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Abstract

The optimal focus measure for a noisy camera in pas-
sive search based autofocusing (AF) and depth-from-
focus (DFF) applications depends not only the camera
characteristics but also the image of the object being
focused or ranged. In the early stage of this research,
a new metric named Autofocusing Uncertainty Mea-
sure (AUM) was defined which is useful in selecting
the most accurate focus measure from a giwen set of
focus measures. AUM 1s a metric for comparing the
noise sensitivity of different focus measures. In the
later stage of this research, an tmproved metric named
Autofocusing Root-Mean-Square Error (ARMS error)
was defined. Explicit expressions have been derived for
both AUM and ARMS error, and the two metrics are
shown to be related by a monotonic expression.

AUM and ARMS error metrics are based on a theo-
retical noise sensitivity analysis of focus measures. In
comparison, all known prior work on comparing the
noise sensttivity of focus measures have been a com-
bination of subjective judgement and experimental ob-
servations. For a given camera, the optimally accurate
focus measure may change from one object to the other
depending on their focused images. Therefore select-
wng the optimal focus measure from a given set involves
computing all focus measures in the set. However, if
computation needs to be minimized, then it s argued
that energy of the Laplacian of the tmage is a good
focus measure and is recommended for use in practi-
cal applications. Important properties of the Laplacian
focus measure are investigated.

Keywords: focus measure, focusing, autofocusing,
depth from focus, depth from defocus noise sensttivity
of focus measure

1 Introduction

Autofocusing of electronic cameras is an important
problem in consumer video cameras, digital still cam-
eras, digital microscopy, and machine vision. This pa-
per deals with passive autofocusing based on search-
ing for the lens position that gives the best focused
image. In this approach, typically, a focus measure is
computed for images acquired at several different lens
positions, and the lens is moved to that position where
the focus measure of the image is a maximum. This
paper does not deal with depth-from-defocus (DFD)
methods [15, 12] that require images acquired at only
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Figure 1: Image Formation in a Convex Lens

two or three lens positions but require knowledge of
the optical transfer function (OTF) of the camera and
the camera parameters. The focused lens position v
(see Fig. 1) depends on the distance u of the object
to be focused and the focal length f of the lens. They
are related by the lens formula

1 1 1

This same relation is used in depth-from-focus (DFF)
methods to compute the object distance u from the
focused lens position v.

Experimental evaluations of different focus mea-
sures have been reported in [6, 7, 16, 8 11, 17]. So
far there has not been any theoretical treatment of
the noise sensitivity of focus measures. In the existing
literature, all known work have been a combination of
experimental observations and subjective judgement.
The noise sensitivity of a focus measure depends not
only on the noise characteristics but also on the im-
age itself. The optimally accurate focus measure for
a given noise characteristics may change from one ob-
ject to the other depending on its image. This makes



it difficult to arrive at general conclusions from exper-
iments alone.

For a given camera and object, the most accurate
focus measure can be selected from a given set through
experiments as follows. For each focus measure, the
object i1s autofocused several times, say 10, starting
with an arbitrary default lens position. The mean of
the 10 focused positions and their standard deviation
are an estimate of the correct focused position and
root-mean-square (RMS) error respectively. The focus
measure with the minimum estimate of RMS error is
taken to be the optimal. In practical applications such
as consumer video cameras or digital still cameras; it
is desirable to find the best focus measure from a given
set by autofocusing only once. It is quite undesirable
to repeat 10 or several trials.

If one has a detailed and accurate information on
the focused image of the object to be focused and
the camera characteristics such as its OTF, noise be-
haviour, and camera parameters, then it would be pos-
sible to estimate the RMS error theoretically with only
one trial. However such information is rarely available
in practical applications.

In the absence of such detailed and accurate infor-
mation, we propose two new metrics named Autofo-
cusing Uncertainty Measure (AUM) and Autofocusing
Root-Mean-Square Error (ARMS error) both of which
can be computed with only one trial of autofocusing.
In DFF applications, AUM and ARMS error can both
be easily translated into uncertainties in depth using
Eq. (1).

The analysis here shows that the autofocusing noise
sensitivity of a focus measure depends on the image of
the object to be autofocused in addition to the camera
characteristics. For an object with unknown focused
image, finding the optimally accurate focus measure
involves computing all the candidate focus measures
at a set of lens positions and computing AUM/ARMS
error for each of the lens positions. Then the lens is
moved to the focused position estimated by the opti-
mal focus measure (which has minimum AUM/ARMS
error ). Usually the number of candidate focus mea-
sures that should be considered for good performance
is only a few (about 3). Also, almost all focus measures
require only a modest amount of computing. There-
fore selecting the optimal focus measure from a can-
didate set comes at a small computational cost. How-
ever, if 1t is necessary to use minimal computing in
autofocusing by using the same focus measure for all
objects, then we argue that the the energy of the image
Laplacian is a good focus measure to use. This focus
measure is shown to have some important desirable
characteristics based on a spatial domain analysis.

Next section provides a brief background summary
of the model of focus measures. Section 3 describes our
autofocusing algorithm. AUM is defined in Section 5
and ARMS error in Section 6. It 1s followed by noise
sensitivity analysis and a discussion of the Laplacian
based focus measure in Section 7. Future research
topics are described in Section 8.

2 Model of focus measures
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Figure 2: The OTF of a blurred camera attenuates
high frequencies. The attenuation effect increases with
increasing value of the blur circle radius R
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Figure 3: Model of Image Sensing

A detailed discussion of this topic can be found
in several papers including [11]. Here we summarize
some relevant results based on geometric optics.

