by a small distance to another position. The focus measure is again computed.
The sign of the change in the two focus measures is used to determine the direction in which
the lens should be moved. Then a coarse search is begun by moving the lens systematically
(e.g. sequential and/or binary and/or Fibonacci search) and a rough location is found where the
focus measure is a maximum. Then the lens is moved to several (about 3 to 5) positions that
are close apart near the rough location of the focused position. At each of these positions the

focus measure is computed. Then a curve (e.g. quadratic or a Gaussian) is fitted to these focus



measures. The actual focused position is estimated as the position where the fitted curve attains
the maximum (see Fig. 2).

3 AUM

First we review AUM as a metric for focus measures to illustrate some underlying concepts.
Next we introduce ARMS error which is based on weaker assumptions than AUM. At any lens
position s (see Fig. 3), each focus measure v is associated with a probability density function
p(7(s0)), an expected value (mean) E{v(so)}, and a standard deviation std{~(so)}. However,
the focus measure with the minimum standard deviation is not necessarily the best because we
are not interested in the accuracy of the focus measure itself, but in the corresponding mean
lens position and its standard deviation. Estimating the standard deviation of the lens position
requires a knowledge of the function that relates the expected value of the focus measure to the
lens position (see Fig. 3). This function depends on the camera PSF as a function of camera
parameters and the focused image of the object. In the absence of accurate information about
the camera PSF and the object, the function is estimated in a desired interval through sampling
and interpolation. For example, near the maximum, the focus measure may be computed at 3
to 5 nearby lens positions and a smooth function such as a quadratic polynomial or a Gaussian
is fitted. The assumption is that the computed values of the focus measure are (nearly) the
expected values of the focus measure.

Referring to Fig. 3, the AUM at the maximum of the focus measure v is defined as follows:
Vmar — V(Sf) ) g = V(Sf) - 7(51) = V(Sf) - 7(52) ) AUM =53 — 51 (3)

where o is the standard deviation of the focus measure. In order to compute AUM, we need to
know o. In the Appendix section we provide a general formula that can be used to estimate o as
a function of the image and its noise level. We need to know the shape of the curve v(s) near the
peak. As discussed earlier, the position of 4., and the function v(s) near v,., are estimated
by fitting a curve (quadratic or Gaussian) to a few points (at least 3) near the maximum. AUM
is a measure similar to the RMS error in lens position.

Fig. 4 shows a typical comparison of two focus measures. The maximum values of the
two focus measures have been normalized to be the same. We see that although oy > oy,
AUM; < AUMy, implying that ~; is better than ;.

Referring to Fig. 5, focus measure 7 is modeled to be locally quadratic in a small interval of
size 26 with respect to lens position near the focused position:

(s) = as® + bs + ¢ (4)

Let the focus measure be given at three arbitrary positions which are ¢ apart. Without loss of
generality, let the three positions be s_ = —§, 5o =0, and s, = +6. Let T_ =7(s_), Ty = F(s0)
and Ty = %(sy). Near the focused position, 'y > T'_ and Ty > I'y. Solving for the coefficients
of the quadratic expression, we obtain
T, +T_ — 2T, T, - T_ _
= b = ——— =T 5
¢ 262 : 26 0 ST 0 (5)




Let s; be the lens position where the focus measure becomes the maximum and T'; = F(s;).
At sy, the derivative of I' vanishes. Therefore we obtain

-b 6 (ir — T_)
2 (QTO ~T; - T_)

5= 2a

(6)

Substituting the above equation in (4) we obtain

b? — 4ac

rf:_ 4a

Given that AUM = s, — s1, we obtain s; and s; as the roots of the equation

T(S):ff—azasz—l—bs—l—c (8)

Solving the above equation, we obtain

¢62—4a(c—|—a—ff)

a

AUM =

Substituting Eq (5) and (7) in the above equation yields

[T

2
AUM =26 [ =2 (10)
Ty T, —T-

At a position far away from the focused lens position sy, AUM is defined as in Fig. 6. This
is somewhat similar to that near the peak:

o= F(s2) =7(s1))/2, AUM=s; — 5 (11)

Once again, o is computed from the known noise characteristics and the image. The shape of
the focus measure curve is estimated by a linear (2 points) interpolation using the values of the
focus measure at s_ and s, that are 6 apart. Without loss of generality, let s_ = —6/2 and
sy = +6/2 and the focus measures at these points be I'_ and T'y respectively (see Fig. 8). The
linear model yields the expression

— 5 r-r._
ST T (12)
Sy — S— F_|_ —-TI_
The above equation can be rewritten as:
r-r._ )
ry, —1_ 2



We obtain s; and sy by solving _ .
=490 (14)

where o is the standard deviation of the focus measure. Using equation (13) and solving for

AUM, we obtain
AUM == |81 — 82| = = (15)

Fig. 7 shows a comparison of two focus measures far away from the focused position. Once
again we see that although oy > 0y, AUM, < AUM;, implying that ~, is better than ~;.

