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Abstract of the Dissertation

Computer Vision Techniques for Complete 3D

Model Reconstruction

by

Huei-Yung Lin

Doctor of Philosophy

in

Electrical and Computer Engineering

State University of New York
at Stony Brook

2002

This dissertation addresses the problem of automatic 3D model reconstruc-
tion of real objects. It has a number of applications in both computer vision and
computer graphics areas such as industrial inspection, reverse engineering, Internet
Web content and E-commerce. Current 3D modeling techniques require significant
manual intervention and use expensive hardware systems for data collection. In
this research, we present a complete and low-cost digital vision system to create
photo-realistic 3D models. In our approach, the reconstruction of 3D models in-
volves four major steps: 1) data acquisition, 2) registration, 3) surface integration,
and 4) texture mapping. Partial 3D shapes and texture information are acquired
from multiple viewpoints using rotational stereo and shape from focus (SFF). Rota-
tional stereo model is first introduced in this work to acquire the depth information.
Rotational stereo provides the flexibility of controlling the effective stereo baseline
and it can incorporate existing stereo matching techniques. It provides a fast and
accurate approach for 3D shape recovery. The resulting range images are registered
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to a common coordinate frame according to the acquisition viewpoints. The accu-
racy of the initial registration is improved by finding the rotation and translation
matrices iteratively by a least-squares error minimization approach. The registered
range data are then integrated into a surface model using three different approaches.
A new algorithm named Region-of-Construction is developed for fast surface inte-
gration. It directly exploits the structure of the raw range images and determines
regions corresponding to non-redundant surfaces which can be stitched along the
boundaries to construct the complete 3D surface model. The algorithm is compu-
tationally efficient and has low sensitivity to noise and registration error. A final
photo-realistic 3D model is obtained by mapping the texture information recovered
by SFF onto the complete surface model representing 3D shape. A digital vision
system has been built and the algorithms have been implemented on the system.
The results of 3D model acquisition for several real objects are presented.
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Chapter 1

Introduction

1.1 Problem Statement

Reconstructing 3D computer models from existing objects is an important
problem in many computer vision research areas such as reverse engineering (re-
verse CAD), pattern recognition, and industrial inspection. More recently, as a
result of the availability of fast, inexpensive graphics hardware and technologies
such as VRML-ready Internet browsers, the reconstruction of 3D models has be-
come one of the most interesting subjects in both computer vision and computer
graphics applications. However, in the past few decades 3D models of real objects
were often created manually by users. This process is usually time-consuming and
expensive. Therefore, techniques using low-cost equipments to obtain 3D models
automatically from real objects could have great significance in practical applica-
tions.

In this dissertation we present a complete system for reconstructing 3D models
with both geometric and photometric information of real objects. The problems
addressed in this dissertation include:

� How can we get the 3D shape as well as the corresponding texture infor-
mation of an object using a low-cost camera system instead of laser range
scanners?

� Since a viewpoint can reveal only the information in the scene that is visible
from the viewpoint, complete information has to be acquired from several
viewing directions. How can we obtain a complete description of those data
points in a common coordinate system?

� When combining partly overlapped information from different acquisition
viewpoints, how can we remove redundant data and create a single surface
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representation? How can we create the complete 3D model without any loss
of detail in the original raw data?

� Given the wireframe model (with only geometric information) of an object,
how can we map the acquired color images on its surface to create a photo
realistic 3D model?

1.2 Applications

This research is motivated by a number of applications including consumer
marketing, Web and Internet applications, manufacturing, and virtual simulation.
Some application areas that would benefit from an efficient and reliable methods
for 3D model reconstruction are:

� Internet applications

Internet applications such as e-commerce can benefit from 3D model recon-
struction for their products. The 3D model of an object can be displayed on a
web browser with arbitrary viewpoint interactively chosen by a user instead
of some fixed viewpoints. A format called VRML (Virtual Reality Modelling
Language) has become the industrial standard for visualizing 3D models.

� Reverse engineering

Computer Aided Design (CAD) tools are currently used to design and manu-
facture physical objects such as machine parts. However, some custom-made
or existing old mechanical parts may not have the CAD models. If a replica
is needed, one has to start from an existing object, reconstruct a computer
model and then use it to reproduce the object.

� Industrial inspection

3D models of manufactured objects can be reconstructed automatically and
the data can be compared to the specifications rather than semi-automatic
metrology techniques. Detected deviations from the reconstructed models
can be used to calibrate a new manufacturing process and control the quality
of final manufactured parts.

� 3D fax
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Scan an object and transmit the digitized data on a phone line. The replica is
then realized at the receiving station by reconstructing the 3D model using a
rapid prototyping technique such as stereo-lithography1.

� Authoring virtual environments

Creating virtual environments for entertainment such as video games, and
other graphics applications requires models of real-world objects. The realis-
tic models can be quickly built from their real counterparts or from sculptures
created by artists.

1.3 Our Solution to the Problem

Our solution to the 3D model reconstruction problem is illustrated in Figure
1-1. It consists of four key stages [17]: (i) data acquisition, (ii) registration, (iii)
surface integration, and (iv) texture mapping. A prototype vision system, Stony-
brook VIsion System 2 (SVIS-2), is built and implemented to acquire the image
sequences for 3D shape and focused image recovery. The information from differ-
ent viewpoints is obtained by rotating the object placed on a rotation stage. The 3D
shape and texture information are then used to construct the complete and photo
realistic 3D model.

1.3.1 Data Acquisition

Data acquisition stage is to obtain the range and intensity images for different
viewpoints. The object is placed on a rotation stage in front of a stationary camera.
Input image sequences from different viewpoints are acquired by rotating the stage
with known rotation angles. The rotation matrix and translation vector of the rota-
tion axis are calibrated for 3D shape recovery. For each viewpoint, two sequences
of images with different focus setting are used to construct a focused stereo image
pair by shape from focus (SFF). The stereo image pair is then used to recover the
3D shape by rotational stereo. This stage provides the partial 3D shape and the
corresponding texture map of a viewpoint. The partial 3D models (which include
both 3D shape and texture information) from different viewpoints are obtained by
rotating the object with known rotation angles and repeating the same acquisition
process.

�

Stereo-lithography is a “rapid-prototyping” process which produces a physical, three-
dimensional object from a 3D CAD file. A stereolithography machine uses a computer
controlled laser to cure a photo-sensitive resin, layer by layer, to create the 3D part.
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Figure 1-1: System flow chart of complete 3D model reconstruction
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In our more recent work , both the accuracy and precision of 3D shape are
greatly improved by multiple base-angle rotational stereo combined with multi-
resolution stereo matching. Similar to a multiple-baseline stereo [57], a sequence of
four images with different stereo rotation angles are taken instead of a stereo image
pair. Error analysis indicates that we are able to extract depth with an average error
of less than 1 mm error in a working range of 700 mm to 900 mm from the camera.

1.3.2 Registration

The range images (partial 3D shapes) obtained from data acquisition stage
have to be registered to a common coordinate frame for integration. To register a
pair of range images, we have to find the rigid 3D transformation between them so
that the overlapping areas of different range images covering the same part of the
object surface are aligned with each other. Assuming the rotation angle between two
viewing directions is known, finding the transformation is equivalent to finding the
rotation axis of the rotation stage. Given the initial rotation matrix and translation
vector from system calibration, two registration methods are proposed to refine
the rotation axis. The first method searches the rotation centers on object’s cross
sections by minimizing the least squared error on global resampled data points. The
second method directly computes the new rotation matrix and translation vector
using the selected matching points after current registration. The rotation axis is
updated iteratively until it converges.

1.3.3 Surface Integration

Given a set of registered range images, an integration algorithm is presented
for combining the partly overlapping data sets into a complete non-redundant 3D
data set without loss of details in the original raw data. Three computational al-
gorithms, integration by global resampling, slice-by-slice algorithm and Region-of-
Construction algorithm, are developed for integrating the range images to a com-
plete 3D model. The first algorithm is based on

�����������
	
space representation. It

uniformly resamples the registered range images on both
�

and
�

directions. The
resolution of 3D model can be controlled by sampling rate and higher order inter-
polation. Slice-by-slice algorithm is commonly used to construct 3D model from a
series of contours. It uses all of the data points provided by data acquisition stage
and gives a dense mesh of the 3D model.

A new surface integration algorithm based on Region-of-Construction is de-
veloped. It uses only part of each range image to stitch the partial 3D models from
different viewpoints and takes advantage of the known topology of each region-of-
construction to perform fast triangulation. Because continuous regions from same
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range images are used for integration, the registration error is always limited to the
boundaries of regions-of-construction. This algorithm is also extended to construct
complex objects with a hole. This integration method is computationally efficient
in the sense that no searching is required for mesh triangulation.

1.3.4 Texture Mapping

The color images used for texture mapping are constructed by shape from fo-
cus with several different focus positions (typically 4 different focus steps). Having
a 3D wireframe model created in the previous stage, image texture of an object is
modeled in two ways. In the first method image texture of each polygon is specified
by the projected pattern on one of the focused images. The projection of polygon
can be either on the same viewpoint as where the 3D points come from, or on the
viewpoint according to the best viewing direction determined by the surface normal
of the polygon. In the second method we provide a whole (individual) image for
each partial 3D model to map the texture and then stitch the textured partial 3D
models together. Bounding boxes just enclosing each region-of-construction are
used to extract the image texture to reduce the size of the textured 3D model. De-
pending on the quality requirement, the images are down-sampled to further reduce
the size of the 3D model.

1.4 Dissertation Overview

This dissertation is organized as follows. In Chapter 2, we deal with data ac-
quisition of an object from fixed viewpoints. The theoretical backgrounds of shape
from focus and rotational stereo are described, followed by the implementation on
our SVIS-2 camera system. Experimental results and accuracy analysis are given
for partial 3D shapes. In Chapter 3, we first discuss the previous work on range
image registration and then describe our registration methods. In Chapter 4, we be-
gin with the review of some previous work on 3D model reconstruction. Then we
describe the surface integration algorithms developed in this dissertation. We also
demonstrate the ability of our algorithms for dealing with complex objects with a
hole and multiple objects. The accuracy of our methods is evaluated by testing on
a simple object. In Chapter 5, we describe the algorithms for mapping texture onto
the surface of 3D models. The final results of reconstructed 3D models with tex-
ture map are shown in this chapter. Finally, we summarize the contribution of this
research and indicate some avenues for future work in Chapter 6.



Chapter 2

Data Acquisition

2.1 Introduction

3D model of an object consists of two types of information– (i) the 3D shape
of the object (geometric information), and (ii) the image texture on the outer visible
surface of the object (photometric information). Recovering the first type of infor-
mation (3D shape) is a difficult problem in the computer vision area [42, 2, 34].
Some popular techniques are shape from shading, shape from motion, shape from
focus, structured light analysis, photometric stereo, etc [86]. In addition, there also
exist active sensing devices such as range finders, which can measure the 3D shape
directly [9]. As for the second type of information (image texture), it is usually
recovered from the image recorded by a camera.

Most researchers in 3D model reconstruction area acquire the 3D input data
using active range acquisition methods such as laser range scanner [21, 17, 66,
75] or computer tomography (CT) [6, 13]. These devices usually provide dense
and highly accurate range data. However, using these active methods has several
disadvantages– (i) they are usually expensive, (ii) acquiring data set is a time-
consuming process, and (iii) the acquired range data usually do not provide the
texture information1 and therefore the intensity image has to be acquired separately.

In this chapter we describe our solutions to acquiring both range and intensity
images simultaneously. A passive camera system, Stonybrook VIsion System 2
(SVIS-2) is built for acquiring color images. The intensity images not only provide
the texture information but they are also used to recover the 3D shape of the object.
The object is placed on a rotation stage in front of a stationary camera. The partial
3D shape and the corresponding texture map of the object are recovered using ro-
tational stereo [49, 50] and shape from focus (SFF) [82]. Two sequences of images

�

Although some sensors provide the intensity values for each data point [9], they are
usually not dense enough to generate realistic output.
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with different focus positions are taken with a small rotation angle to obtain stereo
image pairs. The stereo rotation angle is adjusted by a PC controlled motor. Each
sequence of images is used to construct the focused image and a rough depth map
by SFF. A more accurate 3D shape is then obtained by matching the focused image
pair using rotational stereo model with a matching constraint provided by rough
depth maps.

In Sections 2.2 and 2.3, we provide the theoretical background of shape from
focus and rotational stereo, respectively. The calibration of rotation axis is given in
Section 2.3.1. Section 2.4 describes the experimental setup of our SVIS-2 camera
system and the detailed algorithms of the implementation. Section 2.5 shows some
results of recovered partial 3D shapes and focused images of several test objects.
Error analysis of our camera system is also given in this section. Section 2.6 de-
scribes a multiple base-angle approach for rotational stereo followed by conclusion
in Section 2.7.