When a point object P is blurred on the image de-
tector ID (see Fig. 1) it is imaged as a blur circle P” of
radius R. This image h(z,y) is the point spread func-
tion (PSF) of the camera. In a small image region if
the imaged object surface is (approximately) a plane
normal to the optical axis, then the PSF is the same
for all points on the plane. Then the blurred image
¢(z,y) in the small image region on the image detec-
tor ID is equal to the convolution of the focused image
f(z,y) and the PSF h(z,y). Therefore, if G, F, and
H are the Fourier transforms of ¢, f, and h, respec-
tively, then G = HF. The OTF H(w,v) correspond-
ing to h(z,y) is circularly symmetric and its cross sec-
tion has a form similar to the sinc function (see Fig.
2). For a focused image, the first zero crossing of the
OTF is very far from the zero spatial frequency and
the zero crossing moves closer to the zero spatial fre-
quency as the blur increases. Therefore the effect of
blurring is to attenuate higher frequencies. The atten-
uation increases monotonically within the main lobe
of the sinc-like OTF. The effect of the main lobe on
the computed focus measures usually dominates that
of the side lobes. This model of image sensing is sum-
marized in Fig. 3. A more detailed model of image
sensing is described in [13].

A general focus measure is modeled as follows (see
Fig. 4). First the image for which the focus measure
needs to be computed is normalized for brightness by
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dividing the image by its mean brightness. Then it is
convolved with a focus measure filter (FMF). Then the
energy (sum of squared values) of the filtered image
is computed. This energy is the focus measure. Most
FMFs correspond to filters that emphasize (or am-
plify) high frequencies. This seems appropriate since
blurring has the opposite effect; i.e. high frequency
attenuation.

The focus measures considered for noise sensitiv-
ity analysis in our research are only those which have
been proved to be sound [11] based on the effect of
the OTF main lobe. In particular we do not consider
focus measures based on summing the absolute values
of the derivatives of the image [17, 6, 8] that have been
used by many researchers in the past. Such filters are
proved to be unsound through counter examples in
Appendix B.

3 Autofocusing algorithm

In a typical passive autofocusing application such
as a consumer video camera, autofocusing is done by
moving the lens with respect to the image detector in
a narrow range of about a few millimeters or about

one tenth of an inch. Let this range be [$min, Smas)
(see Fig. 5). A typical value for the limits of the range
18 Smin = f and $pmee = 1.1f where f is the focal
length of the lens. Within the range limits, the prob-
lem is to find the lens position s; where the image
in a specified part of the image detector is in best
focus. Due to the limited depth-of-field caused by
diffraction effects, the change in the best focused im-
age 1s indistinguishable by the 1mage detector when
the lens 1s moved in a small range of size § around the
best focused position s;. Therefore there is no benefit
in achieving autofocusing accuracy better than 46/2.
We only need to move the lens to an arbitrary po-
sition in the range [s; — 6/2,s; + 6/2]. Typically é
is about one part in 200 of S,,40 — Smin. Therefore
the range [$min, Smaz] can be divided into n intervals
I; = [Smin+i%8, Smin +(i+1)%6) fori =0,1,2,-- -, n—1
With Simaz = Smin + n % 6. It 1s sufficient to compute
the focus measures at only one point in each of these
intervals during autofocusing.

In real-time autofocusing applications, the bottle-
neck 1s not the computational time but the time taken
for the mechanical motion of the lens to move from
one position to the other. Therefore it is important to
minimize this time at the cost of some additional com-
putation. Search algorithms such as Fibonacci search
and binary search are optimal computationally but
not necessarily in the time consumed in lens motion.
Also, in consumer applications like hand-held video
cameras, it is undesirable for the lens to oscillate be-
tween extreme focus and defocus conditions rapidly.
People find it uncomfortable. It i1s desirable for the
image to gradually come to focus with only minor
overshoots near the focused condition.

Based on the above discussion we propose the fol-
lowing algorithm for autofocusing. First the focus
measure 18 computed at the current lens position and
the lens is moved by about 106 to another position.
The focus measure is again computed. The sign of
the change in the two focus measures is used to deter-
mine the direction in which the lens should be moved.
Then a sequential search is begun by moving the lens
in steps of about (n/8)é in the correct direction until
the focus measure decreases for the first time. Then
a binary search is initiated in the interval containing
the last three lens positions until the search interval
has been narrowed to about 108. Then a quadratic
or a Gaussian is fitted to three or more points which
are about 56 apart to find the focused position. Note
that, according to geometric optics, the focus mea-
sure curve will be symmetric about the focus position
s¢. Also, shifting focus position s; will shift the curve
by the same amount with only small change in its
shape. This algorithm combines sequential search, bi-
nary search, and interpolation, to minimize the lens
motion. Additional improvement can be obtained if
more information is available about the particular ap-
plication.

As an alternative to the above algorithm, one may
use a depth-from-defocus algorithm [15, 12] when pos-
sible to obtain an estimate of the focus position, and
then refine this estimate by computing a focus mea-
sure at several points near the estimated position, fit-



ting a curve to the points, and finding the position of
the curve maximum. The initial estimate is improved
by this method because depth-from-defocus meth-
ods are less accurate than the search based method
above. After improving the initial estimate of the
depth-from-defocus method as here, one can compute
AUM/ARMS error for the focus measure used in re-
fining the initial estimate.