4 ARMS ERROR

In this section, an explicit expression for the Autofocusing Root-Mean Square Error (ARMS
error) is derived, which is based on weaker assumptions than AUM. An exact expression for
the RMS error depends on the Optical Transfer Function (OTF) of the camera and the Fourier
spectrum of the focused image. Deriving such an exact expression is complicated because of
the nature of the camera’s OTF and the variability of the Fourier spectrum of the focused
image for different objects. Further, usefulness of such an expression in practical applications
is limited since all the information necessary to evaluate the expression (e.g. OTF and camera
parameters) may not be available. However, an approximate expression that is very useful in
practical applications can be derived under some weak assumptions. The assumption we use is
that the expected value of the focus measure can be modeled to be quadratic locally with respect
to the lens position. The analysis here can be extended to other models (e.g. cubic or Gaussian)
but such extensions do not appear to be useful in practical applications at present.

We are interested in the RMS value of s,,,,. For this reason, the focus measure I'; will be
expressed as the summation of their expected value I'; and their noise component n;:

Fi = TZ + 1, fOT 1= —,0,—|—. (16)

In this case we obtain a set of equations similar to Eqs (4) to (7) with the difference that T; are
replaced by I'; , therefore we obtain

s Ty T
Smae = 5\ 9Ty T, — T

. 5 T+—T_—|—n+—n_
2\ T4 —T_42ng —ny —n_
= = -1
s ) (s e (17)
2\ 2l —-T'y —T'_ ry—-r- 200 T4 —T=

Near the focused position we have I'y > I'y and I'y > I'_. Therefore, if the signal to noise ratio
is sufficiently large, we have

12T — Ty —T_| > [2ng — ny —n_| (18)



We obtain s,,q, &~ s!.,. where

ny —n_

! = Smax 1 = = 19
Smal’ S ( —I_ F_l_ _ F_) ( )

Note: we cannot assume that [y — T_| > |n; — n_| because, near the focused position, I'y

and T'_ may be nearly equal. Simplifying the expression for s/ . we obtain
1) —n_
S;nax = Spmae + = = L = “ = (20)
2\ 2l —Ty —T_
Now the ARMS error is defined as the standard deviation of s/, i.e.
1) 1
ARMS error = ——————==-std(ny —n_)
2 (2 —T, —T_)
1) 1 i

T (M, -T,-T.) (i) )

where o4 and o_ are the standard deviations of the focus measures I'y and I'_ respectively.

For a lens position far from the maximum focused position, the above expression for ARMS
error will not be valid since the assumption in Equation (18) will not be valid. In this case,
the local linear model for the focus measure will be better than the local quadratic model. The
ARMS error for this case is based on focus measures at only two lens positions (rather than
three) that are ¢ apart. Without loss of generality, let the two positions be s_ = —¢/2 and
s+ = 46/2 and the focus measures at these points be I'_ and I'y respectively (similar to Fig. 8).
The linear model yields the expression

s—s_  I'—T_ (22)
Sy — S— N F_|_ —-I_
The above equation can be rewritten as:
r—r- o
=0l —]—= 23
i (r+ - r_) 2 (23)
Once again, we express 'y and I'_ as 'y = Ty +ny and ' = T'_ + n_ where I'; and I'_ are

the expected values and ny and n_ are the noise components.

Now the ARMS error is defined as the standard deviation of s’ where s’ is the solution of
I'(s) = % Solving this equation we obtain

s T,-T -2 5
S = — | = = — =
2 F+—F_—|—n+—n_ 2

~sllom) (=)




Assuming [Ty —T_|> |ny —n_| and [Ty —T'_| > |2n_|, we obtain

, o 2n_ Ny —n_
s |l —=——= -1
2 r'y—-1Ir- TI'y—-TI_
o -
A (R (25)
2\l =Ty

Hence, the ARMS error would be

ARMS error = std(s') = (26)

4.1 Relation between AUM and ARMS error

Comparing the expressions for AUM and ARMS error from equations (10) and (21) we find

AUM? _ 166 o
ARMS Vol 4o
~ 826 if o, ~o_=o0 (27)

The ratio of the square of AUM and ARMS error is a constant. Therefore AUM and ARMS
error are monotonically related. If we redefine AUM so that instead of using equation (8) we
obtain s; and sy by solving

['(s) = lpow — 0° (28)

then we find that AUM and ARMS error are linearly related for a given focus measure and
focused image.