2.2 Shape from Focus (SFF)

In SFF, a large sequence of image frames of a 3D scene is recorded with dif-
ferent camera parameters (e.g. focal length or/and lens to image detector distance)
[87]. In each image frame, different objects in the scene will be blurred by different
degrees depending on their distance from the camera lens. Each object will be in
best focus in only one image frame in the image sequence. The entire image se-
quence is processed to find the best focused image of each object in the 3D scene.
The distance of each object in the scene is then found from the camera parameters
that correspond to the image frame that contains the best focused image of the ob-
ject. The SFF methods are based on the fact that for an aberration-free convex lens,
(i) the radiance at a point in the scene is proportional to the irradiance at its focused
image [42] (photometric constraint), and (ii) the position of the point in the scene
and the position of its focused image are related by the lens formula (geometric
constraint) �

���
�
���

�
� (2.1)

where
�

is the focal length, � is the distance of the object from the lens plane, and� is the distance of the focused image from the lens plane (see Figure 2-2).
Given the irradiance and the position of the focused image of a point, its ra-

diance and position in the scene are uniquely determined. In a sense, the positions
of a point-object and its image are interchangeable, i.e. the image of the image is
the object itself. Now, if we think of an object surface in front of the lens to be
comprised of a set of points, then the focused images of these points define another
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Figure 2-1: Block diagram of data acquisition
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Figure 2-2: Image formation in a convex lens

surface behind the lens (see Figure 2-2). This surface is defined to be the Focused
Image Surface (FIS) and the image irradiance on this surface to be the focused im-
age. There is a one to one correspondence between the FIS and the object surface.
The geometry (i.e. the 3D shape information) and the radiance distribution (i.e. the
photometric information) of the object surface are uniquely determined by the FIS
and the focused image. In traditional SFF methods (e.g. [46, 82, 81]) a sequence
of images are obtained by continuously varying the distance � between the lens and
the image detector or/and the focal length

�
(see Figure 2-3).

For each image in the sequence, a focus measure is computed at each pixel
(i.e. each direction of view) in a small (about

����� ���
) image neighborhood around

the pixel. At each pixel, that image frame among the image sequence which has the
maximum focus measure is found by a search procedure. The grey level (which is
proportional to image irradiance) of the pixel in the image frame thus found gives
the grey level of the focused image for that pixel. The values of � and

�
for this

image frame are used to compute the distance of the object point corresponding to
the pixel. An example of a focus measure is the grey level variance. SFF methods
involve a search for the values of � or/and

�
that results in a maximum focus mea-

sure and these methods require the acquisition and processing of a large number of
images.
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2.3 Rotational Stereo

2.3.1 Shape from Stereo

Shape from stereo is one of the widely studied topics in computer vision
[22, 4]. The basic principle involved in the recovery of depth is triangulation. In
stereopsis, there are two major problems to be solved. One is the correspondence
problem– given two (or more) images of a scene, which parts of them are projec-
tions of the same scene elements? This is also know as stereo matching– finding
the corresponding points of the image pair. The other problem is the reconstruction
problem– given a number of corresponding parts of an image pair, how to determine
the 3D location and structure of the observed object?

Stereo matching is the most important stage in stereo computation. A number
of different techniques have been proposed. They can be classified into two groups,
area-based and feature-based methods. Area-based stereo approaches use correla-
tion among brightness (intensity) patterns in the local neighborhood of a pixel in
one image with brightness patterns in a corresponding neighborhood of a pixel in
the other image. For a fixed point in one image, a cross-correlation measure is used
to search for a point with a matching neighborhood in the other image. Feature-
based approaches restrict the search for correspondence using symbolic features



12

PSfrag replacements

� ��
�

�

�

�

�	��

��
 ���

�������
����� � ��� �� 

� �� �

Figure 2-4: Conventional stereo system with parallel camera configuration

derived from intensity images. Corresponding elements are given by the most sim-
ilar feature pair. The features used most commonly are either edge points or edge
segments derived from connected edge points.

The stereo matching method used in SVIS-2 camera system is an area-based
technique. For each small image area in the right image, the best match in the left
image is found by minimizing the Sum-of-Squared-Difference (SSD) measure. Let��� ��� 	

be the point of interest and ��� � � be the matching window size, then SSD is
given by � � !

��� �"��	 � #$%'&)( #
#$*+&)( #', �.- ��� ��� 	0/ �21 �	� �43 ���

�45 	 , 6 (2.2)

where
�7-

and
�21

are image gray-levels of the right and left images, respectively.
Assuming both the intrinsic and extrinsic parameters of a stereo system are

known, the depth reconstruction problem can be solved unambiguously by triangu-
lation. Conventional stereo system uses a pair of cameras with their optical axes
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mutually parallel and separated by a horizontal distance denoted as the stereo base-
line � . The cameras have their optical axes perpendicular to the stereo baseline, and
their image scanlines parallel to the baseline. A two-dimensional model is shown in
Figure 2-4. Let image coordinate systems

��� 1 ��� 1 	
and

��� - ��� - 	
be defined on the left

and right image plane with origin on the optical axis respectively. By considering
similar triangles, the world coordinates of the scene point

��� ��� ��� 	
can be easily

obtained as

� � � ����� 1 /����- 	
�
	 � � � � � ���1 / ���- 	

�
	 �
and

� � � �	 (2.3)

where 	 is the disparity defined as
��� 1 /
���-

and
�

is the effective focal length of the
camera.

In the data acquisition stage, since the object has to be rotated in order to
obtain the information from different viewpoints, a small rotation angle can be used
to create a stereo image pair from a single camera. The acquired image pair forms
a non-parallel axis stereo geometry and can be converted to the conventional stereo
by image rectification [2]. However, in our approach it is more preferable to find
the epipolar geometry pixelwise since we do not match each pixel on the images.
Therefore, the computation is reduced by finding the epipolar lines of the pixels
of interest according to the rotation transformation. We refer to this as rotational
stereo [49, 50], or vergence stereo.

In our early implementation, we considered a special case of rotational stereo
with rotation axis perpendicular to the plane determined by image scanlines and the
optical axis. In this case the rotational stereo model is simplified to a verged stereo
system as shown in Figure 2-5. The baseline � is defined as the distance between
two camera optical centers. The angle between two camera optical axes is called
camera convergence angle and denoted by � . Similar to the parallel stereo, the
world coordinates of the scene point

��� � � ��� 	
can be obtained as

� � �������
�������
� ( ���������! /#" 6�$ � �����%�&���
� ( ��� � �'�( � " 6�$�)
�*�������+�����
� ( � ��� ���  � " 6 $ � ���
�+�,���
� ( � � � � '�  / " 6 $�)

� �
���1 �
-/.10 � " 6  � �����
� � ����� ( ��� � �'�  � " 6 $ 032 � � " 6  )
� � ���
� � ���
� ( � �4� ���5 � " 6�$ � ���
� � ���
� ( � � ���'�6 /7" 64$�) (2.4)

� � �
���
� � ���
� ( � ��� ���  � " 6 $ � ����� � ���
� ( � � � � '�  / " 6 $

Note that the above equations are simplified to Eqs. (2.3) when the convergence
angle � equals 8 .
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Figure 2-5: Conventional stereo system with verged camera configuration

Rotational stereo offers some important advantages compared to conventional
stereo. A single camera is used instead of two, the stereo matching is easier as the
field of view remains almost the same for the camera. The camera calibration is
easier since only a single stationary camera is used. For a single camera system
[94], stereo image pairs can be obtained without camera movement along the stereo
baseline.

2.3.2 Rotational Stereo Model and Epipolar Geometry

The rotational stereo model with arbitrary rotation axis is shown in Figure 2-6.
The rotation axis is described by the unit vector �� � � � �

� � 6 � ��� 	 and the translation
vector �	 � � 	 �

� 	 6 � 	 � 	 in the camera coordinate system. The image pair used for
stereo matching is obtained by rotating the object an angle

�
with respect to the

rotation axis. Let
���

�
���

�
���

�
	

and
� � 6 � � 6 ��� 6 	 be the same object point before and

after rotation, respectively. Let
����

�
�	��

�
	
,
���� 6 �	�� 6 	 denote the corresponding projected

points on the image plane. The images taken before and after rotation are referred
to as the first and second image, or right and left image. For each pixel

����
�
�	��

�
	

in
the second (right) image, the corresponding epipolar line in the first (left) image is
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Figure 2-6: Rotational stereo model

calculated as follows (see Figure 2-7 and Figure 2-8).
In order to efficiently deal with arbitrary orientation of rotation axis with six

degrees of freedom, the quaternion representation is used to define the rotation
transformation (see Appendix A). Let �� be a unit vector along the selected rotation
axis and

�
be the specified rotation angle about this axis, then the rotation matrix is

given by [33]

��� � � 	 �
��
�
� / ��� 6 / ��� 6 ��	�� / � �
� ��	�� � � � ���	�� � � �
� � / ��	 6 / ��� 6 ���
� / � �
	��	�� / � � � �
��� � � �
	 � / ��	 6 / �
� 6

���
� (2.5)

where

� � - .10
�

� and

��
� 	 ��

���
� �

��
�
� �

� 6
���

���
� 032 �

�

� (2.6)

To compute the required rotation matrix about any rotation axis with a transla-
tion vector �	 , we need to include the translation matrix

� �
����
�
� 8 8 	 �

8 � 8 	 68 8 � 	 �8 8 8 �
�����
� (2.7)
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Thus, the rotation matrix of any rotation axis is given by

� ��� 	 � � ( ���
	 � � � � 	 88 ��� � �
(2.8)

According to the perspective projection, the relationship between an object
point

���

 ����
 ����
�	
and an image point

����

 �	���
�	
can be written as

��
 � ���
���
 � ��
 � ���
���
 �
and

��
 � � ��
 (2.9)

for
� � � � � and

��

’s are unknown scaling parameters. Hence, we have the equations

����
�

�� 6 � 6
�� 6 � 6� � 6�

�����
� � � ��� 	 � �����

��
�
�

�

��
�
�

�� �
��

�����
� (2.10)
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for the same object point projected on different images. In the above equations,
there are four unknowns

�� 6 �	�� 6 � � �
� � 6 , but only three independent equations. They

can be used to find the relationship between
�� 6 and

�� 6 . Therefore, the epipolar line
equation on the left image is solved as

�� 6 ���
� �� 6 � � (2.11)

where

� �
/ ��

��� 	 �
�
� � / 	�� 	 � 	 6 � / � 	 / ��� 	 � 	 � � 	 6 � � 6 	��

� � �
�

� �
�

�

� �
/ ��

�
� � 	 �

� / � 6 / � 6 	 � 	 6 � / �
� � 	�� 	 � 	 � � 	�� � ��� 	��
� � �

�
� �

�
�

and

� � � ��
� � 	 �

� 	 � / ��� 	 � 	 6 � �
	 / ��� � � � ��� / �
��� � / ��	 6 ��� / � � 6 � �  
� 	 � � �
�
	 / � 6 / 	 6 � � � 6 � 6 � �
� 6 � 6 � ��	 6 � 6  $

�
� � ��

� � 	 �
� ��	 6 � � � �
� � � � ��� � � � � � 6 �
�  

� 	 � � / � � 6 ��	 / ��	 � � / ��� � 	 / ��	�� 6 �  $
�

� � � � 	 �
� / �
�
	 / � � 6 � 6 � � 6 � � 6 / ��� 6 � 6 / �
� 6 	 6  

� 	 6 � �
��� 6 	 � � � 6 	�� � ��	 � � � ��	�� � � �
� / 	��  � 	 � � / � � / 	�� 	 $
Given the rotation angle

�
, and the translation and direction vectors of the rotation

axis, both parameters � and
�

are constants for any fixed
����

�
�	��

�
	
.
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In the rotational stereo, the epipolar line equation (2.11) is computed only for
the pixels to be used for stereo matching. The matching is then done along the
given equation in the first image for every fixed point

����
�
� ��

�
	

in the second image.
Since we are only interested in the foreground (object) region for stereo matching,
it is more computationally efficient compared to image rectification, which usually
processes the whole image.

Now let’s consider a special case when the rotation axis is “vertical”, i.e. it
intersects the camera optical axis and is perpendicular to both optical axis and image
scanlines. The rotational stereo model is simplified to two-dimensional case. It
is equivalent to a stereo system with verged camera configuration (see Figure 2-
9). The convergence angle is the same as the object rotation angle. The stereo
baseline is determined by the rotation angle and the distance from camera to the
object rotation axis. In this case, the translation and direction vectors of the rotation
axis are given by �� � � 8 � � � 8 	 and �	 � � 8 � 8 � 	 � 	 , and the epipolar line equation can
be simplified as

�� 6 � ��
�
� - .10 � / � 	� � / -/.10 � 	 �� � �

� 0 2 � � �� 6 � ��
�
� 0 2 � �

� � / -/.
0 � 	 �� � �
� 0 2 � � (2.12)

or �� 6 � 3 � �� 6 � � (2.13)

where 3 � ��
�
� -/.10 � / � 	� � / -/.
0 � 	 �� � �

� 0 2 � � (2.14)

and � � ��
�
� 0 2 � �

� � / - .10 � 	 �� � �
� 032 � � (2.15)

It can be seen that the resulting epipolar line is independent of 	 � , which is the
distance between the camera and the rotation axis. This result also gives us a good
approximate solution to the case when the rotation axis is almost vertical with less
computation.

