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Abstract

A method is described for selecting the optimal focus measure with respect to
grey-level noise from a given set of focus measures in passive autofocusing and depth-
from-focus applications. The method is based on two new metrics that have been
defined for estimating the noise-sensitivity of different focus measures. The first met-
ric — the Autofocusing Uncertainty Measure (AUM)- is useful in understanding the
relation between grey-level noise and the resulting error in lens position for autofo-
cusing. The second metric-Autofocusing Root-Mean-Square Error (ARMS error)- is
an improved metric closely related to AUM. AUM and ARMS error metrics are based
on a theoretical noise sensitivity analysis of focus measures, and they are related by a
monotonic expression. The theoretical results are validated by actual and simulation
experiments. For a given camera, the optimally accurate focus measure may change
from one object to the other depending on their focused images. Therefore selecting
the optimal focus measure from a given set involves computing all focus measures in

the set.
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1 Introduction

Electronic cameras can be autofocused by searching for the lens position that gives the best
focused image [4, 5, 6]. In this approach, typically, a focus measure is computed for images
acquired at several different lens positions, and the lens is moved to that position where the
focus measure of the image is a maximum. The focused lens position v (see Fig. 1) depends
on the distance u of the object to be focused and the focal length f of the lens. They are
related by the lens formula

T= o4 (1

This same relation is used in depth-from-focus (DFF) methods to compute the object dis-
tance u from the focused lens position v [4, 5, 6].

Experimental evaluations of different focus measures have been reported in [1, 2, 3]. So
far there has not been any theoretical treatment of the noise sensitivity of focus measures. In
the existing literature, all known work have been a combination of experimental observations
and subjective judgement. The noise sensitivity of a focus measure depends not only on the
noise characteristics but also on the image itself. The optimally accurate focus measure for a
given noise characteristics may change from one object to the other depending on its image.
This makes it difficult to arrive at general conclusions from experiments alone.

For a given camera and object, the most accurate focus measure can be selected from a
given set through experiments as follows. For each focus measure, the object is autofocused
several times, say 10, starting with an arbitrary default lens position. The mean of the 10
focused positions and their standard deviation are an estimate of the correct focused position

and root-mean-square (RMS) error respectively. The focus measure with the minimum



estimate of RMS error is taken to be the optimal. In practical applications such as consumer
video cameras or digital still cameras, it is desirable to find the best focus measure from a
given set by autofocusing only once. It is quite undesirable to repeat 10 or several trials.

It one has a detailed and accurate information on the focused image of the object to
be focused and the camera characteristics such as its OTF, noise behaviour, and camera
parameters, then it would be possible to estimate the RMS error theoretically with only one
trial. However such information is rarely available in practical applications.

In the absence of such detailed and accurate information, we propose two new metrics
named Autofocusing Uncertainty Measure (AUM) and Autofocusing Root-Mean-Square Error
(ARMS error) both of which can be computed with only one trial of autofocusing. In DFF
applications, AUM and ARMS error can both be easily translated into uncertainties in depth
using Eq. (1). The key assumption underlying the definition of AUM and ARMS error is
that the mean value of focus measures are locally smooth with respect to lens position
(e.g. quadratic near the peak). AUM and ARMS error metrics are general and applicable
to any focus measure satisfying the local smoothness assumption. The analysis here deals
with focusing errors caused only by grey-level noise and not other factors such as non-front
parallel surfaces. The analysis here shows that the autofocusing noise sensitivity of a focus
measure depends on the image of the object to be autofocused in addition to the camera
characteristics. For an object with unknown focused image, finding the optimally accurate
focus measure involves computing all the candidate focus measures at a set of lens positions

and computing AUM/ARMS error for each of the lens positions.



2 Model of focus measures

A detailed discussion of this topic can be found in several papers including [3]. Here we
summarize some relevant results based on geometric optics.