4 A metric for focus measures

A metric is needed for comparing the noise sensitiv-
ity of focus measures both at the focused lens position
and at an arbitrary lens position. In Section 1, an
experimental method was described briefly for finding
the focus measure with minimum RMS autofocusing
error. The method involves repeatedly autofocusing a
given object. Performance of a focus measure at an
arbitrary lens position is of interest for the following
reason. In practical applications it will be necessary
to determine the direction in which the lens should
be moved from an arbitrary initial lens position for
autofocusing. The desired direction is the direction in
which the best focused lens position is located (Fig.
5). This direction is found by computing the focus
measure at the current lens position and at another
position a small distance away. The direction in which
the focus measure increases is the direction in which
the lens should be moved. This method will give the
correct direction for any sound focus measure in the
absence of noise (because the focus measure increases
monotonically), but in the presence of noise, some fo-
cus measures may be more prone to give the wrong
direction than others. The best focus measure for this
purpose can be once again determined experimentally.
For a given camera system, object, object distance,
and lens position, the sign of the finite differences of
the focus measure 1s used to find the direction in which
the lens should move in a large number of trials. The
percentage of times the correct direction is found is a
measure of noise sensitivity. It will be seen later that
the best focus measure depends both on the camera
PSF and the image of the object. For a given focus
measure, the RMS error will change with the camera
PSF and the image of the object.

In practical autofocusing applications, autofocusing
of an object has to be done in a few seconds or less
in only one trial. Trials cannot be repeated physically
to determine the best focus measure. Therefore we
need a theoretical metric that can be computed in only
one trial of autofocusing. The metric should ideally
require as little information about the camera system
and the object as possible. It should also be simple
and not require much computational resources. These
desirable characteristics motivate the metric proposed
here.

4.1 Autofocusing Uncertainty Measure
(AUM)

First we introduce AUM as a metric for focus mea-
sures to illustrate some underlying concepts. Later
we introduce the ARMS error which is based on
weaker assumptions than AUM. At any lens position
so (see Fig. 6), each focus measure y is associated

with a probability density function p(vy(s¢)), an ex-
pected value (mean) E{y(sg)}, and a standard de-
viation std{y(syp)}. However, the focus measure with
the minimum standard deviation is not necessarily the
best because we are not interested in the accuracy
of the focus measure itself, but in the corresponding
mean lens position and its standard deviation. Es-
timating the standard deviation of the lens position
requires a knowledge of the function that relates the
expected value of the focus measure to the lens posi-
tion (see Fig. 6). This function depends on the camera
PSF as a function of camera parameters and the fo-
cused image of the object. In the absence of accurate
information about the camera PSF and the object,
the function is estimated in a desired interval through
sampling and interpolation. For example, near the
maximum, the focus measure may be computed at 3
to b nearby lens positions and a smooth function such
as a quadratic polynomial or a Gaussian is fitted. The
assumption is that the computed values of the focus
measure are (nearly) the expected values of the focus
measure. This assumption will be removed later in
defining the ARMS error.

Referring to Fig. 6, the AUM at the maximum of
the focus measure 7 is defined as follows:

¥ =9(ss) (2)
o =7(st) =7(s1) =7(s7) = 7(s2) (3)
AUM = 89 — 851 (4)

where ¢ is the standard deviation of the focus mea-
sure. In order to compute AUM, we need to know o.
In the next section we derive a general formula that
can be used to estimate ¢ as a function of the image
and 1ts noise level. Further we need to know the shape
of the curve ¥(s) near the peak. As discussed earlier,
the position of 7; and the function ¥(s) near ¥, are

estimated by fitting a curve (quadratic or Gaussian)
to a few points (at least 3) near the maximum. Intu-
itively, AUM is a measure similar to the RMS error in
lens position that can be determined through repeated
trials.

Fig. 7 shows a typical comparison of two focus mea-
sures. The maximum values of the two focus measures
have been normalized to be the same. We see that al-
though o9 > o1, AUM> < AU M;, implying that ~, is
better than ;.

Referring to figure 8, focus measure ¥ is modeled to
be locally quadratic in a small interval of size 26 with
respect to lens position near the focused position:

F(s) = as? +bs+c (5)

Let the focus measure be given at three arbitrary
positions which are § apart. Without loss of generality,
let the three positions be s_ = —§, so = 0, and s; =

+6. Let T_ = (s-), To = F(s0) and Ty = F(s4).

Near the focused position, I'y > I'_ and 'y > I';.
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Solving for the coefficients of the quadratic expres-
sion, we obtain

T, +T_ —2T,
a =
262
T, -T_
b =
26
c = fo (6)

Let s; be the lens position where the focus measure
becomes the maximum and I'y = F(sy). At sy, the
derivative of I vanishes. Therefore we obtain

b
Sf = %
5 (Ty—T.)

2 (aT, — T, —T) ()

Substituting the above equation in (5) we obtain

- b? — 4dac
Iy=—— (8)

Given that AUM = s, — s1, we obtain s; and s, as
the roots of the equation

I(s) = Tf—o
= as’+bs+ec (9)
Thus solving the above equation, we obtain

\/b2—4a (c—i—a—ff)

a

AUM =

(10)
Substituting with Eq (6) and (8) in the above equation

yields
9 3
AUM = 26 (%) (11)
20—y —T_
At a position far away from the focused lens posi-
tion sy, AUM is defined as in Fig. 9. This is somewhat
similar to that near the peak:

o= (7(s2) —7(s1))/2 (12)

AUM = S92 — 851 (13)

Once again, o is computed from the known noise char-
acteristics and the image. The shape of the focus mea-
sure curve is estimated by a linear (2 points) interpo-
lation using the values of the focus measure at s_ and
sy that are 6 apart. Without loss of generality, let
s_ = —6/2 and s = +6/2 and the focus measures at
these points be I'_ and T’y respectively (see Fig. 11).
The linear model yields the expression

- (14)

The above equation can be rewritten as:

We obtain s; and s by solving

= . Ty+T_

T'(s) 5 +o (16)

where o 1s the standard deviation of the focus measure.
Using equation (15) and solving for AUM, we obtain

AUM = |51 - 52|
26
Iy — T

Fig. 10 shows a comparison of two focus measures
far away from the focused position. Once again We
see that although o9 > o1, AUM> < AU M;, implying
that 5 18 better than ;.