2.3.3 Rotation Axis Calibration

In this section, we describe a simple 3-point calibration method to find the
rotation axis of the rotational stereo model. Although only 3 points are needed in
this calibration, it can be extended to use ��� points to obtain a more accurate result
by taking the average. The calibration takes three images of a planar object with
three fixed points on it. Three images are taken with different rotation angles, 8 , �
and � � degrees, of the planar object. The known distances between any two points
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Figure 2-9: Equivalent verged camera configuration of rotational stereo with rota-
tion axis perpendicular to image scanlines and camera optical axis.

on the object are used to determine the 3D points. Let � 
 refer to the image point of
an object point � 


, where � 
 � �����
 �	���
 � � 	
and � 
 � ����
 � ��
 ����
�	

for
� � � � � � � . Then

we have

�����
�

�

� � �
/ � 6
� � 6 ����� � 	 ��6 � (2.16)

�����
� 6
� � 6 / � �

� � �
����� � 	 6 � � (2.17)

�����
� �
� � � / �

�

� � �

����� � 	 � � (2.18)
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where
�

is the focal length, 	 
�� is the distance between two points � 
 , � �
, and

� 

is

the depth of object point � 
 . In the above equations, three unknowns
�

� ,
� 6 , � � have

more than one solution, but can be reduced to a unique solution by examining the
physical constrains. The solution of

�
� ,
� 6 , � � gives us the coordinates of the object

points.
As illustrated in Figure 2-10, let � � be the projection of any object point ob-

tained above and � 6 , � � refer to the projections of the same object point on the
second and third image after rotating angles

�
and � � . Then the object points are

determined by the equations:
�����
�

�

� � �
/ � 6
� � 6 ����� �

�����
� 6
� � 6 / � �

� � �
����� � � - .10

�

�
�����
�

�

� � �
/ � �
� � �

����� (2.19)

Again, there is more than one solution but can be reduced to a unique solution
by examining the physical constrains. The resulting 3D points consist of a plane,
whose plane normal is the same as the unit vector � of the rotation axis. To uniquely
determine the rotation axis, we have to find the translation vector as well. Assume
the rotation axis intersects the above plane at a point � , then it can be determined
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using the fact that � belongs to the plane and
� � / �

�
� � � � / � 6 � � � � / � � � (2.20)

where
�

� ,
� 6 , � � are the corresponding object points of � � , � 6 and � � . That is, the

line equation of the rotation axis is completely determined by the six components
of � and � .

In the experimental setup of our system, the rotation stage is placed in front
of the camera such that the rotation axis is close to the optical axis of the camera.
A checkerboard pattern is used in our calibration (see Figure 2-11). Three corner
points, upper-left, upper-right and bottom-right, are used to calibrate the rotation
axis. The measured distances between any two points are ���
8 ,

��� 8 and ����� mm.
The focal length and pixel size of the camera are

���
� �
�

and 8 �&818���� � mm, respec-
tively. Three images are taken at rotation angles 8 , �18 , and

� ��8 degrees. Solving
Eqs. (2.16) – (2.20) with these parameters, the line equation of the rotation axis is
given by � � � �

�
� � � � 8 ��818 � � � � 8 � � �� � � 6 � � � 6 � 8 � �����	� � � ��� �

�
�� � ��� � � � � � / 8 �&8���� � � ��
 �
�
�&8��

and therefore we have the rotation center at
� 8 � � 
 � 
 ��� ��� � 	 and the unit vector� 8 ��818 � � � 8 � ������� �+/ 8 ��8���� � 	 . The result indicates that the rotation axis is almost per-

pendicular to the image scanlines and camera optical axis.
Another calibration method is to use two 3D point pair with known coordinates

(which can be derived by triangulation) to compute the rotation axis. Let 
 � , � �

be the 3D points before rotation and 
 6 , � 6 be the corresponding 3D points after
rotation. Let ��� be the plane passing ������� 66 and perpendicular to 
 � 
 6 , and ���
be the plane passing

� � ��� 66 and perpendicular to � � � 6 . Then the rotation axis is
determined by the intersection of ��� and ��� .

2.4 Camera System and Implementation

The vision system used for image acquisition in our experiments is called
Stonybrook VIsion System 2 (SVIS-2). SVIS-2 camera system consists of a high
resolution digital still camera (Olympus C-3030), a rotation stage with a stepper
motor and a PC (Pentium II 450 MHz). The objects are mounted on the rotation
stage and the camera is placed in front of it such that the optical axis is close to the
rotation axis (see Figure 2-12). The calibration method described in the previous
section is used for rotation axis estimation. The calibrated rotation axis is used for
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Figure 2-11: The checkerboard pattern used for rotation axis calibration. Three
images are taken from 0, 60 and 120 degrees of rotation angle. Three corner points
(as indicated in red circles) are used to calculate the rotation axis.

stereo matching in rotational stereo. In the experiment, the parameters of SVIS-2
are adjusted for objects that fit inside a 250 mm

�
250 mm

�
250 mm cube placed

at a distance of about 830 mm from the camera. The camera focal length is set
to 19.35 mm and F-number to 2.8. Different focus settings are obtained by mov-
ing the camera’s motorized lens controlled by a PC. The image resolution is set to� � 
 8 � �

�18 pixels. All acquired images are transferred to a PC through a USB port
for off-line processing.

The steps for recovering 3D shape and focused image of each view of an object
are described as follows. First, two sequences of 4 images with different focus
settings are recorded before and after rotating the object by a small angle to obtain
the stereo image pairs. The stereo rotation angle is set to 6 degrees, which gives the
equivalent parallel stereo baseline of about 174 mm. Shape from focus is applied on
each sequence of images to get the focused image and a rough depth map.

�
�
� �

�
image blocks are used to obtain a 
 8 �

�18 rough depth map and a
� � 
 8 � �

�18
focused image. The depth map is thresholded to segment both the depth map and
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Figure 2-12: SVIS-2 (Stonybrook VIsion System 2) camera system
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Figure 2-13: Lens step vs. best focused distance used in SFF

the focused image into two regions, one corresponding to background region (points
farther than the expected distance of object points) and object (foreground) region.

Figure 2-13 shows a plot of the relationship between the lens step number and
the best focused distance of the camera used in our experiment. The plot indicates
that the lens step number and the best focused distance have an almost linear re-
lationship in several regions (step numbers 20 to 65, 65 to 105, and 105 to 125).
The sequence of 4 images used to construct the focused image and depth map are
taken at lens step numbers 108, 115, 122 and 129. They are roughly in the linear re-
gion. Figure 2-14 shows the blurred images taken from the camera (Figure 2-14(a)
– 2-14(d)) and the constructed focused image (Figure 2-14(e)).

The rotational stereo is then carried out using the focused images and the initial
depth map estimated by SFF to get a more accurate depth map. Sum-of-squared-
difference measure on

�
�
� �

� image blocks is used for matching in the foreground
regions [57]. According to the rotational stereo model, the epipolar line correspond-
ing to each matching block is calculated for fast matching instead of using image
rectification. Each block from the first image searches for the matching image re-
gion in the second image along the epipolar line. The search is limited to a 2 pixel
wide band in the image vertical direction. Along the epipolar line, the search is
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(a) Lens step 108 (b) Lens step 115

(c) Lens step 122 (d) Lens step 129

(e) Constructed focused image

Figure 2-14: A sequence of blurred images and the constructed focused image
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further limited using the depth map obtained by SFF with a maximum expected
depth error. For a high contrast image, SFF depth error is set to 7 lens steps in focus
setting. A �

�
� median filter is applied on the resulting depth map to reduce noise

and mismatching.
The partial 3D model obtained here is modelled in two parts– (i) the 3D shape

of the surface specified by the depth map array, and (ii) the image texture of the
surface specified by the focused image recovered by SFF. The 3D shape of the
surface is modelled as follows. The camera coordinates of the points in the depth
map are obtained by an inverse perspective projection for the camera and printed as����
 ����
 ����
�	

triples for
� � � � � � � � � � 5 , where 5 is the total number of 3D points. These

triples constitute a list of vertices in the 3D space of the camera coordinate system.
The rectangular grid specified by the array is used to create a list of quadrilaterals in
the 3D space. For each quadrilateral, the image texture is obtained from the focused
image in the corresponding rectangle in the rectangular grid.

The above procedure for obtaining partial 3D model is repeated for several
different views by rotating the object using a computer controlled motor. In the
experiment, typically 4 views for every 90 degrees rotation interval are acquired for
complete 3D model reconstruction.

2.5 Experimental Results

In this section, we show some experimental results and the acquisition time
of partial 3D models constructed by rotational stereo and shape from focus. Four
different real objects– a foam head, a toy “Potato Head”, a cylinder, a detergent
container, and a multiple-object scene are presented. To separate the foreground
and background regions by SFF, a board with high contrast pattern is placed at
about 1000 mm from the camera. On the surfaces of the objects, random patterns
are pasted or sprayed to facilitate stereo matching.

Figure 2-15 shows the results of the foam head object. Random dot patterns
are pasted on the surface of the object. The left and right focused images con-
structed from the first and second image sequences are shown in Figure 2-15(a)
and 2-15(b). The initial depth map and occlusion mask constructed by shape from
focus are shown in Figure 2-15(c) and 2-15(d), respectively. Figure 2-15(e) shows
the final depth map obtained from rotational stereo and SFF. Figure 2-15(f) shows
the recovered partial 3D shape obtained from inverse perspective projection of the
depth map.

Figure 2-16 shows the results of the cylinder object. The initial depth map and
occlusion mask constructed by shape from focus are shown in Figure 2-16(a) and
2-16(b), respectively. Two different resolutions, 
 8 � �18 and

�
�18 � � �
8 , of the final
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Table 2-1: Measured execution times for data acquisition

Object Shape from Focus 
 8 � �
8 resolution
�
�18 � � ��8 resolution

Head 5.68 sec. 8.05 sec. 21.10 sec.

Toy 5.52 sec. 5.18 sec. 18.39 sec.

Cylinder 5.59 sec. 9.37 sec. 35.06 sec.

Detergent 3.03 sec. 9.87 sec. 37.02 sec.

Bottle 5.48 sec. 5.51 sec. 19.63 sec.

depth maps and partial 3D shape are shown in Figure 2-16(c) – 2-16(f). There are 7
images taken (lens step 108 to 129 with every 4 steps) for SFF instead of 4 for this
object.

Figure 2-17 shows the results of the toy object “Potato Head”. Figure 2-17(a)
– 2-17(d) show the partial 3D models with texture map from different viewing di-
rections. Four viewpoints are observed by rotating the object every 90 degrees. The
shading information (vertex normals on each data point) is also given to provide
a smooth surface appearance. Figure 2-18 and 2-19 gives the textured partial 3D
shape results of a detergent container and a multiple objects scene respectively.

The total execution time for data acquisition includes the image acquisition
time taken by SVIS-2 camera system and the processing time used for 3D shape
and focused image recovery. For each viewpoint, it takes approximately 4 minutes
to acquire all images including rotating the object (for a small stereo rotation an-
gle). Totally 8 images are acquired– 2 sequences of 4 images with different focus
positions. All images are saved as uncompressed TIFF format with

� � 
 8 � �
�18

image resolution. The processing times for SFF and stereo matching with different
resolution depth map output are shown in Table 2-1 with several test objects (in
seconds, on a Pentium II 450 MHz PC). For a complete 3D model reconstruction,
we acquire 4 partial 3D models from every 90 degrees viewpoint with a total of 360
degrees. Therefore, the data acquisition time for creating a complete 3D model is
about 20 minutes.
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(a) Left focused image (b) Right focused image

0 10 20 30 40 50 60 70 80 0
10

20
30

40
50

60

0

5

10

15

20

25

(c) Initial depth map

0 10 20 30 40 50 60 70 80 0
10

20
30

40
50

60

0

0.2

0.4

0.6

0.8

1

(d) Occlusion mask
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(e) Final depth map (f) Partial 3D shape

Figure 2-15: The stereo image pair (a) and (b), the rough depth map (c), and the
occlusion mask (d) are obtained by SFF. These results are used to find the final depth
map (e). The partial 3D shape (f) is recovered by inverse perspective projection.
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(a) Initial depth map
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(b) Occlusion mask
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(c) Depth map (
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(d) Depth map ( � ����� �
	 � )

(e) Partial 3D shape (
���������

) (f) Partial 3D shape ( � ����� �
	 � )

Figure 2-16: Although the rough depth map (a) and occlusion mask (b) obtained
from SFF only provide the resolution of 
 8 � �
8 , it can be increased on the final
depth map by stereo matching. The number of data points in (d) and (f) are in-
creased by 4 from (c) and (e). This will also benefit data registration to be discussed
in the Chapter 3.
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(a) Textured shape from 0 degree (b) Textured shape from 90 degree

(c) Textured shape from 180 degrees (d) Textured shape from 270 degrees

Figure 2-17: Experimental results for a toy object
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(a) Textured shape from 0 degree (b) Textured shape from 90 degree

(c) Textured shape from 180 degrees (d) Textured shape from 270 degrees

Figure 2-18: Experimental results for a detergent container
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(a) Textured shape from 0 degree (b) Textured shape from 90 degree

(c) Textured shape from 180 degrees (d) Textured shape from 270 degrees

Figure 2-19: Experimental results for multiple objects
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Figure 2-20: Multiple base-angle rotational stereo

2.6 Multiple Base-angle Rotational Stereo

Similar to the parallel stereo with multiple baselines [57], precise and accurate
depth recovery can be achieved by multiple base-angles. However, unlike multiple-
baseline stereo, multiple base-angles are achieved by rotating the object in front
of a single fixed camera instead of using multiple cameras. In order to recover
depth through triangulation, correspondence between different images has to be
established. In this work, a correlation-based method with simple SSD (sum of
squared difference) is used. The matching is performed by computing the SSD
values for each image pair and summing them up to produce the sum of SSD’s
(SSSD). Correct matching points are then decided by the minimum SSSD values.
The detailed algorithm is described as follows.