When a point object P is blurred on the image detector ID (see Fig. 1) it is imaged as
a blur circle P” of radius R. This image h(x,y) is the point spread function (PSF) of the
camera. In a small image region if the imaged object surface is (approximately) a plane
normal to the optical axis, then the PSF is the same for all points on the plane. Then the
blurred image g(x,y) in the small image region on the image detector ID is equal to the
convolution of the focused image f(x,y) and the PSF h(x,y). Therefore, if G, F, and H
are the Fourier transforms of ¢, f, and h, respectively, then G = HF. The OTF H(w,v)
has characteristics of a low-pass filter. As the blur increases, the higher frequencies are
attenuated even more.

A general focus measure is modeled as follows. First the image for which the focus
measure needs to be computed is normalized for brightness by dividing the image by its
mean brightness. Then it is convolved with a focus measure filter (FMF). Then the energy
(sum of squared values) of the filtered image is computed. This energy is the focus measure
(see section 6 for more details). Most FMFs correspond to filters that emphasize (or amplify)
high frequencies. This seems appropriate since blurring has the opposite effect, i.e. high
frequency attenuation.

The focus measures modeled here cover most of the focus measures that have been used
by researchers so far [3] except those based on sum of absolute values of image derivatives

[1, 2]. Although AUM and ARMS error metrics are applicable to these focus measures also



(which are based on sum of absolute values of image derivatives), we have not carried out a
complete analysis of them here since they have been proved to be unsound [4, 5, 6] based on
the effect of the OTF main lobe. These unsound focus measures may be optimal for some
scenes, but for some other scenes they can give incorrect results even in the absence of all

noise.

3 Autofocusing algorithm

Fig. 2 shows a typical plot of a focus measure as a function of lens position. The problem
is to find position sy where the focus measure is maximum. Due to limited depth of field of
the camera, we assume that the change in the best focused image is indistinguishable by the
image detector when the lens is moved by an amount of up to +¢/2 from s;.

We propose the following algorithm for autofocusing. First the focus measure is computed
at the current lens position and the lens is moved by about 10e to another position. The
focus measure is again computed. The sign of the change in the two focus measures is used
to determine the direction in which the lens should be moved. Then a coarse search is used
to narrow the search interval to about 10e. The coarse search may use a binary or Fibonacci
or a sequential search. See [4, 5, 6] for details. In this interval of size 10¢ containing sy, a
focus measure is computed at three positions which are about 5e apart. Then a quadratic
or a Gaussian is fitted to these three (or more if desired) points. The position where the
fitted curve has a maximum is taken to be the focused position s;. Note that, according
to geometric optics, the focus measure curve will be symmetric about the focus position s;.

Also, shifting the focus position s; will shift the curve by the same amount with only small



change in its shape.

4 Autofocusing Uncertainty Measure (AUM)

First we introduce AUM as a metric for focus measures to illustrate some underlying con-
cepts. Later we introduce the ARMS error which is based on weaker assumptions than AUM.
At any lens position s¢ (see Fig. 3), each focus measure v is associated with a probability
density function p(v(so)), an expected value (mean) E{~v(so)}, and a standard deviation
std{~(s0)}. However, the focus measure with the minimum standard deviation is not neces-
sarily the best because we are not interested in the accuracy of the focus measure itself, but
in the corresponding mean lens position and its standard deviation. Estimating the standard
deviation of the lens position requires a knowledge of the function that relates the expected
value of the focus measure to the lens position (see Fig. 3). This function depends on the
camera PSF as a function of camera parameters and the focused image of the object. In
the absence of accurate information about the camera PSF and the object, the function is
estimated in a desired interval through sampling and interpolation. For example, near the
maximum, the focus measure may be computed at 3 to 5 nearby lens positions and a smooth
function such as a quadratic polynomial or a Gaussian is fitted. The assumption is that the
computed values of the focus measure are (nearly) the expected values of the focus measure.
This assumption will be removed later in defining the ARMS error.