For a lens position far away from the focused position, comparing the expressions (15) and

(26) for AUM and ARMS error yields

AUM 4o
ARMS /52 4 2
~ /2 if o, ~x0c_=~0 (29)

For this case, they are linearly related.

5 EXPERIMENTS

In the first set of experiments, Eq. (36) in Appendix for the variance of focus measures was
verified as follows. The autofocusing algorithm described earlier was implemented on a system
named Stony Brook Passive Autofocusing and Ranging Camera System (SPARCS).* In SPARCS,

a 35 mm focal length lens is used. The lens is driven by a stepper motor that can move the



lens to 97 different step positions. The standard deviation of the camera noise was estimated
by imaging a flat and uniformly bright object and then computing the grey level variance of the
recorded image. Three objects labeled A,B, and C (see Fig. 9) were used in the experiments.

An object was placed in front of the camera, and for some fixed lens position, 10 images of
size 32 x 32 of the object were recorded. These images slightly differed from each other due to
electronic noise. A given focus measure was computed for each of the 10 images. The standard
deviation of the resulting 10 focus measures was then computed. This was the experimentally
determined standard deviation of the focus measure. The theoretical estimation of the standard
deviation of the focus measure was computed using Eq. (36). For this purpose, the standard
deviation of the noise was obtained as mentioned earlier using a flat uniformly bright object.
The noise-free image needed in Eq. (36) was obtained by averaging 4 noisy images of the object.
Table 1 shows the experimentally computed and theoretically estimated standard deviations of
different focus measures. We see that the two values are close thus verifying Equation (36).

In the second experiment, the objects A, B, and C, were autofocused using the algorithm
described in Section 2. In each case, the experimental and theoretical ARMS error were computed
(the units is lens steps). Near the focus position, images were recorded at 3 positions s_, so and
sy which were 5 steps apart. At each position, 10 images were recorded. At each position,
using the 10 recorded images at that position, the mean and the standard deviation of the focus
measure there were computed. Then the theoretically estimated ARMS error was computed
using Eq. (21). The same data was used to compute 10 experimental focus positions using
Eq. (17). The standard deviation of these 10 positions was the experimental ARMS error. The
resulting values are shown in the last two columns of Table 1. We see that they are very close.
These values also indicate the relative autofocusing accuracy of the three focus measure filters—
gray level variance, gradient magnitude squared and Laplacian squared. The measured noise
standard deviation was 0.95 (grey level units) for the camera, and the SNR for the three objects
were 35 dB, 28 dB and 20 dB respectively.

Three main conclusions can be drawn from the experimental results. First, for a given object
(i.e. fixed image content), ARMS error decreases with increasing signal-to-noise ratio (SNR).
This implies that low contrast objects and noisy cameras have more autofocusing error. Second,
the focus measure with minimum standard deviation is not necessarily the focus measure that
gives minimum error in autofocusing. Third, best focus measure could be different for different
objects depending on both image content and noise characteristics; SNR alone cannot be used
to determine the best focus measure. For example, the best focus measure for the objects with
SNR 35 dB and SNR 28 dB are the Laplacian squared, but for the object with SNR 20 dB,
the best focus measure is gradient magnitude squared. The gray level variance performed very
poorly for object C and the autofocusing was totally unreliable. This is indicated by the N/A
entries in the table.

5.1 Computer simulation experiments

Experiments similar to the ones above were carried out on simulated image data. The purpose
of these experiments was to further verify our theoretical results. In these experiments, unlike



in the previous experiments, the noise-free image data and precise characteristics of noise were
known accurately. Therefore we expected a closer agreement than previous experiments between
theoretically estimated and experimentally determined values of the standard deviation of focus
measures. This expectation was satisfied thus verifying our theory more accurately. In addition,
unlike the previous experiments, the simulation experiments were carried out at many different
levels of noise rather than at only one level of noise. The theory was verified to be correct
at all noise levels. The test object shown in Fig. 10.a was added with various levels of zero-
mean Gaussian random noise to get a set of noisy images. At each noise level, the mean and
the standard deviation of the focus measure were computed using 10 noisy images. Then the
standard deviation of the focus measures were estimated theoretically using Eqs. (39), (42)
and (46). The plots in Figs. 10b to 10d show that the experimental and theoretical standard
deviation are in close agreement at all noise levels for all three focus measures.

Another experiment similar to the second experiment for real data described earlier was
conducted on simulation data as follows. The focused image of a planar object normal to the
optical axis was used as input to a program that models image sensing in a CCD video camera.
The program was a modified version of the Image Defocus Simulator (IDS) developed by Lu.® The
IDS program was modified to improve the accuracy of blurred images computed for small degrees
of blur. The improved accuracy was achieved by increasing the sampling rate and by using a wave
optics model® of the camera’s PSF. A sequence of blurred images were generated corresponding
to different lens positions in the SPARCS camera system in our laboratory mentioned earlier.