As illustrated in Figure 2-20, let
� � � �

�
� � � � � � * be the images taken at the ro-

tation angles 8 � � �
� � � � � � * with 8�� �

� � � � � � � * . This gives us 5 stereo image
pairs � � � � � ��� , � � �

, � � � � � * � with base-angles
�

�
� � � � � � * . It should be noted that,

while all the images (
� �

,
�

� ,
� � �

,
� * ) are used to find the correspondence, only the

image pair � � � � � * � , which possesses the largest base-angle, is used to compute
the depth map. First, for each pixel (at which depth is to be computed) in

� �
, the
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corresponding epipolar line is computed only for image
� * . The depth for each

pixel (say, � * in Figure 2-20) on the epipolar line is then obtained by triangulation
and projected back to images

�
�
� � 6 � � � � � � *2( � to find the potential correspondences,� �

� � 6 � � � � � � * , and their SSD values on a subimage block. Sum of SSD for each im-
age pair, � � � � � � � , � � � � � 6 � , � � � , � � � � � * � , is evaluated and the pixel on the epipolar
line in image

� * with the smallest value is considered as the corresponding point.
In rotational stereo, epipolar lines are derived first and used in stereo matching

instead of image rectification [2]. This saves computation since the resolution of
computed depth map is usually lower than the pixel resolution (because matching
is done blockwise instead of pixelwise). For example, in our experiments, only a
���
8 � � � 8 depth map is created from

� � 
 8 � �
�18 intensity images. The computa-

tional savings is even greater when the number of images is increased for multiple
base-angle approach.

2.6.1 Experimental Results

In this section, we present some results of multiple base-angle rotational stereo
implemented on our SVIS-2 (Stonybrook VIsion System 2) camera system. A test
object is placed at about 800 mm away in front of the camera (see Figure 2-12).
A sequence of 4 images at 4 degree intervals (at 0, 4, 8, and 12 degrees) of rota-
tion is recorded for multiple base-angle stereo matching. The foreground (object)
region is separated from the blue background to restrict the stereo searching range.
Alternately, the object region can be extracted by separating the dynamic and static
scene with a stationary background.

To reduce both mismatches and computation time, a multi-resolution stereo
matching method is used in a coarse-to-fine search strategy. First, a low resolution


 8 � �18 depth map is created followed by �
�
� median filtering to minimize the depth

error. It is then used to restrict the search range in computing a
�
�18 � � �
8 resolution

depth map. The resulting depth map is used to obtain a final high-resolution ���
8 ���� 8 depth map. Experiments show that this multi-resolution approach improves
time efficiency by a factor of around 2.

Figure 2-21(a) shows the four acquired images of a toy object. The recovered
3D shape and the texture mapped 3D model are shown in Figure 2-21(b). It can be
seen that part of the right leg near the body cannot be recovered very well due to
occlusion. The results of a pumpkin object are shown in Figure 2-22 with four input
images (Figure 2-22(a)) and two texture mapped 3D models (Figure 2-22(b)). All
the results are direct output of our algorithm without any manual editing or smooth-
ing. The computation times for the toy and pumpkin objects are 77.67 seconds and
27.61 seconds on a Pentium II 450 MHz PC, respectively. Figure 2-23 shows the
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(a) Image taken at 0,4,8, and 12 degrees

(b) Wireframe and textured 3D shapes

Figure 2-21: Input images and the output 3D shape of a toy object

acquired intensity images and texture mapped 3D shapes of another toy object with
two different acquisition viewpoints.

2.7 Precision and Accuracy of Rotational Stereo

The precision of a stereo system is usually determined by the depth error due
to one pixel error in stereo disparity. In rotational stereo, assuming the rotation axis
is parallel to the image plane, perpendicular to the image scan line and intersects
camera optical axis, then the stereo disparity is given by 	 � � � ���

for an object
point at depth

�
, where � is the effective stereo baseline and

�
is the focal length.
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(a) Image taken at 0,4,8, and 12 degrees

(b) Two views of textured 3D shapes

Figure 2-22: Input images and the output 3D shape of a pumpkin

The disparity difference at two depth
�

� and
� 6 is given by� 	 � 	 �

/ 	 6 � � ��� ��
�

/ �� 6�� (2.21)

or � 6 � � � � �

� � / �
�
� 	 � (2.22)

Thus, the depth difference
� �

near the image center can be written as� � � � 6 � 	� ��� 0 2 � " 6 � / � � 	 � (2.23)

where
� 	 is the disparity difference,

� �
is the distance to rotation axis, and � is the

rotation angle.
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Figure 2-23: Experimental results for a toy object



38

Figure 2-24: Test objects with random pattern are used for planar fit

The parameters used in the experiments are as follows: the maximum base-
angle is 12 degrees, the pixel size is 0.00552 mm, camera focal length is 19.35 mm
and the distance to rotation axis is 833 mm. Thus, the maximum depth error for one
pixel disparity is between 0.80 mm and 1.33 mm in the working range of 700 mm
to 900 mm away from the camera.

A rudimentary error analysis of our rotational stereo system was done using 3
planar objects. Figure 2-24 shows the objects. The first and second objects were
placed at about 750 mm and 800 mm away facing the camera. The third object was
slanted (about 30 degrees from the image plane) at a range of 700 mm to 900 mm.
For each object, a ���
8 � ��� 8 depth map was computed, and on the

� 818 � � 818 3D
data points in the center, a plane was fitted. The results are shown in Table 2-2.
The average absolute error and the RMS error are both less than 0.5 mm, and the
maximum error is less than 2 mm in the working range.

2.8 Discussion

In this chapter, we present a digital vision system to acquire intensity and range
images using shape from focus and rotational stereo. It takes approximately 5 min-
utes to recover a partial 3D model of an object. The processing time for 3D shape
reconstruction is about 30 seconds (on a Pentium II 450 MHz PC), but the image
acquisition time takes about 4 minutes. This is due to the slow data transfer rate of

Table 2-2: Errors of planar fitting (in mm).

distance plane equation:
�5 ��� � 	 ave. RMS max.

750
�5 � � 8 �&8�� � � 8 ��818�� �+/ � 	 , 	 � �

�
�
�

�


�

0.35 0.44 1.77
800

�5 � � 8 �&8�� 
 � 8 ��818 � �+/ � 	 , 	 � ���
� �
� � �

0.29 0.36 1.47
700 -900

�5 � � 8 � ��� � � 8 ��8
8 � �+/ � 	 , 	 � �


�
� 

� �

0.33 0.41 1.39
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USB connection and the internal data writing. More advanced digital cameras (in
terms of faster data transfer rate) should provide us a great improvement on data
acquisition.

Our 3D shape reconstruction algorithm is based on the pinhole camera model.
Lens distortion and other intrinsic parameters of the camera are not taken into ac-
count. As we will see in the next two chapters, integration of inaccurate partial 3D
shapes gives unsatisfactory complete 3D model even with perfect registration. This
should be improved by more careful camera calibration.

Theoretically the accuracy of rotational stereo highly depends on accurate cal-
ibration of rotation axis and accurate rotation angle which provides stereo image
pair. Imperfect parameters of rotation axis and stereo rotation angle give incorrect
epipolar line equations, which yield the wrong stereo matching results. One simple
solution is to increase the vertical search range for stereo matching. However, this
also increases the possibility of mismatches because of larger search area. To re-
duce stereo mismatches and improve the accuracy, a multiple base-angle approach
with multi-resolution stereo matching is developed. Experimental results show that
our rotational stereo system is able to extract depth with less than 0.5 mm error
between 700 mm and 900 mm from the camera.



Chapter 3

Registration

3.1 Introduction

As discussed in Chapter 1, a typical 3D model reconstruction has to go through
four main steps:

1. data acquisition,

2. registration,

3. surface integration, and

4. texture mapping.

Since a range image only samples the outer surface of an object which is visible
from a given viewpoint, the acquisition of several range views is mandatory in order
to cover the entire object. In addition, each range view is generally represented in
their own camera (or sensor) coordinate system, the range data must be transformed
from several different camera coordinate systems to a single coordinate system.
This step is typically termed registration and has received sustained attention in the
research community over the past several decades [14].

The goal of registration is to find the spatial transformation between the range
images taken from an object at different viewpoints, so that the points found in
different range image views that represent the same surface point are aligned. De-
pending on the registration techniques, it can be classified as coarse registration
and fine registration. In coarse registration, a set of interframe registrations are
determined to within a tolerance of a few degrees of rotation and a small amount
of translation errors. Most 3D model acquisition systems, including our SVIS-2
camera system, employ a rotation stage upon which the object is placed for acquir-
ing range data. Such systems do not need to solve a coarse registration problem.

40
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Physical measurement gives a good approximation of coarse registration. Thus, our
registration will mainly focus on fine registration.

Fine registration is to refine the transformation parameters estimated by coarse
registration and provides a more accurate range data alignment. Given a set of
coarse registered range data relating all the viewpoints, fine registration task aims to
make small changes to the individual transformations to improve the overall quality
of the registration. The quality criterion typically rewards a small distance between
points in the corresponding surfaces of two overlapping views.

Since our data acquisition system acquires range images from different view-
points by rotating the object in front of the camera, our registration problem is
equivalent to finding the rotation axis of the rotation stage. The registration pro-
cess consists of two steps. First, we find an initial estimated transformation by
calibrating the rotation axis as described in Chapter 2, which is similar to a coarse
registration process but provides more accurate results. Second, the estimated reg-
istration is further improved during surface integration. The overlapping parts of
range images are used to refine the rotation axis and increase the accuracy of regis-
tration.

In the following sections, we first review some of the related work on regis-
tration. We then describe two registration algorithms to find the rotation axis and
show some experimental results. A short discussion concludes the chapter.

3.2 Related Work

A popular method for refining a given registration is the iterative closest point
(ICP) technique, first introduced by Besl and McKay [10]. It uses a nonlinear op-
timization procedure to further align the data sets from coarse registration. Given
two data sets and a rough initial transformation, potential correspondences are de-
veloped as follows. For each point in the first data set, find its closest point in the
second data set under the current transformation. Let 
 be the set of 3 points
from the first data set � � �

� � 6 �
� � �

� � % � and � be the set of 5 points from the sec-
ond data set ��� �

�
� 6 � � � � � � * � . An incremental transformation �



is defined such that

� 
 � � � �

 � � 
 for each iteration

�
, where � � � � . �



reduces the registration error

between 
 and the new point set � 
 � � by moving the points � 
 closer to 
 . Then
� 
 is assigned to � to initialize the system and update the next transformation �


 � � .
The transformation usually involves a translation vector and a rotation matrix.

The ICP algorithm repeatedly computes the closest points between data sets
and computes the transformation to register the data, until a minimum tolerance on
a mean square distance metric between the surfaces is obtained. They show the ICP
algorithm will monotonically converge to a minimum, but it is not necessarily the
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global or the best minimum. In order to converge to the global minimum, the initial
parameter estimate must be reasonably close to the true value to avoid converging
to a non-optimal solution.