Referring to Fig. 3, the AUM at the maximum of the focus measure F(sys) is defined as

follows:

AUM = s, — sy where s; < sy < 85, [7(s/) = T(s1)| = [F(s/) = F(s2)| =0 (2)



where o is the standard deviation of the focus measure. In order to compute AUM, we need
to know o. In Section 6 we derive a general formula that can be used to estimate o as a
function of the image and its noise level. Further we need to know the shape of the curve
7(s) near the peak. As discussed earlier, the position of 7, and the function 7(s) near 7,
are estimated by fitting a curve (quadratic or Gaussian) to a few points (at least 3) near the
maximum. Intuitively, AUM is a measure similar to the RMS error in lens position that can
be determined through repeated trials.

Fig. 4 shows a typical comparison of two focus measures. The maximum values of the
two focus measures have been normalized to be the same. We see that although oy > oy,
AUM; < AUMy, implying that ~; is better than ;.

For a position far away from the focused lens position sy see [4, 5, 6] for a definition of

AUM.

5 ARMS Error

Now we derive an explicit expression for the Autofocusing Root-Mean Square Error (ARMS
error). An exact expression for the RMS error depends on the Optical Transfer Function
(OTF) of the camera and the Fourier spectrum of the focused image. Deriving such an exact
expression is complicated because of the nature of the camera’s OTF and the variability
of the Fourier spectrum of the focused image for different objects. Further, usefulness of
such an expression in practical applications is limited since all the information necessary to
evaluate the expression (e.g. OTF and camera parameters) may not be available. However,

an approximate expression that is very useful in practical applications can be derived under



some weak assumptions. The assumption we use is that the expected value of the focus
measure is locally smooth with respect to lens position. We model this local smoothness by a
quadratic polynomial, but the analysis here can be extended to other models (e.g. cubic or
Gaussian). However such extensions do not appear to offer significant advantages compared
to the quadratic model in practical applications.

Referring to Fig. 5, focus measure « is modeled to be locally quadratic in a small interval

of size 26 with respect to lens position near the focused position:
(s) = as® +bs + ¢ (3)

Let the focus measure be given at three arbitrary positions which are ¢ apart. Without loss
of generality, let the three positions be s_ = —6, sg = 0, and sy = +6. Let I'_ = y(s_),
I'o = v(so) and I'y = v(s4). Near the focused position, I'y > I'_ and I’y > I';.. Solving for

the coefficients of the quadratic expression, we obtain

Iy + T — 2T, I, —T_
a = b:

7 T ()

Let s; be the lens position where the focus measure becomes the maximum and I'y =

v(sf). At ss, the derivative of I' vanishes. Therefore we obtain

—b & (T, —T.)

YT 94 T 2(T, T, —T) (5)

Substituting the above equation in (3) we obtain

b? — 4ac

Ly=- 4a

(6)
We are interested in the RMS value of sy. For this reason, the focus measure I'; will be

expressed as the summation of their expected value I'; and their noise component n;:

Fi = TZ + 1, fOT 1= —,0,—|—. (7)



Therefore, Eq. (5) is expanded as

6 r,-T. —n_ o —ng —n_\
sp o= = | =t I I R (8)
2 \2Ty T, —T_ T, —T_ 9Ty — T, —T_

Near the focused position we have I'y > ', and Iy > I'_. Therefore, if the signal to noise

ratio is sufficiently large, we have
2T — T4 —T_| > |2ng — ny — n_ (9)
We obtain s; &~ s’ where
s =3y (1 + ﬂ) (10)

Note: we cannot assume that [y —'_| > |ny — n_| because, near the focused position,

I'y and I'_ may be nearly equal. Simplifying the expression for s we obtain

) Ny —n_
/ — +
- A L 11
o 5f+2(2r0—r+—r_) (1)

Now the ARMS error is defined as the standard deviation of s, i.e.

\Jo2 4+ o2
ARMS error = g * (12)

(2T, —T, —T_)

where o, and o_ are the standard deviations of the focus measures I'y and I'_ respectively.