5 ARMS Error

In this section, an explicit expression for the Awuit-
ofocusing Root-Mean Square Error (ARMS error) is
derived. An exact expression for the RMS error de-
pends on the Optical Transfer Function (OTF) of the
camera and the Fourier spectrum of the focused im-
age. Deriving such an exact expression is complicated
because of the nature of the camera’s OTF and the
variability of the Fourier spectrum of the focused im-
age for different objects. Further, usefulness of such
an expression in practical applications is limited since
all the information necessary to evaluate the expres-
sion (e.g. OTF and camera parameters) may not be
available. However, an approximate expression that
is very useful in practical applications can be derived
under some weak assumptions. The assumption we
use 1s that the expected value of the focus measure
can be modeled to be quadratic locally with respect
to the lens position. The analysis here can be ex-
tended to other models (e.g. cubic or Gaussian) but
such extensions do not appear to be useful in practical
applications at present.

We are interested in the RMS value of s,,4,. For
this reason, the focus measure I'; will be expressed as

the summation of their expected value T; and their
noise component n;:

I :E—I—ni for 1= — 0,+. (18)

In this case we obtain a set of equations similar to Eqs

(5) to (8) with the difference that T; are replaced by
I'; , therefore we obtain

§( Tp—T._
Smar = &
2\ 20y — Ty — I

_ (S( f+—f_—|—n+—n_ )
2\l —T4 —T_+2n9—ny —n_




= () ()
2 \2T, — T, —T_ T, —T_
2ng—ny —n_ \
<1+0—+_‘) (19)

Ty —Ty —T_

Near the focused position we have T'y > f+ and T >

I'_. Therefore, if the signal to noise ratio is sufficiently
large, we have

|2l — Ty —T_|> |[2ng —ny —n_| (20)

We obtain s;ae & s),,, Where
s = e |1+ M) 91
nar = s (14 2 (1)

Note: we cannot assume that |f+_—f_| > |ny—n_|

because, near the focused position, I'y and I'_ may be
nearly equal. Simplifying the expression for s/ . we
obtain

ny —n_

6
S;TLGCL‘ = gmax + - (T) 22
2\2Ty - T4 —T- (22)

Now the ARMS error 1s defined as the standard devi-
ation of s’

maz 1-€-
6 1
ARMS error = 3 (2?0 - f+ — f_) -std(ng —n_)
_ ¢ 1 (2 2\3
= AT oy )
(23)

where o4 and o_ are the standard deviations of the
focus measures I'y and I'_ respectively.

For a lens position far from the maximum focused
position, the above expression for ARMS error will not
be valid since the assumption in Equation (20) will not
be valid. In this case, the local linear model for the
focus measure will be better than the local quadratic
model. The ARMS error for this case is based on
focus measures at only two lens positions (rather than
three) that are § apart. Without loss of generality,
let the two positions be s_ = —§/2 and sy = +6/2
and the focus measures at these points be I'_ and '}
respectively (similar to Fig. 11). The linear model
yields the expression

- ob (24)
Sy — S5 _F+—F_

5§ —85_

The above equation can be rewritten as:

r—-r_ )
=é|———F ) — = 2
’ <r+ - r_) 2 (25)
Once again, we express I'y and T'_ as ['y = Ty +ny

and I'_ = T'_ 4 n_ where 'y and I'_ are the expected
values and ny and n_ are the noise components.

Now the ARMS error is defined as the standard de-

viation of s’ where s’ is the solution of T'(s) = %
Solving this equation we obtain

( f+—f_—2n_ ) 6
f+—f_—|—n+—n_ 2

(- r250) (i)

Assuming [Ty —T_| > |ny —n_|and [y —T_| >
|2n_|, we obtain

N | > N |

e e |
2 r,-T_ T,.-T_
6 -
_<ﬁ+_+ﬁ ) (27)
2 \T_ -T,

Hence, the ARMS error would be

S5

6 (0} +02)

ARMS error = std(s’) = 2|f T |
+ - -

(28)

5.1 Relation between AUM and ARMS
error

Comparing the expressions for AUM and ARMS
error from equations (11) and (23) we find

AUM? o

= 166——

ARMS /2 2
+o

+ -

~ 825 if

oy mo_r~o (29)

The ratio of the square of AUM and ARMS error
is a constant. Therefore AUM and ARMS error are
monotonically related. If we redefine AUM so that
instead of using equation (9) we obtain s; and sy by
solving

I'(s) = Tyax — 0° (30)

then we find that AUM and ARMS error are linearly
related for a given focus measure and focused 1mage.

For a lens position far away from the focused po-
sition, comparing the expressions (17) and (28) for

AUM and ARMS error yields

AUM 4o

ARMS /U-zl— 402

02 if

X

oy mo_r~o  (31)

For this case, they are linearly related.



6 Noise sensitivity analysis

In this section we derive expressions for the expected
value (mean) and wvariance of a focus measure. These
are useful in computing the standard deviation o of
the focus measure and its AUM/ARMS error.