Chen and Medioni [16] also use an iterative refinement of initial coarse reg-
istrations between views to perform fine registration. A good initial estimate of
the registration is assumed to be available from a knowledge about the data ac-
quisition geometry. Instead of minimizing the distance between the closest points
in the two data sets (such as general ICP algorithms), orientation information is
used for minimization. Their technique refines a nominal transformation by itera-
tively computing incremental transformations that minimize the distance between
the transformed points from the first view and the points from the second view. The
minimized functional is expressed in terms of the distance between each control
point in the first view and the tangent plane at an intersected point in the second
view. This tends to not only minimize the distance between the two surfaces but
also match their local shape characteristics. Because of the expense of comput-
ing intersections between lines and the discrete surface (generated from the tangent
planes) they subsample the original data to obtain a set of control points. The con-
trol points are selected from this subsampling of the surface (regularized grid) that
lie in smooth regions on the surface. In these areas of smoothness the surface nor-
mal can be calculated more reliably.

3.3 Registration with Global Resampling

In this section, we present a registration method to simultaneously register
multiple range images using global resampling in the object-centered cylindrical
coordinate system. As we have mentioned in the previous section, finding the reg-
istration transformation is equivalent to finding the rotation axis of the rotation stage
in our system. We will search a small neighborhood of the estimated rotation axis
obtained from system calibration to find the one with minimum error on the over-
lapping regions of the range images in a least squared sense.

The coordinate systems used in this dissertation for both registration and in-
tegration are shown in Figure 3-1. We use a left-handed camera coordinate sys-
tem

� � � � � � 	
as our world coordinate system. The local object coordinate system� � ��� � � 	

is a cylindrical coordinate system. The axis of the cylinder is aligned with
the rotation axis of the object rotation stage and intersects the �

�
-plane of the cam-

era coordinate system at
��� � � 8 ����� 	 . The image coordinate system

���� � ���	
is parallel

with the � �
-plane and has the origin at

� 8 � � � 8 	 in the camera coordinate system,
where

�
is the focal length of the camera.
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Figure 3-1: Coordinate systems used for registration and integration

In our experimental setup, the calibrated rotation axis is almost perpendicular
to the � �

-plane of the camera coordinate system. The unit vector of the rotation
axis is found as

� � �
� � � � � 8 ( � � 8 � �����	� ��/ � � ����� � � 8 ( 6 	 in Section 2.3.2. Thus, the

following assumptions are made to simplify the registration process:

1. The rotation axis of the rotation stage is perpendicular to the image scanlines
and optical axis of the camera.

2. The object is simple– for each cross section of the object perpendicular to the
rotation axis, there is a 1-1 correspondence between any point on the contour
and the angle

�
of the direction vector from the rotation center to that point.

In other words, in a cylindrical coordinate system
��� � �����
	

with its
�
-axis

coinciding with the axis of rotation, the contour of the object’s cross section
at every

�
can be specified by a function of the form

�
� � 	
.

3. The rotation angles controlled by the step motor are accurate.

Assumption 1 is a direct result from the rotation axis calibration and simplifies the
problem of finding the rotation axis to the problem of finding the rotation centers
of the cross sections. Assumption 2 is to ensure that we can apply interpolation on
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(a) Curves before registration (b) Curves after registration

Figure 3-2: Cross section curves of an object before and after registration

every data point in a cylindrical coordinate system. As for the third assumption,
the accuracy of the rotation angle is

� 8 �&8���� from the manufacturer’s data sheet
(Arrick Robotics MD-2 Dual Stepper Motor System).

The process of finding the rotation center is given as follows. First, each range
image represented in the camera coordinates

� � � � � � 	
is converted to a represen-

tation in the cylindrical object coordinate system
�����������
	

using the following rela-
tions:

� � ���
� ( �
� / � �
� � / � ��� 


� � � � � / � � 	 6
�

� � / � � 	 6
(3.1)� � �

where � 
 is the rotation angle of range image or viewpoint
�

with respect to the
first viewpoint. In the experiments, the object is rotated by every 90 degrees for
data acquisition and � 
 is equal to

� � � � . At this point, only the data points that are
part of the object are retained, and other points belonging to the background are
eliminated by using a threshold on the

�
coordinate of the points. Having retained

only points on the object, all the points from different views are merged into one
set that represent a discrete sampling of the visible surface of the object. Since the
object is assumed to be simple so that it can be represented by a function of the
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Figure 3-3: Registration of two curves from different viewpoints

form
�
� ��� � 	

in the cylindrical object coordinate system, the merged set of points
can be thought of as a discrete sampling of this function.

Suppose that the object data points obtained from the
�
-th view is expressed as��
 � ��� � 	

in the cylindrical coordinate system. These discrete sample points are used
to interpolate and uniformly resample the partial 3D shape of the object

��
 � � ��� 	
for

the
�
-th view in the

� � ��� 	
space. For any two successive views, say

�
-th view and�

-th view, assume that the object’s surface overlaps partially, where
� � ���

�
� 	

mod 5 and 5 is the number of viewpoints. In the overlapping part, assume that the
resampling of

� 

and

� �
have been done for the same value of

� ��� � 	
. Let the position

of the rotation axis
� � � � � � 	

be slightly different for different
�
. In this case, we

can denote the position by
� � � � �
	 � � � ��� 	 	

. Now, we can improve the estimates for� � � ��� 	 � � � � �
	 	
by minimizing the squared distance between the same points in the

successive views in the overlapping parts as follows:

�
��� 	 �

*$ 
 & � $ �

� � 
 � � ���
	 / � � � � ��� 	 	 6
(3.2)

where
� � ���

�
� 	

mod 5 . In the above equation, the summation over
�

is done for
those values of

�
for which we have common resampled points on the overlapping

surfaces from
�
-th and

�
-th views for

� � ���
�
� 	

mod 5 . The error measure �
� �
	

is
computed for various values of

� � � � �
	 � � � ��� 	 	
near the initial estimates

� � � � � � 	
.

In the experiments, this was done at 0.1 mm intervals in the range � �
�'/ � � � �

�
� �

and � � � / � � � �
�
� �

. The interval for resampling in the
�

space was 1 degree.
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Figure 3-4: Overlapping region of two registered curves

The position where the error measure was a minimum was taken to be the correct
position of the rotation axis.

Although Eq. (3.2) is used to minimize the error for two consecutive views, it
can also be applied on the overlapped region of more than two views. The average
of more overlapping range images should give us more accurate result. Figure 3-2
shows the cross sections of an object before and after registration. Four curves from
different range images with only rotation axis calibration is shown in Figure 3-2(a).
The initial rotation center is given as

� 8 ��8 � 
 ��� �&8 	 . After fine registration, the new
rotation center with least squared error minimization is located at

� 8 � � � 
 �18 � � 	 as
shown in Figure 3-2(b).

3.4 Iterative Registration

Registering range images in an iterative way is popular because of its ability of
updating information after each iteration. Most of the iterative registration methods
try to find the translation vector and rotation matrices by either matching the closest
points from different views [10] or minimizing the distance from points in one
view to planes in another view [17]. In this section, we propose a new approach
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Figure 3-5: Finding the new rotation center

which directly computes the rotation axis after each iteration without data fitting
or minimization. Assuming the rigid body motion of the object is known (e.g.
the rotation angles in our case), selected control points before and after current
transformations are used to find the next transformations. Those control points are
chosen from the overlapping part of two range images with certain criteria. Since
the unit vector of rotation axis is close to

� 8 � � � 8 	 , we will only consider the two-
dimensional case (translation vector).

Two-dimensional registration is to find the rotation center of the rotation trans-
formation. The goal is to partly match the curves on the same plane from two
different views. Consider the registration model shown in Figure 3-3, two curves
are observed from different viewpoints with 90 degrees rotation angle (viewpoint
1 and viewpoint 2). The curve from the second viewpoint is transformed back to
the world coordinate system according to the initial or estimated rotation center as
shown in the right figure. Then the overlapping part of these two curve is used
to update the rotation center for the next rotation transformation. This process is
repeated until the rotation center converges.

For each iteration, the next rotation center is found by three steps– (i) finding
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Figure 3-6: Calculation of the new rotation center

the overlapping part of two curves, (ii) finding the matching point on the second
curve, (iii) using the matching point and the corresponding point on the first curve to
compute the rotation center. To find the overlapping part of the registered curves, we
first convert the data points to the polar coordinate system centered at the estimated
rotation center (see Figure 3-4). The angles (

�
values) are used to detect the overlap

of these two curves. Let
� �

�
� �

�
	

be the last point on the first curve and
� � 6 ��� 6 	

be the first point on the second curve, then the overlap can be specified by all the
points

��� � � 	
with

� 6�� � � �
� . Since the points from the second view will be

used to update the rotation center, we only consider the overlapping part on the
second curve. Here we assume that there exists a one-to-one mapping between

�
and

�
on all data points and this is true for simple objects as we have previously

defined. Generally coarse registration gives us the required accuracy on rotation
center to find the overlapping region. In the implementation, to ensure that it is
robust under the presence of noise, we only use half of the points on the central part
of the overlap.

The second step is to choose proper points for computing the new rotation cen-
ter. Since we assume the rotation angle is fixed (e.g. � � � in this case), the rotation
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(a) Curves before registration (b) Curves after registration

Figure 3-7: Cross section curves of an object before and after fine registration

center can be found if the points are known before and after rotation transformation.
Let the overlapping data points on the second curve be 
 � , 
 6 , ..., 
 * , the current
rotation center be denoted as

�
, and � � , � 6 , ..., � * be the projection of 
 � , 
 6 , ...,


 * on the first curve along the lines
� 
 � ,

� 
 6 , ...,
� 
 * . On the discrete sampled

data, the projected point is given by the intersection of the projection line and the
line segment of the data points on the first view. The matching point is defined as
the projected point � 


which satisfies


 
 � 
 ��� ������
�
� * 
 � � �

(3.3)

That is, the matching point is a point on the first curve and farthest to the second
curve under projection. For a given data point on the first curve, the line segment
connected by two consecutive data points on the second curve to be intersected is
found by testing all of the overlapping line segments on the second curve. The line
segment is then used to find the distance in Eq. (3.3).

The matching point � on the second curve and the corresponding data point 

on the first curve before transformation are used to compute the new rotation center.
Let

���
�
���

�
	

be the point before transformation and
��� 6 ��� 6 	 be the matching point,

then the rotation center
��� � ��� � 	

is given by��� � ���
�
/ � 6 � �

� �
� 6 	 � � (3.4)� � � � �

� �
� 6 � � 6 /
�

�
	 � � (3.5)
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Figure 3-8: Convergence of the translation vector

or

��� � ���
� �

� 6 / �
� �

� 6 	 � � (3.6)� � � � �
� �

� 6 /
� 6 � � �
	 � � (3.7)

for a fixed rotation angle of � � � . There are two solutions located on both sides of

 � . The ambiguity is solved by choosing the one on the same side of the previous
rotation center (see Figure 3-6).

In the experiment, the cross sections of an object are used to find the rotation
center. For any two range images from consecutive viewpoints, the rotation center
is updated by taking the average of the rotation centers computed from the cross
sections. Figure 3-7 shows the cross sections of an object before and after registra-
tion. Four curves from different range images before registration is shown in Figure
3-7(a). The initial rotation center is given as

� 8 �&8 � 
 � � ��8 	 . After registration, the ro-
tation center is moved to

� 8 � ��� � � 
 � � � � � � 	 . This reduces the error between curves
and the result is shown in Figure 3-7(b). Figure 3-8 shows the actual values of the
translation vector converging with iterations. In the experiments, it shows that the
convergence of translation vector is very fast (usually less than �
8 iterations).

This iterative registration method is also very robust under poor initial val-
ues. In Figure 3-9, we show some results of the convergence of translation vector
with different starting points. The initial rotation centers are given as

�
�18 �&8 � � � 8 �&8 	 ,� / � � �&8 � � �18 �&8 	 and

� ��8 ��8 � 
�
 8 �&8 	 . After several iterations, they all converge to the
same value

� 8 � ��� � � 
 � � � � � � 	 . The cross sections before and after registration for the
initial value

� �
8 �&8 � 
�
 8 ��8 	 are shown in Figure 3-10. Figure 3-10(b) is the same as
3-2(b).
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Figure 3-9: Convergence of the translation vector with a poor starting point
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(a) Curves before fine registration (b) Curves after fine registration

Figure 3-10: Registration with a poor initial rotation center

3.5 Discussion

In this chapter we describe two methods for data registration. The first algo-
rithm searches for the best rotation center in a given region by minimizing the error
between range images. Sum of differences on the uniformly resampled points is
used to calculate the error. The second algorithm updates the rotation center itera-
tively by direct computation using the current matching points. Without searching
and minimization, it converges very fast even with poor initial estimates. The first
method usually takes more time to obtain a high precision result compared to the
second method due to the small search interval. However, it will not give local
minima which may occur in the second method.

As we can see on the registered curve (e.g. Figure 3-10), they do not perfectly
match with each other. This causes problems because smooth data points are pre-
ferred for surface integration. To overcome this problem, we can take the weighted
average on the overlapping parts of the range images [25], which will be discussed
in the next chapter.