For a lens position away from the maximum focused position, we find that I'_ < 'y < T',.
In this case, the local linear model for the focus measure will be better than the local
quadratic model. The ARMS error for this case is defined based on focus measures at only
two lens positions (rather than three) that are ¢ apart. Without loss of generality, let the
two positions be s_ = —6/2 and s; = 4+6/2 and the focus measures at these points be I'_
and I'y respectively (similar to Fig. 6). The linear model yields the expression

s—s_ I'-T_
S_|_—S_ _F_|_—F_

(13)

9



The above equation can be rewritten as:

3:5(%)_5 (14)

Once again, we express I'y and I'_ as 'y =T, +ny and '_ =T_ + n_ where I'; and T'_
are the expected values and ny and n_ are the noise components.

Now the ARMS error is defined as the standard deviation of s’ where s’ is the solution of
I'(s) = @ Solving this equation and assuming [Ty —T_| > |ny —n_|and [Ty —T_| >

|2n_|, we obtain:

§ _
O on fRetne (15)
2\T_—T,

Hence, the ARMS error would be

6+/o2 4+ o2
ARMS error = std(s') vVt (16)

T T, — T
It is shown in [4, 5] that for points near the focused position, square of AUM is propor-
tional to ARMS error ( AUM? = (8y/28) ARMS), and for points away from the focused

position, AUM and ARMS error are proportional (AUM = 2/2ARMS).

6 Mean and Variance of focus measures

In this section we derive expressions for the expected value (mean) and variance of the focus
measures modeled in Section 2. These are useful in computing the standard deviation o of
the focus measure and its AUM/ARMS error.

Let f(m,n) be the blurred noise free discrete image and n(m,n) be the additive noise.

The noisy blurred digital image recorded by the camera is

fn(mvn) = f(mvn) + n(mvn) (17)

10



The noise n(m,n) at different pixels are assumed to be independent, identically distributed
random variables with zero mean and standard deviation o,. This o, can be easily estimated
for a camera by imaging a uniformly bright object and computing the standard deviation of
the grey level distribution. The images are assumed to be of size (2N + 1) x (2N + 1) and
focus measure filter (FMF) a(, j) of size (2M +1) x (2M +1). Without loss of generality, the
filtering operation will be represented by the moving weighted sum (MWS) operator instead
of the usual convolution operator. MWS is correlation and is equivalent to convolution if,
for example, the FMF is rotated by 180 degrees about its center by assigning a(—:¢,—j) to

a(2,7). Denoting the MWS operator by x it is defined by

M

a(i,j)* fo(m,n) = Y ali, ) fo(m +i,n+ j) (18)

]

where a double summation is abbreviated with a single summation to simplify notation.
Let g(m,n) be the image obtained by filtering the noisy blurred image f,(m,n) with the
FMF a(z,7):
glm,n) = a(i,j)* fy(m,n) = F(m,n) + N(m,n) (19)
where

F(m,n)=a(i,j)x f(m,n), N(m,n)=a(i,j)*n(m,n) (20)

The focus measure ~ is defined as

V= G D)

(2N +1)
9 N
Ysignal t+ Vnoise m ; F(m,n)N(m,n) (21)
where vgignar and Y,0ise are defined by:
1 N 1 a
Vsignal = m;FQ(m,n) » Vnoise = m;/\ﬂ(man) (22)

11



Now the expected value of the focus measure E{~} is (note that the expectation operator

F is linear and commutes with summation):

E{v} = signat + E{Vnoise } + ﬁZF m,n)E{N(m.,n)}

= Ysignal + Ano-i (23)

where
M

=3 (i) (24)

Z7j

The above equation is a fundamental result. It shows that the expected value of the
focus measure is a sum of two components— one due to signal alone and another due to noise
alone. Therefore, if a focus measure is computed on a set of images for autofocusing, the
effect of noise is to increase the computed focus measure by the same value on average for
all images. The reason for this is that while the image signal changes in blur level with lens
position, the noise characteristics of the camera remains the same. Therefore, the average
increase in focus measure due to noise does not change the location of the focus measure
peak. It is the variance of the focus measure that changes the location of the focus measure
peak and therefore introduces error in autofocusing.