Let f(m,n) be the blurred noise free discrete image
and n(m, n) be the additive noise. The noisy blurred
digital image recorded by the camera is

fr(m,n) = f(m,n) + n(m,n) (32)

The noise n(m, n) at different pixels are assumed to be
independent, 1dentically distributed random variables
with zero mean and standard deviation o,,. This o,
can be easily estimated for a camera by imaging a
uniformly bright object and computing the standard
deviation of the grey level distribution. The images
are assumed to be of size (2N + 1) x (2N + 1) and
focus measure filter (FMF) a(4, j) of size (2M + 1) x
(2M + 1). Without loss of generality, the filtering
operation will be represented by the mowving weighted
sum (MWS) operator instead of the usual convolution
operator. MWS is equivalent to convolution if, for
example, the FMF is rotated by 180 degrees about its
center by assigning a(—i, —j) to a(i,j). Denoting the
MWS operator by « it is defined by

a(i, j)* fo(m,n) = Z Z

-Mj=—M

() f(m+i,n+))

33
In the remaining part of this paper we shall use(thg
following convention to simplify notation. A double
summation will be abbreviated with a single summa-
tion as:

PO ORI

Let g(m,n) be the image obtained by filtering the
noisy blurred image f,(m, n) with the FMF a(¢, j):

ZZZ

—-Mj=—

g(m,n) = a(i,j) *fﬂ(m’ n)
= F(m,n)+ N(m,n) (35)
where
F(m,n) = a(i,j) * f(m,n) (36)
and
N(m,n) = a(i,j) *n(m,n) (37)
The focus measure ~ is defined as
T ;Zgz(m n)
(2N + 1)2 m,n ’
2
= Ysignal + Ynoise + m X
N
Z F(m,n)N(m,n) (38)

where vsignar and vpois. are defined by:

Vsignal =

mZFz(m,n) (39)

Ynoise =

m > NE(m,n) (40)

Now the expected value of the focus measure E{v} is
(note that the expectation operator F is linear and
commutes with summation):

E = Ysignal + + —
1} = Ysigna + N 1 1)

x Y F(m,n)E{N(m,n)} (41)

m,n

where

Yn = E{'Ynoise} (42)

Since we assume 7(m,n) is zero mean, the last term
of equation (41) will vanish. Now the second term can
be written as

N M M

Tn = 2N+1QZZZ 11,11 12,]2)

L 1,J1 02,72
X E{n(m + i, n+ ju)n(m +is,n 4 ja)} (43)
In the above equation, if iy # i3 or j1 # ja, then,

since noise in different pixels are independent and zero
mean,

E{n(m+iy,n+jin(m+ iy, n+ j2)}
= E{n(m+i,,n+j)E{n(m+iz,n+j2)}
= 0 (44)
However, if i1 = i3 and j; = jo, then

E{n’(m+i1,n+j1)} = o (45)

Therefore, we get

1 N M
2/: N 2
Yv"w = — a“(4,j)o;
TSR R
= AHO'Z (46)
where
M
Ap = d’(i, j) (47)
1,J
Therefore
E{’Y} = Ysignal + Tn

= Ysignal + Ano'rzl (48)



The above equation is a fundamental result. It shows
that the expected value of the focus measure is a sum
of two components— one due to signal alone and an-
other due to noise alone. Therefore, if a focus measure
is computed on a set of images for autofocusing, the
effect of noise 1s to increase the computed focus mea-
sure by the same value on average for all images. The
reason for this is that while the image signal changes
in blur level with lens position, the noise characteris-
tics of the camera remains the same. Therefore, the
average increase in focus measure due to noise does
not change the location of the focus measure peak.
It is the variance of the focus measure that changes
the location of the focus measure peak and therefore
introduces error in autofocusing.
Now consider the variance of the focus measure:

Var{y} = E{y’} = (E{y})” (49)
From FEq.(38), noting that E{A(m,n)} = 0 and
E{N?*(my,n1)N(mz,n2)} = 0, we obtain

E{Pyz} = P}/gignal + 275igna17n + E{nyzloise}—i—

2N_|_14 Z Z ml,nl mz,nz)x

mi1,n1 M2,N2

E{N(m1, n1)N (ma, ns)} (50)
From Eqgs. (48, 49, 50) we obtain

2N+14 Z Z

F(my,n1)F(ma,na) E{N (my, nl)./\f(mz, n2)}
(51)

Note that E{'ygoise}—'yg is the variance of ¥,,4i5. which

is independent of signal. Therefore , equation (51) can
be written as:

Var{’y} = E{Pyrzwise} _75

Var{’y} = Var{'}/nozse}"i' (2N+1 4 Z Z

F(my,n1)F(ma,na) E{N (my, nl)./\f(mz, n2)}
(52)

The equation above shows that the variance of a fo-
cus measure depends on the image signal in addition
to noise level. Further simplification of the above ex-
pression 1s presented in Appendix A. The formula pre-
sented there can be applied directly in practical appli-
cations. Now we consider 3 examples to illustrate the
application of the formula. In these examples, the
noise will be modeled as Gaussian. For a zero mean
Gaussian random variable n with standard deviation
o, we have [9] E{n*} = 30}. This result will be used
in the following examples.

1. Gray Level Variance

The image 1s normalized by subtracting the mean
grey value from the grey level of each pixel. The focus
measure filter in this case is

.1 ifi=4j=0
a(i, j) = { 0 otherwise (53)

Using the formula (80) for variance derived in Ap-
pendix A we obtain

202 4¢3 al 9
Var = - + - m,n
i QN+1)° (2N +1)° n;f (m,n)

(54)

2. Gradient Magnitude Squared
For gradient squared along x-axis

a(i, j) =[=1 1] (55)

Substituting a(%, j) above in Eq. (80) for variance in
Appendix A we obtain:

1202 402
Var{y;} = In 5 + In 7 ¥
(2N +1) (2N + 1)
M4N
Y Ha(i d) * f(m )]’ (56)
where
For gradient squared along y-axis
1202 402
Var = L+ - X
) (2N +1)> (2N +1)*
M4N
> [y (i) * f(m, )] (58)

)

where

-1
Ay(i,j) = [ % ] (59)
Now, a cross item Var{v,, } is generated by the effect
of noise on 7, and v, which are not independent. See
Appendix D for an expression of Var{ysy }. Therefore,
combining Eq. (56), (58) and (119) we have