Chapter 4

Surface Integration

4.1 Introduction

Once the registration process has been completed, the data contained in each
view can then be transformed into a single object coordinate system for integration.
Depending on the type of sensor that captures the data and the method of registra-
tion, the points on the surface can be in one of the two basic forms– unstructured
data set and structured data set. In the first case, the range data form a point cloud
without spatial connectivity information. In the second case, the data are structured
via relationships (such as image-plane connectivity) known a priori in each view.
The method of integration depends on the form of the input data set (structured
or unstructured) and the final representation required by the application. They are
usually classified as structured and unstructured integration methods.

Unstructured integration algorithms create a polygonal surface from arbitrary
collection of 3D points. In this case, the integration is performed by collecting to-
gether all the data points from multiple scans and presenting them to the polygonal
reconstruction procedure. Structured integration algorithms make use of informa-
tion about how the range data are obtained, such as adjacency information between
points within one range image. Our range data obtained in Chapter 2 falls into the
second category. The range images from different viewpoints are represented as
a rectangular grid. The goal of our integration algorithm is to combine the partly
overlapping data sets to a complete non-redundant 3D data set without any loss of
detail in the original raw data.

In the following sections, we first review some related work on surface re-
construction. We then describe our surface integration algorithms and show some
experimental results. We also evaluate the accuracy of our algorithms. A short
discussion concludes the chapter.

53
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4.2 Related Work

Surface reconstruction from range data has been extensively investigated over
the past several decades. The methods in the literature that are able to create seam-
less meshes from 3D range data set can be divided into two groups, one is volu-
metric approach and the other one is surface approach. The volumetric approaches
[39, 5, 68, 21, 37, 91] first store the 3D data points into a volumetric data structure,
either a voxel grid or an octree. Each voxel contain eight vertices and by evaluat-
ing a field function at those vertices it is possible to extract a level surface of the
field function. The field function is often chosen as a signed distance function. The
triangular mesh is then created using an iso-surface extraction algorithm such as
marching cubes algorithm [48]. The surface approaches [85, 70, 75, 76, 58] cre-
ate an initial set of triangulated meshes from the original 3D range images. These
meshes are then merged together to create the final complete 3D model.

Volumetric approaches work on both structured and unstructured input data.
Hoppe et al. [39] introduce an algorithm to construct 3D surface models from a
cloud of unorganized points without spatial connectivity. They determine an ap-
proximate tangent plane at each data point using least squares on � nearest neigh-
bors, and then take the signed distance to the nearest point’s tangent plane as the
distance function in 3D space. The distance function is then interpolated and polyg-
onalized by the marching cubes algorithm. In two subsequent steps [40, 41], the
constructed mesh is optimized (i.e., the number of triangles is reduced while the
distance of the mesh from the data points is kept small) and then a piecewise smooth
subdivision surface is built on it.

Curless and Levoy [21] propose a similar approach to Hoppe’s algorithm with a
few differences. They integrate distance estimates at each voxel instead of searching
for the closest point from a voxel’s center to determine the signed distance. The
range images are taken separately and scanned along the line of sight to each of
them. The integration is done on the signed distance to the point for each voxel
the line passes through. The final signed distance estimate is a weighted average
of all the estimates from different range images. The marching cube algorithm is
then used to approximate the zero set of the distance function by a set of connected
triangles using the values of the distance function at the voxel vertices.

Pulli et. al. [62] propose a simpler and attractive method for volumetric ap-
proach. They classify the voxels in the volumetric grid for each range image as
either outside, inside or on the surface of the object by using geometric properties
about the viewing angle. Their algorithm recursively subdivides each voxel clas-
sified to be on the surface into eight smaller voxels and the process is stored in an
octree data structure. By some simple rules the classifications of the voxels from
the different range images are combined into one common classification. Those
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rules are also used to remove the outliers. When a predefined level of refinement is
reached, a triangular mesh is then constructed from those voxels.

Reed et al. [66] develop a volume-based method using a constructive solid
geometry (CSG) technique to form a solid model of the object from multiple reg-
istered range views. They create a solid for each view by sweeping the range data
from the object away from the scanner filling in the space self occluded by the
object. The surfaces of the solid are labeled as being either visible to the sensor
or occluded by the object view. This labeling technique is used for view planning
since it provides the information about which portions of the current viewspace are
not covered by the previous views. Once all the visible portions of the object have
been covered by one or more views, the view solid models are intersected to form
a complete model.

Turk and Levoy [85] propose a polygonal method that fits a triangular mesh
to each range image. They employ an incremental algorithm that updates a recon-
struction by eroding redundant data, followed by “zippering” along the remaining
boundaries. The final “consensus” step reintroduces the original geometry to estab-
lish final vertex positions. Their method utilizes the structure in each range image
but can have bad behavior in areas of high curvature.

Soucy and Laurendeau [75, 74] describe a method that builds surface descrip-
tions from multiple registered range images using Venn diagrams. They decompose
range images into “canonical views”, which are areas common to a unique subset
of range images. A common reference plane is defined for each canonical view and
the data points are projected onto it. Sets of common points are found using neigh-
borhood and visibility tests. A Delaunay triangulation is made on each reference
plane and they are combined to form the complete model by re-parameterization.

4.3 Integration with Global Resampling

The first integration algorithm we developed for surface reconstruction is based
on

� � � ��� � 	
space representation. It works under the simple object assumption as

described in Section 3.3– for each cross section of the object perpendicular to the
rotation axis, there is a 1-1 correspondence between any point on the contour and
the angle

�
of the direction vector from the rotation center to that point. Linear

interpolation is used to resample the data points to create a rectangular grid on
the object’s surface. The complete 3D model is then described by vertices and
quadrilaterals provided by the rectangular grid.

Similar to the registration process described in Section 3.3, the coordinate sys-
tems used for integration are shown in Figure 3-1. Any data point

��� 
 ����
 ����
 	
of

the
�
th range image is first converted to a representation in the cylindrical object
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coordinate system
� � � � ��� 	

by

� � � 
 � ���
� ( �

��
�/ � �
� � / ��


� � � ����
)/ � � 	 6
�

� ��
�/ � � 	 6
(4.1)� � ��


where � 
 is the rotation angle of range image or viewpoint
�

with respect to the first
viewpoint and

� � � � � � 	
is the rotation center. At this point, only the data points that

are part of the object are retained, and other points belonging to the background are
eliminated. Having retained only points on the object, all the points from differ-
ent views are merged into one set and represent a discrete sampling of the visible
surface of the object. In the object coordinate system, this merged set of points
represent a discrete sampling of the visible surface of the object. Since visible sur-
face is assumed to be simple so that it can be represented by a function of the form�
� ��� � 	

in the cylindrical object coordinate system, the merged set of points can be
thought of as a discrete sampling of this function. Given these discrete samples, we
obtain a complete 3D model of the object as follows.

The discrete sample points are used to interpolate and uniformly resample the
object’s surface in the (

� ���
) space. In the experiments, the resolution of range im-

ages is � � � � � and the object’s surface is uniformly resampled by 27 points in the
�

space, and 120 points (3 degree intervals) in the
�

space. The resulting rectangular
sampling grid in the

� � ���
	
space is used to define a set of vertices (correspond-

ing to sample points) and quadrilaterals (corresponding to rectangles in the grid)
that give a piecewise approximation of the object’s 3D shape. In order to render
the 3D shape, the coordinates of the vertices are computed in the Cartesian object
coordinate system from their cylindrical coordinates as follows:� � � 032 � �

� � �
(4.2)� � � - .10 �

In our experiments, we used a simple separable linear interpolation scheme for
resampling. First the � � � � � depth-map obtained for each of the four views of the
object was resampled vertically at 27 points along the

�
-axis. Then the points on

the object were represented in the cylindrical object coordinate system. After this,
for each value of

�
, the surface was resampled at 3 degree intervals (120 points)

using a simple linear interpolation scheme.
The results of a cylinder object and a box object, both with different geomet-

ric shapes pasted on their outer surfaces, are shown in Figure 4-1 and Figure 4-2
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Figure 4-1: Partial 3D shapes and the complete 3D model of a cylinder object
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Figure 4-2: Partial 3D shapes and the complete 3D model of a box object
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respectively. Two figures on the top are the partial 3D shape from different view-
points. These range data are acquired using our previous vision system SVIS with
Olympus Deltis VC-1000 digital camera. The resolution of 3D shapes are � � � � �
recovered from ���18 � � 
 8 intensity images using conventional parallel stereo. The
figures on the bottom are the reconstructed 3D model viewed from different direc-
tions.

4.4 Region-of-Construction Algorithm

Our input range data acquired in Chapter 2 is given on a regular grid of points
with spatial connectivity for each partial 3D model. Therefore, we develop a spe-
cialized triangulation method depending on the acquisition viewpoints. The basic
idea is to stitch the Regions-of-Construction of different viewpoints at their bound-
aries to create a complete 3D model. This algorithm takes advantage of the known
topology of each range image and does not involve any spatial search of the data
points. The mesh triangulation is done using indices of data points on a grid net-
work. As a result, it is much faster than the general algorithms using our input
data.

Given two registered range images from adjacent viewpoints, the overlap be-
tween them is illustrated in Figure 4-3. In order to directly stitch these two range
images to create a single mesh representation, the redundant data on the overlapping
part has to be removed. To select and remove the redundant points, it is reasonable
to begin from the edges of the range images since the data points are usually less
accurate when they are away from the center of a range image (due to imperfect
projection model and lens distortion, etc.). In this algorithm, the overlapping part
of range images from two consecutive viewpoints is divided into two regions and
each region is assigned to one of the range images for construction. Region-of-
Construction for each range image is created and used to obtain a non-overlapping
data set for surface integration.

We first give the definition of Region-of-Construction for a range image. For
a set of registered range images, Region-of-Construction is defined as a part of
a range image and does not overlap Regions-of-Construction of any other range
images. The two-dimensional case of Region-of-Construction on a cross section
of an object is illustrated in Figure 4-4. The object is assumed to be completely
described by 5 viewpoints. For each viewing direction, the left and right line-
of-sight is defined as the line determined by the viewpoint and the leftmost and
rightmost data point, respectively. The equiangular line passes the intersection of
right (left) line-of-sight of

� / �
(
�
�
�
) range image and left (right) line-of-sight of

�
range image is defined as the left (right) line-of-division for range image

�
. The 2-D
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Figure 4-3: Overlap of two range images from adjacent viewpoints

Region-of-Construction for each cross section of an object is then bounded by the
left and right line-of-division. For each viewpoint, Region-of-Construction is made
by all of the 2-D cases on the cross sections.

The way we define and create Region-of-Construction ensures that the cen-
tral part of a range image is always retained for surface reconstruction and the
data points near the edges of the range image are removed. Since Region-of-
Construction is obtained from the 2-D cases of each cross section, generally the
perspective projection of each row of the range images cannot be directly used. Re-
sampling along the vertical direction of range images can be carried out first. How-
ever, the error due to perspective projection in our experimental setup on SVIS-2
camera system can be neglected in most real objects because the depth of field is
relatively small compared to the object’s distance. The lines-of-division for each
row of range images are computed on the vertical projection on the cross section of
the object.

For each Region-of-Construction, the triangular mesh is created as follows.
We start at the upper left corner of the range image, find the points which belong to
the Region-of-Construction, mark them as valid points and establish the connection
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Figure 4-4: Region-of-Construction on a cross section of an object

[70]. For each valid point, take it as the upper left corner vertex of a polygon
connection. There exist five possible tessellations for triangles or quadrilaterals as
shown in Figure 4-5.

For the first case the column index of the first valid point in the
�
th row is

smaller than the column index of the first valid point in the
�
th row, where

� � � � � .
Let � and � be the column index of the first valid point in the

�
th and

�
th row,

respectively. Then we have � � � for these two adjacent rows. The triangulation
in this case is done by connecting the vertex indices

� � �
�
	 / ��� � � 	 / �	� � � � � 	 ,� � �

�
	�/ ��� � � � � 	 / ��� � � � � 	 , � � � , until � � �

/ �
. For the second case the column

index of the first valid point in the
�
th row is larger than the one in the

�
th row,

where
� � �

�
�
. Let � and � have the same definitions as in the first case, then

the triangles are created by connecting the vertex indices
�	� � � 	 / � � �

�
	 / � � �

� �
� 	

,��� � � 	 / � � �
� �
� 	 / � � �

� � � 	 , � � � , until � � � / � . For the third case the column
index of the last valid point in the

�
th row is smaller than the column index of

the last valid point in the
�
th row, where

� � �
�
�
. Let � and � be the column
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Figure 4-5: Five possible tessellations within a Region-of-Construction

index of the last valid point in the
�
th and

�
th row, respectively. Then we have� � � for these two adjacent rows. In this case one or more triangles are created by

connecting the indices
�	� � � 	 / � � � � 	 / � � � � � � 	 , ��� � � 	 / � � � � � � 	 / � � � � � � 	 ,� � �

,
��� � � 	 / � � �

�
/ � 	 / � � �

�
	

for any two adjacent rows. For the fourth case the
column index of the last valid point in the

�
th row is larger than the one in the

�
th

row, where
� � � � � . Let � and � be defined as before, then the triangles are created

by connecting the indices
�	� � � 	�/ � � �

�
	�/ �	� � � � � 	 , ��� � � � � 	�/ � � �

�
	 / �	� � � � � 	 , � � � ,��� � � / � 	 / � � �

�
	 / ��� � � 	 . In these four cases one or more triangles are created near the

boundaries of Region-of-Construction depending on the column index difference
between any two consecutive rows.