Three images near the focused position were selected from the image sequence generated
above and a specified level of zero-mean Gaussian random noise was added to these. Then the
focused position was computed using Eq. (17). The above step was repeated 10 times, and the
standard deviation of the resulting 10 values of the focused positions was calculated to obtain
experimental value of the ARMS error. Then the ARMS error was estimated theoretically using
Eq. (21). The process above was repeated for various noise levels and three different focus
measures. The results are plotted in Fig. 11. We see that the two ARMS error are in good
agreement. In a similar manner, a plot of the two AUMs for various noise levels are shown in
Fig. 12. The monotonic relation between ARMS error and AUM are also demonstrated from
those two plots.

6 APPENDIX

In this section we present expressions for the expected value (mean) and variance of a focus
measure. Detailed derivations of these expressions can be found in our previous work.® These are
useful in computing the standard deviation o of the focus measure and its AUM/ARMS error.

Let f(m,n) be the blurred noise free discrete image and n(m,n) be the additive noise. The
noisy blurred digital image recorded by the camera is

fn(mv n) = f(mv n) + n(mv n) (30)

The noise n(m,n) at different pixels are assumed to be independent, identically distributed
random variables with zero mean and standard deviation o,. Let g(m,n) be the image obtained



by filtering the noisy blurred image f,(m,n) with the FMF «a(z,7):

g(m,n) = a(i,j)* fy(m,n)
= a(i,g) % f(m,n) +a(i,j) x n(m,n) (31)
where x means the moving weighted sum (MWS) operator that is defined by

M

ali ) * fylmon) = S alis ) fy(m +in + ) (32)

]

The focus measure ~ is defined as

229 (m,n) (33)

T (2N+1

The following expressions can be derived for the mean and variance of the focus measure:

E{y} = (2N—|—1 22 i, 7) % f(m,n)]* + A,o? (34)
A= g )
B el et MMM
) = G et e s s g ([e)
4o o S 2
—I_W[a(lvj)*a(_lv_])*f(mvn)] (36)

where * represents the convolution operator and () is a boolean variable with value 1 if the
following condition is true and zero otherwise:

Q = (((1h — 23 =12 —14)&(j1 — Js = j2 — Ja)) OR
((ir — 14 = 12 — i3)&(j1 — ja = j2 — Js))) &NOT
((il = i2)&(j1 = jz)&(iiﬂ = i4)&(j3 = j4)) (37)

We consider three examples to illustrate the application of the above formula. If the noise is

modeled as Gaussian, the variable n with standard deviation o, we have'® E{n*} = 302. This
result will be used in the following examples.

1. Gray Level Variance

The image is normalized by subtracting the mean grey value from the grey level of each pixel.
The focus measure filter in this case is

i) ={ g Sheriie (39

0 otherwise



Using the formula (36) we obtain

204

Varl} = G (mv+14§:f (m.n) (39)

2. Gradient Magnitude Squared

There are two components: gradient squared along x-axis

i) = 11 ()
and gradient squared along y-axis
i) =1 17 )
We obtain
Varlr) = o b e ST A+ o) 4 i)« S (42
where
i) = i) —)) (13)
Aid) = i) =i ()

Note that a cross item of focus measure is generated by the effect of noise on x direction and y
direction which are not independent.”

3. Laplacian

The discrete Laplacian is approximated by
0 1 0
aij)=|1 -4 1 (45)
0 1 0
Substituting this a(¢, j) into formula (36) for variance we obtain

135202 4o?  MAN

Var{~y} = (2N+f) + N+ 1) 4 ; m,n)]2 (46)

where

A(l,g) =ali,g) *a(—1,—j) (47)
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Figure 9: Texture image
Object A || Theoretical | Experiment | Theoretical | Experiment
SNR: 35dB || std of FM | std of FM ARMS ARMS
Laplacian 18.92 17.27 0.020 0.018
Gradient 5.87 6.31 0.023 0.024
Variance 1.82 2.13 0.025 0.028
Object B || Theoretical | Experiment | Theoretical | Experiment
SNR: 28dB || std of FM | std of FM ARMS ARMS
Laplacian 3.71 4.05 0.044 0.043
Gradient 1.06 1.25 0.048 0.049
Variance 0.85 1.02 0.10 0.11
Object C || Theoretical | Experiment | Theoretical | Experiment
SNR: 20dB || std of FM | std of FM ARMS ARMS
Laplacian 1.67 1.37 0.09 0.10
Gradient 0.32 0.46 0.06 0.07
Variance N/A N/A N/A N/A

Table 1: Experimental records
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Figure 10: Simulation records
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