Now consider the variance of the focus measure:

Var{y} = B{3?} - ({1}’ (25)
we obtain:
A E{n' Aroy, ol
Var{y} = “afnT) 2 N
2N +1)*  eN+1D* (2N +1)
M M M M 1?2 |
’ —I_ — signa 26
2127]:1222:]2232,]:32%@ (kl:[l Zk ]k)) (2N—|—1)27 gnal ( )

12



where

A(lvj) = a(ivj) * a(_iv _]) ’ F/(mvn) = A(lvj) * f(mvn) (27)

’}/gignal = m Z%,;I;N F/Q(m7 n) (28)

and ) a boolean variable with value 1 if the following condition is true and zero otherwise:

where
Cl : (i1 = iz) & (]1 = ]2) & (iS = i4) & (]3 = j4) (30)
05 . (Zl — i3 = iz — Z4) & (]1 - j3 — j2 - ]4) (31)
06 . (Zl — i4 = iz — 13) & (]1 - j4 — j2 - ]3) (32)

The equation above shows that the variance of a focus measure depends on the image signal
in addition to noise level. The first three terms do not depend on the image signal. They
can be computed and prestored. Among these three terms, the first two can be computed
manually, but the third term may need a small computer program to evaluate. The last
term in the above equation depends on the image being processed. Exact computation of
this term requires knowledge of the noise-free image which is not possible. However the value
of the term can be approximated using the noisy image ¢g(m,n) in place of f(m,n). The
approximation is valid for high signal to noise ratio [4, 5, 6].

The formula presented above can be applied directly in practical applications. Now we
consider three examples to illustrate the application of the formula. In these examples,

the noise will be modeled as Gaussian. For a zero mean Gaussian random variable n with
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standard deviation o, we have E{n'} = 3c!. This result will be used in the following

examples.

1. Gray Level Variance

The image is normalized by subtracting the mean grey value from the grey level of each

pixel. The focus measure filter in this case is

o 1 ife=5=0
a(e,j) =
0 otherwise

Using the formula (26) for variance we obtain

204

Varts} = oy ¥ (2N—|—14Zf ™)

2. Gradient Magnitude Squared

For gradient squared along x-axis and y-axis, respectively

al’(ivj) = [_1 1]7 ay(ivj) = [_1 1]T

Substituting a,(z,7) and a,(¢, j) above in Eq. (26) for variance, we obtain:

2404 4g? MV

Var{~y} = ot & > A # fm,n) + Ay(2,5)

2N +1)"  (2N+1)" o=

where

Al’(ivj): [_1 2 _1]7 Ay(ivj): [_1 2 _1]T

3. Laplacian

The discrete Laplacian is approximated by

0 1 0
a(i,j)=11 —4
0 1 0

(33)

(34)

(37)

(38)



Substituting this a(, j) into the formula (26) for variance we obtain

4 2 M+N
Varls) = Gure gy & G ) (39)
where ) )
0 1 0
0 -8 0
Al,j)=11 -8 20 -8 1 (40)
0 -8 0
0 1 0

7 Experiments

In the first set of experiments, Eq. (26) for the variance of focus measures was verified as
follows. The autofocusing algorithm described earlier was implemented on a system named
Stony Brook Passive Autofocusing and Ranging Camera System (SPARCS) [3]. In SPARCS,
a 35 mm focal length lens is used. The lens is driven by a stepper motor that can move the
lens to 97 different step positions. The standard deviation of the camera noise was estimated
by imaging a flat and uniformly bright object and then computing the grey level variance
of the recorded image. Three objects labeled A,B, and C (see Fig. 7) were used in the
experiments.

An object was placed in front of the camera, and for some fixed lens position, 10 images
of size 32 x 32 of the object were recorded. These images slightly differed from each other
due to electronic noise. A given focus measure was computed for each of the 10 images.
The standard deviation of the resulting 10 focus measures was then computed. This was
the experimentally determined standard deviation of the focus measure. The theoretical

estimation of the standard deviation of the focus measure was computed using equation
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(26). For this purpose, the standard deviation of the noise was obtained as mentioned
earlier using a flat uniformly bright object. The noise-free image needed in equation (26)
was obtained by averaging 4 noisy images of the object. Table 1 shows the experimentally
computed and theoretically estimated standard deviations of different focus measures. We
see that the two values are close thus verifying Equation (26).