Finally we consider the case that four valid points adjacent to each other with
one difference for both column and row indices. For the valid points in the

�
th and�

�
�
th row with column index

�
and

�
�
�
, the mesh connection is given by
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. In this case, lots of quadrilaterals in the central part
of the range image are produced and the number of quadrilaterals depends on the
difference between the last and first column index of two consecutive rows. Those
quadrilaterals are further divided into triangles by connecting the shorter diagonals
(see Figure 4-6). The resulting triangles are indexed by either
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.

Figure 4-7 shows an example of Regions-of-Construction created for four
range images. The original range images are shown as shaded images including
the background region. Region-of-Construction for each range image is indicated
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Figure 4-6: Quadrilateral are further broken into triangles with shorter diagonals.

by wireframe region. It can be seen that each Region-of-Construction is part of the
original range image and do not overlap each other.

After the meshes for Regions-of-Construction are created for each view, the
partial 3D models are stitched together by connecting the last valid point of the
current range image to the first valid point of the next range image in the same
row (see Figure 4-8). The resulting quadrilaterals on the boundaries of two range
images are also broken into triangles with shorter diagonals.

In this algorithm the mesh of an object is created by combining four meshes
from different viewpoints using only indices of the range images. It is not only fast
(in a sense that no spatial search involved) but also facilitating the texture mapping
process as we will see in the next chapter. Although individual meshes are prefer-
able for texture mapping, a single mesh can also be created for wireframe or shaded
3D model. To create Region-of-Construction for each range image, we assume that
the overlap only happens on two consecutive viewpoints. However, it can be ex-
tended to the cases that more than two range images overlap at the same time by
considering only two adjacent range images.

Figure 4-9 shows the integrated and shaded 3D wireframe model of a toy object
from several viewpoints. The top four figures are the low resolution model which
contains 2,111 vertices and 4,147 triangles, whereas the bottom figures show the
high resolution model which contains 8,328 vertices and 16,511 triangles. Figure
4-10 shows the integrated results of a bottle and a cylinder object. Figure 4-11
shows the complete 3D model of a head object. It contains 27,692 vertices and
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Figure 4-7: Example of Regions-of-Construction of four range images of a real
object. Only parts of the range images are stitched together to create a complete 3D
model.
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Figure 4-8: Stitching of two range images

55,111 triangles. In this example, the overall shape has been captured very well
except the top area which cannot be seen by the camera. Figure 4-12 shows the
images taken from different acquisition viewpoints of the test objects.

4.4.1 Complex Object with Holes

In this section we consider more complicated objects with holes. It is a rela-
tively difficult problem in surface integration because simply projecting and merg-
ing range images on cylindrical or spherical grids will fail in this case [16, 61, 88].
Since the Region-of-Construction algorithm provides only non-overlapping sur-
faces, complex objects with holes can be reconstructed by selecting proper view-
points that include the holes. We assume that if a hole can be observed from one
viewpoint, it can also be observed from the opposite viewpoint. This generally
holds for most real objects. Under this assumption, a 3D model is first constructed
using the algorithm described in the previous section without considering its hole.
Then the boundary points of the hole which belongs to two opposite viewpoints
are connected using the following algorithm. (Again, the mesh is created using the
indices of range images and does not involve spatial search.)

First, we connect the top and bottom rows of one range image to the top and
bottom rows of the other range image from the opposite viewpoint respectively. The
row indices can be different. The column indices of the top and bottom rows are
used to create a triangle/quadrilateral mesh similar to the previous section. Without
loss of generality, we consider the top rows

�
� for one range image with the hole

and the top row
� 6 for the other range image with the same hole. Let � � , � � , and� 6 , � 6 be the first and last vertices for the first and second range image respectively.

Then triangles are created for differences of � � , � � and � � , � � , and quadrilaterals are
created for the central parts with same column indices. For both side boundaries of
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Figure 4-9: Wireframe model of a toy object
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Figure 4-10: Wireframe models of a bottle and a cylinder object
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Figure 4-11: Wireframe model of a head object
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Figure 4-12: Different acquisition viewpoints of test objects
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the hole, two triangle/quadrilateral meshes are created with variable row index and
the fixed column index in a row (one belongs to object points and next to a back-
ground point). Figure 4-13 illustrates this hole-creating process. The quadrilaterals
are further broken into triangles with short diagonals.

In some cases the observed hole does not appear in any Region-of-Construction
defined in the previous section but it gives depth discontinuities in one of the range
images (see Figure 4-14). To reconstruct the hole in this case, a principal view is
first defined as the viewpoint containing the hole and then used for the hole-creating
process. The lines-of-division of principal view are shifted towards the edges of the
range image such that the new Regions-of-Construction can completely cover the
hole. In Figure 4-15(a), a hole is partly covered by this Region-of-Construction.
The principal view is hence selected and a larger Region-of-Construction is created
to enclose this hole (see Figure 4-15(b).

4.4.2 Integration of Multiple Objects

In this section, we describe an algorithm to deal with surface integration of
multiple objects. To create the 3D model of multiple objects in a scene, we assume
the objects are separable in the vertical direction. Also, the separation of objects
can be detected from at least two viewpoints (with opposite directions). This gener-
ally holds for most objects, possibly with some manual rearrangements. The range
images for different viewpoints are first segmented for each object in the scene to
create a range data set for each object. The 3D model for each object is then con-
structed using the integration algorithms described in the previous sections. Finally
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Figure 4-14: Object with a hole can be seen from two opposite viewpoints.
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(a) 3D model without hole-creating (b) Principal view enclosing the hole

Figure 4-15: Extended Region-of-Construction in the principal view

the 3D models are combined together to form a single representation.
For each range image, the segmentation masks for the objects are obtained

by considering the rotation geometry of the scene. A depth threshold is used to
separate different objects in case of self-occlusion. In the experiment, four range
images are obtained for every 90 degrees of rotation angle. The objects are placed
on the rotation stage such that their separation can be detected for all viewpoints.
The reconstructed focused images are shown in Figure 4-16. The top two figures
show two partial 3D shapes from different viewpoints. The final 3D models are
shown in the bottom figures for several viewing directions.

Due to perspective projection, the constructed 3D model looks distorted if the
depth difference of the scene is too large. It shows that there are some missing parts
in the 3D models, especially near the top and bottom of the objects. In Figure 4-
17, the discontinuities and missing parts can be seen near the boundaries where we
stitch partial shapes together. However, the data points on the reconstructed model
are exactly the same as those from range image data– no information has been lost
during surface integration.

4.4.3 Accuracy Analysis

To analyze the accuracy of a given reconstructed 3D model, one way is to
compute the error of the final mesh relative to the original 3D range data [69]. This
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Figure 4-16: Reconstructed focused images of multiple-object scene

type of accuracy analysis assumes that the acquired 3D data is accurate and focuses
on minimizing the integration error on given range images. Usually it is done by the
researchers who work mainly on integration and take range data from other sources.
Another type of analysis on the accuracy of a complete 3D model is to measure the
error between the reconstructed model and the real object. This method is more
reasonable since the goal of reconstruction is to obtain a 3D model as faithful to
the original object as possible. However, it is very difficult (if possible) to get the
accurate 3D data of arbitrary object. Our accuracy analysis belongs to the second
type because we provide the complete system for 3D model reconstruction which
includes acquisition of range data. We are interested not only in the accuracy of the
integration process from given 3D data but also in the overall accuracy of our vision
system.

Since Region-of-Construction algorithm merges the original 3D data without
any modification (only overlapping parts on range images are removed), the accu-
racy of our reconstruction depends on the accuracy of the range images and data
registration. The accuracy of range images is determined by the depth maps ob-
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Figure 4-17: Partial and complete 3D models of multiple objects
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tained from rotational stereo and inverse projection to the 3D space. As mentioned
in Chapter 2, quantization error is always present in depth map because of stereo
matching on digital images. To restore the 3D points for range images, we ap-
plied perspective projection model on depth maps. This can give inaccurate results
especially near the edges of the range images due to camera lens distortion. The
accuracy of data registration mainly depends on the rotation axis calibration and its
refinement using overlapping parts of range images.

To measure the overall accuracy of our system, we use a cylinder as test ob-
ject. The same procedure and algorithms are applied to obtain the complete 3D
model. The acquired 3D data set is then fitted to the perfect cylinder from our phys-
ical measurement to calculate the average error of each data point acquired by our
system. The calculation is given as follows.

Let 	 be the actual radius of the cylinder by physical measurement, � � , � 6 ,� � �
, � * be the sampled data points, and 	 � , 	 6 , � � � , 	 * be the distances from the data

points to the line that passes through the center of the cylinder. The average error
for the 3D data set is then computed as

�*�� , 	 
 / 	 , 6 , where 	 
 is the distance from
the data point � 
 to the axis of the cylinder with line equation ����� and denoted as	 
 � 	 � � 
 � ����� 	 . Since the line equation ����� is unknown in the camera coordinate
system, it is approximated by minimizing the sum of distances from each data point
to the line, i.e., � 2 � � 	 � � 
 � ����� 	 . In other words, we are finding the best fitting
cylinder for the acquired data set.

The test object and the reconstructed 3D model used for accuracy analysis
is shown in Figure 4-18. The scattered 3D data points of one range image and
the complete 3D model are shown in Figure 4-18(b) and 4-18(d). The measured
diameter of the cylinder is 155 mm. By fitting the 3D points to the perfect cylinder,
the average error for each data point is calculated as 0.44 mm. Therefore, the overall
accuracy of the reconstruction is about 0.28% (or 1 part in 200).

4.5 Slice-by-Slice Algorithm

Surface reconstruction from polygonal contours on parallel slices in 3D is a
well studied problem due to its number of applications such as computer tomogra-
phy (CT) or magnetic resonance imaging (MRI) scan techniques [6, 12]. The input
to the surface reconstruction problem is a series of parallel slices, each representing
a cross section of the solid to be modeled. As illustrated in Figure 4-19, there are
three major problems in such surface reconstruction [54]:

1. the correspondence problem– which contours should be connected by the
surface?
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(a) Test object used for accuracy analysis (b) Partial 3D shape of the front view

(c) Reconstructed 3D model (d) Data points of the 3D model

Figure 4-18: Measurement of overall accuracy of 3D model reconstruction
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Figure 4-19: Surface from contours

2. the tiling problem– how should the contours be connected?

3. the branching problem– what do we do when there are branches in the sur-
face?

The correspondence problem has to be solved by determining which of the contours
from each of the cross sections should be connected together. The branching prob-
lem has to be solved by determining how to connect the two contours in section 1 to
the one contour in section 2, and to each other. Since we only construct relatively
simple objects with range image input data, these two problems are not considered
here.

In this algorithm we focus on solving the tiling problem by choosing a “best”
surface connection between two adjacent contours. As we mentioned earlier, the
format of our input data is range image, which is different from those used for
general surface reconstruction algorithm from a series of contours. Usually the 3D
input from CT scan does not have redundant data on the overlapping parts between
different scans. Therefore, we have to integrate the data points which are on the
same cross section of the object but from different range images to obtain the con-
tours for surface reconstruction.

Compared with our previous algorithm, this surface integration algorithm uses
all of the available data points of an object from different viewpoints. After reg-
istration, the data points are treated as unorganized points within each row. First,
the data points from all range images are sorted to create a sequence of points for
any fixed row. Then, the nearest three points in every two consecutive rows (two
points in one row and one point in the other row) are used to create the triangular
mesh (see Figure 4-20). Since we assume that there is only one single connected
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Figure 4-20: Slice-by-slice algorithm

contour for each cross section of the object, the data points are sorted according to
their angle with respect to a reference point inside the object. The reference point
has to satisfy the condition that there exists a 1-1 mapping between the data points
and their corresponding angles. For a simple object defined in Chapter 3, this point
can be the rotation center where the rotation axis intersects the cross section of the
object. Currently the reference point is chosen as the centroid of a contour and the
contours need not be convex.

Due to perspective projection, the same row of different range images does not
correspond to the same cross section of the object. To construct the contour for
each cross section, we make slices at equal distances along the vertical direction
and assign the data points to the closest slice. The contour is then made by the data
points of one slice without considering the

�
values.