Var() 2404 402 J‘%N
ar =
[ENTy 1) 2N +1)* 4

[Ao (i, §) * f(m,n) + Ay (i, ) * f(m, n)]” (60)

3. Laplacian



The discrete Laplacian is approximated by
0 1 0
aig)=|1 -4 1 (61)
0 1 0

Substituting this a(é, j) into the formula (80) for vari-
ance we obtain

135204 402
Var{y} = 0”2 + Tn S
2N +1) (2N +1)
M+N
> [AG,§) * f(m, )] (62)
where
0 0 1 0 0
0 2 -8 2 0
A, )= 1 -8 20 -8 1 (63)
0 2 -8 2 0
0 0 1 0 0

7 The Laplacian filter

The Laplacian FMF has some desirable properties
which makes it suitable for practical applications. It
is sound, simple, rotationally symmetric, and is a lin-
ear filter (unlike the gradient magnitude). In addition
it has two additional properties under the geometric
optics model of image formation not shared by other
filters based on image derivatives. The two properties
correspond to the two cases of a noise free image: (i)
when the image does not change due to blurring as
is the case when the grey level variation is linear, the
value of the focus measure is zero, and (ii) when the
image does change as is the case when the grey level
varlation is a polynomial of second or higher degree,
the focus measure is non-zero. When the grey level
variation in a noise free image is linear, then the image
does not change due to blurring under geometric optics
model of image formation (see Appendix C for more
details). Therefore the first property is not shared by
the grey-level variance and image gradient focus mea-
sures corresponding to zeroth and first order deriva-
tives respectively. FMFs based on third and higher
order derivatives do not share the second property be-
cause when the grey level variation is only quadratic,
the corresponding focus measures are zero even though
the images change due to blurring. This is because the
third and higher order derivatives of a quadratically
varying grey level image is zero everywhere.

The first property makes it easy to test the hypoth-
esis whether a given image region has the necessary

“contrast” so that autofocusing is possible. The confi-
dence level of the hypothesis that the “contrast signal”
is indeed present in a given image region and there-
fore autofocusing is possible can be estimated from the
quantity:

T
Std("}/noise)

where v is the computed focus measure, 7, is the ex-
pected value of the focus measure if only noise was

B = (64)

present, and std(ynese) is the standard deviation of
the focus measure if only noise was present. If the
focus measure due to noise alone 7,45, has a nor-
mal distribution with mean 7, and standard devia-
tion std(¥nesse ), then @ must be 3.0 or more for 99.9%
confidence that some contrast information is present
in the image region for autofocusing.

In a sense the Laplacian eliminates all unnecessary
information (the constant and linear components of
grey level variation in the focused image and therefore
their contribution to the focus measure) and retains
all necessary information (the quadratic and higher
level components in the focused image and therefore
their contribution to the focus measure). Therefore
we recommend the Laplacian FMF for autofocusing
and depth-from-focus in practical applications. In the
presence of high noise levels, we recommend the Lapla-

cian of the Gaussian (LOG) filter [2] as the FMF.

8 Appendix A
The term E{y2,,,.} can be shown to be equal to

M M M M

42 SYYYY

M1,n1M2,N2141,5192,52 13,53 94,54

(2N +1

4
II a(ikajk)) E{n(m1 +d1,m1 + j1)
k=1

n(my + i, n1 + j2)n(ma + i3, n2 + Jjs)

n(ms +ia,n2 + ja)} (65)

The above expression can be evaluated by considering
the following cases.

Case 1: Among the four factors involving 7, at least
one of them is different from the other three. In this
case the entire term evaluates to zero.

Case 2: All the four factors involving 7n are the
same. Here the conditions €7 and Cs will both true
where

C1 ¢ (i1 = i) & (j1 = jo) & (i5 = ia) & (j3 = ja) (66)
Cy @ (mo=my + 1 —i3) & (ny = ny + j1 — ja) (67)

Therefore, the term becomes

E{n } i\f: JZVI: JZVI: Z1 ]1 13 j3)

2N + 1 F1isde
2
B - [+
= 2N n 1 Z Z 11,11
1,721 1,J1

E{n*} ZAZ (68)

(2N + 1)

Case 3: Any two pairs among the four factors in-
volving n are equal but not all four are equal. Here
we consider two subcases.



Case (a): Condition (1 is true and condition Cf
is false. In this case we get

mﬂdzzzzzmzm>
mM1,N1 M2,N2121,71 23,73
T DD D UCUNNILNY
mi1,m1 01,51 93,53
4 42 1
= oA |l- — (69)
(2N +1)
Case (b): Define conditions
03 : (m1+i1 Im2+i3) &(nl +]1 :n2+j3)

& (my 4+ iy = ma +1i4) & (01 + jo = n2 + ja)

04 : (m1+i1:m2—|—i4)&(n1+j1=n2+j4)
& (my + iy = my +i3) & (1 + j2 = na + j3)
(71)

From the above conditions we deduce respectively
Cs @ (lh—i3 =1 —ig) & (j1 —jz = jo — ja) (72)

Cs : (lh—ta=do—i3) & (j1 —ja=J2 —j3) (73)

Let () be a boolean variable with value 1 if the follow-
ing condition is true and zero otherwise:

Q o (05 OR 06) & NOT 01 (74)

In this case we obtain

M M M M 4

Now consider

2N+14Z Z (1, 1) (ma, m2)

miy,n1Mma,n2

4
E{N(m1,n1)N(m2,n2)} = IR
Z Z Z Z a(iy, ji)a(iz, j2) X

m1,n1M2,N2141,51 02,52
E{n(my + i1, n1 + j1)n(ma + i2,n2 + ja2)}
X F(ma,n1)F(ma, ny) (76)