In the next experiment, the objects A, B, and C, were autofocused using the algorithm
described in Section 3. In each case, the experimental and theoretical ARMS error were
computed (the unit is lens steps). Near the focus position, images were recorded at 3 positions
s_, so and s, which were 5 steps apart. At each position, 10 images were recorded, and
using these the mean and the standard deviation of the focus measure there were computed.
Then the theoretically estimated ARMS error was computed using Eq. (12). The same
data was used to compute 10 experimental focus positions using Eq. (5). The standard
deviation of these 10 positions was the experimental ARMS error. The resulting values are
shown in the last two columns of Table 1. We see that they are very close. These values
also indicate the relative autofocusing accuracy of the three focus measure filters— grey level
variance, gradient magnitude squared, and Laplacian squared. The measured noise standard
deviation was 0.95 (grey level units) for the camera, and the SNR for the three objects were
35 dB, 28 dB and 20 dB respectively.

Three main conclusions can be drawn from the experimental results. First, for a given
object (i.e. fixed image content), ARMS error decreases with increasing signal-to-noise ratio
(SNR). This implies that low contrast objects and noisy cameras have more autofocusing
error. Second, the focus measure with minimum standard deviation is not necessarily the

focus measure that gives minimum error in autofocusing. Third, the best focus measure could
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be different for different objects depending on both image content and noise characteristics;
SNR alone cannot be used to determine the best focus measure. For example, the best
focus measure for the objects with SNR 35 dB and SNR 28 dB are the Laplacian squared,
but for the object with SNR 20 dB, the best focus measure is gradient magnitude squared.
Autofocusing of object C was not possible using grey level variance due to the absence of a
well defined peak. Experiments similar to the ones above were also carried out on simulated

image data (see [4, 5, 6]).

8 Conclusion

ARMS error has been defined as a metric for selecting the optimal focus measure for auto-
focusing with respect to grey-level noise from a given set of focus measures. It is based on
the assumption of local smoothness of focus measures with respect to lens position. ARMS
error can be applied to any focus measure whose variance can be expressed explicitly as a
function of grey-level noise variance. Such an expression has been derived for a large class of
focus measures that can be modeled as the energy of filtered images. Equations 23 and 26
for the mean and variance respectively of a focus measure along with Equations 12 and 16
for ARMS error completely specify the dependence of autofocusing error on both grey-level
noise and image content. These equations can be used to estimate the autofocusing accuracy
of different focus measures, and the one with minimum error can be selected for applica-
tion. In applications where computation needs to be minimized by computing only one focus
measure, we recommend the use of the Laplacian as the focus measure filter. Laplacian has

some desirable properties such as simplicity, rotational symmetry, elimination of unnecessary
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information and retaining of necessary information [4, 5, 6].

This work can be extended in several ways. First, explicit expressions for the variance of
other focus measures such as sum of absolute values of image derivatives could be derived so
that ARMS error can be used to estimate their autofocusing accuracy. Second, in the defi-
nition of ARMS error, the local smoothness of focus measures could be modeled differently
than here. Third, deriving an optimal focus measure filter for a given image and noise level

remains to be investigated.
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Figure 7: Texture image

std of FMF ARMS
FMF | OBJ (Sd’\éF; Theoretical | Experimental | Theoretical | Experimental
A 35 18.92 17.27 0.020 0.018
LAP B 28 371 4.05 0.044 0.043
C 20 1.67 1.37 0.090 0.100
A 35 5.87 6.31 0.023 0.024
GRD B 28 1.06 1.25 0.048 0.049
C 20 0.32 0.46 0.060 0.070
A 35 1.82 2.13 0.025 0.028
VAR B 28 0.85 1.02 0.100 0.110
C 20 N/A N/A N/A N/A

Table 1: LAP: Laplacian, GRD:Gradient Magnitude Squared, VAR: Variance, OBJ:Object.
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