The term involving 7 is non zero only when my +1¢; =
mo~+1t2 and ny 4+ j; = no+j3. Introducing the change
of variables m = my +i; = mo+is andn =ny +j; =

na + jo for =2(M + N)—1<m,n <2(M+ N)+ 1,
therefore we get

M+N M

2N—|—14Z Z (i1, j0)F(m —i1,m = j1)

m,n 11,J1

M
x [ > aliz, j2) F(m — iz, n = j2)
i2,J2
40_2 M4+N N
— WZ (i,7) * F(m,n)]
M4+N
- 2N+14 Z (i, ) * f(m,n))*
4 2 M-I—N

where * represents the convolution operator and
A(ij) = ali,j)*a(i, j) (78)
F'(m,n) = A(i,j) * f(m,n) (79)
Combining all the results from eqs. (46, 68, 69, 75
and 77), we get
AR E{n"}
(2N 4 1)
M M M M

3233 (Tl +

21,J122,J2 23,73 %4,]4

2 4 4
Aroy o

(2N +1)° (2N i 1)?

Var{y} =

40,% ,
(2N + 1)2 P}/szgnal
(80)
where
M4N
L na F'*(m,n) 81
Tsignal = oN 1 1)2 n; (81)

In the above equation, the first three terms do not
depend on the image signal. They can be computed
and prestored. Among these three terms, the first
two can be computed manually, but the third term
may need a small computer program to evaluate. The
last term in the above equation depends on the image
being processed. Exact computation of this term re-
quires knowledge of the noise-free image which is not
possible. However the value of the term can be approx-
imated using the noisy image g(m,n). The approxi-
mation is valid for high signal to noise ratio. Therefore
we have

AR E{n"} Aoy &

(2N +1)* (2N+1)° (2N i 1)°

Var{y} =~



M M M M 4

Y Y Yo (H j)
1:122,]2 Je;jj]\;hh

(2N +1)* 2

m,n

) * g(m, n))? (82)

9 Appendix B: Integral of absolute
value of derivative of an image is not

a sound focus measure
It is shown here that a class of images can be con-
structed for which the integral of absolute values of
derivative of an image is not a sound focus measure
First we consider the case of a one-dimensional sig-
nal and then indicate how it can be extended to two-

dimensional images.
A PSF h(x) has the properties that

h(z) > 0 for all (83)
and

/00 h(z)dx =1 (84)

Now consider an arbitrary function p(x) with prop-
erties p(z) > 0 for all # and f z)dr = 1. Let y;

be a focus measure defined as the mtegral of the ab-
solute value of the i-th derivative of a blurred signal

g(z), i.e.
< |dg(x)
;= | d
= || (85)
Let g(z) = h(2)® f(x) where f(z) is the focused signal

corresponding to g(x) and @ denotes the convolution
operator. Therefore
di

o= [ | o )| e
00 dz
x
Let f(x) be the solution of the differential equation

d'f(x)
dzt

da (86)

= Ap(x) (87)

where A is any positive constant, i.e. A > 0. We have

wo= a4l e

i p(z)| dx
= A (88)

The last step of the derivation above can be justified
by the following well-known result in the probability
theory. If h(z) and p(x) are the probability density
functions of two independent random variables x5 and
zp respectively, then the probability density function

of their sum, i.e. 2p+u,,is h(z)@p(z), h(x)p(z) > 0

for all x, and

/_ " h(e) © ple)de = 1 (89)

Therefore, for a focused signal f(z) given by the so-
lution of Eq. (87), The focus measure v; remains the
same no matter what h(xz) is. Therefore 4; is not sound
in that it does not have a maximum when h(z) = §(x)
(dirac delta function). Two particular examples are
p(x) = 6(x) for v1 and y2 where f(z) will be A4 - u(x)
and A - ramp(x) respectively. Note that u(z) is the
unit step function and ramp(x) is the unit ramp func-
tion defined as

x ifx>0
ramp(e) = { 0 otherwise (90)

The one-dimensional case above can be easily ex-
tended to two-dimensional images by assuming that
the image changes along only one of the dimensions
and is a constant along the other dimension. A more
general counter example can be constructed as follows:
Let

g(z,y) =0 if |z| > Bor |y| > B (91)
Yi = Yei + Vyi (92)
d'g(z, y)‘
o R de d 93
! 2B)* J_p J- Oz’ v (93)
L7 P |0, y) ‘
;= ] dre d 94
NPTk /—B /—B cdy (99
the PSF be separable
h(@,y) = ha(x) - hy(y) (95)
and
9 flz,y) _
B 2 C)) (96)
9 flz,y
3(yz' ) Ay py(y) (97)

where py(z) and p,(y) have the properties of a prob-

ability density function (i.e. they are always positive
and they integrate to unity). Therefore

T 2By //

dx dy

o (a2 1y 00) © T (o)

he(2)) @ (As - pa())]

(2B)’
dx dy

- QB//

(. i e >®px<x>}‘



dx dy
A(L‘
2B
(98)

Similarly we can obtain v,; = ’24—5. Hence the proof.

10 Appendix C: Properties of Lapla-

cian based focus measure

The two properties of the Laplacian based focus
measure discussed in section 6 are proved here. First
it is shown that: (i) the image does not change due to
blurring when the grey level variation is linear, and
in this case, (ii) the focus measures based on grey
level variance and energy of the image gradient are
in general non-zero, but the focus measure based on
the Laplacian is zero.

Tt is shown in [12] that when an image f(x,y) given
by a third order polynomial is blurred to obtain g(z, y)
by a rotationally symmetric PSF h(z,y), we have

g(e,y) = f(e.y) + =7V f(a,y) (99)

where hs g is the second moment of A(z, y) defined by

e [

Eq. (99) can be used to obtain an expression for
g(x,y) when f(z,y) is linear by setting the coefficients
of second and third order terms in x and y to be zero.
Therefore, if

(z,y) dz dy (100)

f(x,y) = ao + arz + azy (101)

we have
g(z,y) = f(z,y) (102)

because
Vif(z,y) =0 (103)

Eq. (102) proves that the image does not change due
to blurring when the grey level variation is linear (Eq.
(101)). The brightness normalized image g,(z,y) is
obtained by dividing g(#, y) by its mean in an interval
—A<e <A —A<y< A Wehave

ag + a1 + azy
ap

gn(z,y) = (104)

It can be easily verified that, in general, the focus
measures of g, (z,y) computed in the interval —A4 <
r< A —A <y <A, is non-zero for image grey level
variance, and energy of image gradient along = and y
directions, but the Laplacian based focus measure is

Z€ero since
Vign(x,y) =0 (105)

Next it is shown that: (i) when the image is a sec-
ond order polynomial (quadratic), it changes due to
blurring, (ii) the Laplacian based focus measure of the

image is non-zero, and (iii) focus measures based on
third and higher order derivatives are zero. Let

(106)

Setting the coefficients of third order terms in z and
y to be zero in eq. (99), we obtain

ag+ (as + as) hoo + a1z
+asy + azr® + agzy + asy’

flz,y) = a0+ a2+ ary + az®® + aszy + asy’

glz,y) =
(107)

After normalizing the image by dividing it by its mean
we have

9(z,y)
ap + (as + as) hao+

gn(z,y) = (108)

A (a3 + as)

The Laplacian of the normalized image can be ex-
pressed as

2 (Clg + Cl5)
Clo-l—(as-l-as) (1-1- 3h20)

Eq. (108) proves that the image in general changes
due to blurring. Eq. (109) shows that the Laplacian
based focus measure is in general non-zero. In Eq.
(108), we see that third and higher order derivatives of
gn(x,y) are all zero. This proves that focus measures
based on third and higher order derivatives are zero,
even though the image has changed due to blurring.
If g(x, y) is not normalized for brightness, then f(z,y)
has to be at least a 4-th order polynomial in order for
the Laplacian focus measure to change for g(x,y) as
compared with f(z,y).

11 Appendix D. Gradient Focus Mea-

sure

The accurate derivation for the variance of fo-
cus measure using gradient magnitude squared filter
should consider a cross item generated through x di-
rection and y direction. If we start with our definition
from equation (38), the total focus measure v would
be sum of along x-axis 7, and y axis 7, components
and it becomes:

Vign(z,y) = (109)

YT = YotV

2

2
+  Ysy + Yny + W;Fy(m, n)Ny(m, n)

(110)

where the suffix sz and nz mean the focus measure
component contributed in signal and noise along x axis
separately as so do sy and ny.

If the noise characteristics are the same in both of
direction, the expected value of focus measure in the
equation (48) is able to be applied here as:

E{7} = Yo + 75y + 4oy, (111)



However, a cross item appear as we take square to

both of v and E{v}. If we define:

9 N
Fo N, = W;Fx(m,n)/\fx(m,n) (112)
as well as
9 N
FyNy = WZFy(m,n)Ny(m,n) (113)

)

and substituting to eq. (110), then the variance will
be written from eq. (49) as:

Var{y} = Var{y.} + Var{y, } + Var{ysy}
= B{(1se + 202 + FuN,) " +
+2 (Yoo + 205 + FoNa) (vsy + 207 + FyNy )} —
{(’st + 202)2 + ('ysy + 202)2 + 2 (’ysx + 202) X

(7sy +207)} (114)

where

Var{ys} = E{(yer + 202 + FoNa)’} = (720 + 202)°
(115)

and

(vsy + 2‘7721)2

(116)
The Var{vy,} and the Var{y,} are exactly same as
we derived in eqs. (56) and (58). Thus, the Var{yy}

1s a cross term and equals to:

Var{y,} = E{<78y + 2‘7721 + FyNy)z} -

2E{ (Yoo + 202 + FoNo) (vey + 202 + FyN) }
—2 (Ysx + 207) (Ysy + 207) (117)
Because of E{N,} = E{N,} = 0, the above equation

can be simplified and expanded as:

Var{yey} = QE{FN FN}

- 2N+14 Z Z

mi,n1 Ma,N2

E{N; (ml,nl)/\fy(mz,nz)}

- e ey

mi1,n1 M2,"21%21,711%2,J2
ax (i1, j1)ay(i2, j2)Fp(ma, n1) Fy(ma, na)
E{n(ml+il,nl+ jl)n(m2+i2,n2+ j2)}
(118)

m1,n1 (mz,nz)

The term E{n(ml +il,nl + jl)n(m2 + i2,n2 + j2)}
is non zero only when m = my + i1 = ms + i and

(7831 + 2‘7721 + Fy/\/y)2

n=mny+j1 =na+js for 2(M 4+ N)—1<mn<
2(M + N) + 1, therefore we have

MAN
Var{yey} =

(2N+1 * Z

M

> an(il, j1)Fo(m —il,n = j1) | x

21,71

M
Z ay (2, j2)F,(m — i2,n — j2)
= m n; [ag (2, §) * Fp(m,n)] x
[ay (4, ) * Fy(m, n)]
M+N
= 2N—|—14Z 2(i,7) % f(m,n)] x
[Ay(la])*f(man)] (119)
where
Az (4, 7) = ax(4,)) *az(d,)) (120)
and
Ay(i,5) = ay(i,j) *ay(i, ) (121)

, they are the same as Eq. (57) and Eq. (59) respec-
tively.
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