Some integration results of 3D model are shown in Figure 4-21. This slice-by-
slice algorithm provides a denser 3D model compared to the algorithm described in
the next section. However, it is very sensitive to the input data. If the data set is not
perfect (due to registration error, stereo mismatch or noise), the mesh connecting
data points between range images back and forth will produce a non-smooth surface
on the overlapping part.

4.6 Discussion

In this chapter we develop three algorithms for surface integration. The inte-
gration algorithm using global resampling provides a uniformly resampled grid on
the object’s surface. Resolution of the final mesh can be easily adjusted by increas-
ing the number of sampling points on the object-centered cylindrical coordinate
system. To deal with high curvature regions, second or higher order interpolations
can be carried out instead of linear interpolation. The major drawback is that it can
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Figure 4-21: Integration results of slice-by-slice algorithm
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only be used to construct objects with star convex 1 cross sections.
Region-of-Construction algorithm directly stitches non-overlapping regions of

range images with raw input data. No approximation on the data points is made for
creating 3D models. Mesh simplification based on this raw data is thus more reli-
able. The registration error is limited to the boundaries of stitches between range
images without propagation. The resulting gap (or discontinuity) can be further
smoothed by taking average on the neighborhood of the boundaries. As we shall
see in the next chapter, texture mapping is more efficient using this integration
algorithm because texture information is directly mapped onto each region of con-
struction.

Slice-by-slice integration algorithm uses all available data points to construct
a dense 3D model. Because of overlap of range images, sorting algorithm should
be carried out for each slice. It is sensitive to registration error and noise, and
post-processing should be applied to get a smooth surface.

Accuracy of a reconstructed 3D model is usually difficult to evaluate because
of absence of the ground truth. In this dissertation, we analyze the accuracy using a
cylinder object with known dimensions. For objects with arbitrary shape, range data
acquired from more sophisticated techniques such CMM (Coordinate Measuring
Machine) can be used to compare with our results.

�

A Region � is star convex (or star-shaped) if there is a point � in � such that, for any
point � in � , the line segment ��� is contained in � .



Chapter 5

Texture Mapping

5.1 Introduction

Texture mapping was one of the first developments towards making images
of three-dimensional objects more interesting and apparently more complex [89].
Since one of the purpose of 3D model reconstruction is to display on a computer
monitor, rendering of the reconstructed model represented by only geometric in-
formation is not enough. Information about the surface texture has to be added to
improve the appearance of the 3D model. As shown in Figure 5-1, by adding the
texture information to the wireframe model of a toy object (Figure 5-1(a)), a more
realistic 3D model can be obtained (Figure 5-1(b)).

One major advantage of using passive camera systems (instead of say laser
range scanners) to acquire 3D model is that the recorded images are used not only
for measuring the 3D shape but also for providing the texture information for the
objects. Although some 3D range sensors [9] provide intensity or color value asso-
ciated with each 3D data point, the information is usually not sufficient for realistic
texture mapping on top of the triangulation. Some researchers combine the range
and image sensing techniques to create the photo-realistic models [77]. One major
drawback of their approach is that the information provided by the range and image
sensors has to be properly registered. This requires the knowledge of the internal
camera parameters (effective focal length, principal point and distortion parame-
ters) and the relative position and orientation between the centers of projection of
the camera and the range sensor.

In our approach, the color images used for texture mapping are obtained from
shape from focus with several different focus positions (typically 4 different focus
steps). The texture image is therefore focused almost everywhere and provides a
better textured 3D model compared to those models that use a single image for
texture mapping. The focused images constructed for four different viewpoints of a
toy object are shown in Figure 5-2. Having modeled the 3D shape of an object by a

81
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(a) Wireframe model of the toy object (b) Textured model of the toy object

Figure 5-1: Photo-realistic 3D model is created by adding the surface texture to the
wireframe model.

set of vertices and polygons, the image texture of the object can be modeled in two
ways. One is to specify the image texture of each polygon by the projected pattern
on one of the focused images. The surface normals of polygons are used to decide
the best viewing direction. The other way is to provide the whole (individual) image
for each region of construction. The texture mapping is then done for each partial
3D shape using the same image. In the following sections, we will first describe the
details for these two mapping methods followed by some experimental results. A
short discussion concludes the chapter.

5.2 Texturing on Surface Patches

Texture mapping is an image synthesis technique in which a texture image is
mapped onto a surface of a 3D model followed by projection onto the screen for dis-
play. Figure 5-3 shows the overall process from the texture domain

� � � � 	 to screen
space

� �� � ���	
. The first transformation, sometimes known as surface parameteriza-

tion, takes the two-dimensional texture pattern and ‘glues’ it on the object. That is,
each point of the texture array is attached to a point of the polygonal surface by a
mapping function. The second transformation is called viewing projection, which
is the standard object to screen space mapping. Surface parameterization is part of
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(a) Focused image from viewpoint 1 (b) Focused image from viewpoint 2

(c) Focused image from viewpoint 3 (d) Focused image from viewpoint 4

Figure 5-2: Focused image constructed by SFF and used for texture mapping. View-
points 1, 2, 3 and 4 are corresponding to object rotation angles of 0, 90, 180 and
270 degrees.
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Figure 5-3: An overall texture mapping consists of a surface parameterization fol-
lowed by the normal geometric transformations.

3D model reconstruction, while viewing projection is part of image synthesis and
will not be further discussed here.

Since our 3D models are represented by triangular polygons, surface parame-
terization of polygonal surfaces is computed for texture mapping. The parameteri-
zation of a triangular polygon is performed by specifying the related texture space
coordinates

� � 
 � � 
�	 of each triangle vertex
���

 ����
 ����
 	

, where
� � � � � � � . To obtain

the
� � � � 	 coordinate of a given vertex

��� ��� ��� 	
, the perspective projection

���� �	���	
on

the image plane of the data point is first calculated by

�� �
� � �� and

�� �
� � �� (5.1)

where
�

is the camera focal length. Then the
� � � � 	 coordinate is given by

� �
��
��� � �
� and � �

��
��� � �
� (5.2)

where � and � are the image width and height, respectively. Since texture mapping
in this method is done on each individual polygon separately, only a rectangular
subimage enclosing the projected triangle on the image plane is extracted for the
mapping. As illustrated in Figure 5-4, surface uv is calculated by

� 
 � ��

� ���� & ��� 6�� � � � /

� 2 �� & ��� 6�� � � � and � 
 � ��

� ���� & ��� 6�� � � � /

� 2 �� & ��� 6�� � � � (5.3)

where
� � � � � � � . Once the

� � � � 	 coordinates of the vertices of a polygon are
obtained, the texture mapping can be automatically handled by graphics rendering
software.

For a given polygon of a complete 3D model, texture mapping can be modeled
in two ways. One is to project the polygon onto the focused image and extract an
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Figure 5-4: Texture mapping on a triangular polygon using the enclosing subimage

enclosing subimage according to its original viewing direction of data acquisition.
It is straightforward and requires less computation. However, if the surface normal
to the polygon is almost perpendicular to the direction of view, the polygon will
project onto a very small region and the image texture will be distorted due to coarse
sampling. The other way is to extract the texture from the focused image of “best”
acquisition viewpoint. The best viewpoint is chosen with the following criteria: (i)
the polygon is visible from the viewpoint, and (ii) the inner product of the surface
normal of the polygon and the direction of view is a maximum. Using this mapping
method we have less texture distortion on each polygon but more adjacent polygons
mapped from different images.

Figure 5-5 shows the results of texture mapping on surface patches. In Figure
5-5(a), the texture is mapped from the color image where the vertices of range
image are acquired. Texture mapping in Figure 5-5(b) is done by mapping the
texture according to the best viewpoint. As we can see in the magnified image of
the object’s nose, image distortion in the latter case is reduced compared to the
former case because large image size is used for the mapping. Due to the non-ideal
illumination conditions and error in 3D shape, there exists texture distortion at the
boundaries of polygons which are textured from different images. A local texture
filter can be applied to smooth this texture discontinuity [56].
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(a) Texture mapping from original viewpoint

(b) Texture mapping from the “best” viewpoint

Figure 5-5: Texture mapping on surface patches
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(range & focused) image 0 (range & focused) image 1

Figure 5-6: Texture mapping on a boundary strip. Boundary points of Re-
gion-of-Construction on image 0 are projected onto image 1 to calculate surface
uv for texture map.

5.3 Texturing on Regions-of-Construction

In contrast to the previous approach (texturing on each surface patch), tex-
ture information in this method is mapped on the object’s surface according to the
regions of construction of its geometric model. As defined in Chapter 4, Region-of-
Construction of a viewpoint is part of the corresponding range image of the object,
and therefore part of the corresponding focused image. Since the complete 3D
model is created by stitching all Regions-of-Construction, the textured 3D model
can be obtained by combining all textured Regions-of-Construction of the object.
That is, non-overlapped and texture mapped partial 3D models are created first and
then stitched together.

To obtain a texture mapped Region-of-Construction, the texture space coordi-
nate

� � � � 	 of each vertex is computed first. Since a one-to-one correspondence can
be easily found between range and focused images, the calculation of surface uv is
straightforward for index

��� �"��	
of a range image and given by

� �
�

� / � and � �
� / �

� / � (5.4)

where � and � are the width and height of range images, respectively. Although
surface uv is calculated for each data point of the range images, only those points
inside the regions of construction are used to extract the texture map.
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Figure 5-7: Extracted subimages using bounding boxes which enclose Re-
gions-of-Construction.

To stitch textured Regions-of-Construction, the texture map on the bound-
ary strip connecting two consecutive Regions-of-Construction has to be obtained
separately. This is because the boundary strips are not covered by any Regions-
of-Construction. To obtain the texture map, each boundary strip is assigned to
one focused image. The vertices of the boundary strip on the adjacent Region-of-
Construction (range image) are projected onto the focused image to calculate their
surface uv. The surface uv is then used to extract the texture map on the focused
image. As illustrated in Figure 5-6, the 3D points on the right boundary of range
image 0 are projected onto range image 1 and its corresponding focused image ac-
cording to the viewing geometry. The surface uv is calculated on each projected
point and used to extract the texture map from focused image 1 for the boundary
strip between Region-of-Construction of range image 0 and 1.

In this approach, the number of boundaries on the texture map of a complete
3D model depends on the number of focused images used. In our experiment, 4
focused images from the corresponding viewpoint are used and 4 boundaries appear
on the textured 3D model. Because the illumination conditions of different images
are not exactly the same, the texture discontinuity across the boundary is magnified.
This can be eliminated by applying a local texture filter as previously mentioned.

Since the whole areas of images including the background regions are used
for texture mapping in this method, the size of 3D model usually becomes very
large. The model size is reduced in two ways. First, a bounding box is applied
on the image to extract a rectangular region just enclosing the foreground region
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(or Region-of-Construction) and discard the background region. The reduction of
image size depends on the percentage of the foreground region in a scene. For
the toy object, the file size reduces up to 80%. Figure 5-7 shows the images used
for texture mapping extracted from Figure 5-2 with bounding boxes enclosing the
Regions-of-Construction. Second, we down-sample the original

� � 
 8 � �
�18 image

to size of ��� 8 � � 
 8 . This reduces another 75% and the quality of the resulting 3D
model is usually not degraded from our visual perception.

5.4 Shading

Realistic display of an object is obtained by generating perspective projections
and applying natural lighting effects to the visible surfaces. An illumination model,
or shading model is used to calculate the intensity of light that we should see at
a given point on the surface of an object. A surface-rendering algorithm uses the
intensity calculations from a shading model to determine the light intensity for all
projected pixel positions for the various surfaces in a scene [33].

The shading information of an object is provided by the normal vector of each
data point. The vertex normal is obtained by averaging the surface normals of all
polygons sharing that vertex. Instead of using data points of the complete 3D model,
we calculate the surface normals from the range images to keep the original shading
information. The resulting vertex normals on the boundaries of two consecutive
partial shapes are different from the ones obtained from the complete 3D model
and can be used to check the smoothness of surface integration.

5.5 Experimental Results

In this section, we show some experimental results of textured 3D model and
the overall acquisition time for creating a complete 3D model. The results of five
different objects– a foam head, a toy “Mr. Potato Head”, a cylinder, a bottle and
a detergent box are shown in Figure 5-8 – 5-12 with several viewing directions.
As we mentioned in Chapter 2, acquiring all of the images required for 3D model
reconstruction takes about 15 minutes. The total execution time and processing
time for each stage are shown in Table 5-1 with several object (in seconds, on a
Pentium II 450 MHz PC).
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Table 5-1: Overall execution times for complete 3D model reconstruction.

Object Data Acquisition Integration Texturing Total

Head 5.68 sec. 8.05 sec. 21.10 sec. 34.83 sec.

Toy 5.52 sec. 5.18 sec. 18.39 sec. 28.99 sec.

Cylinder 5.59 sec. 9.37 sec. 35.06 sec. 49.92 sec.

Detergent 3.03 sec. 9.87 sec. 37.02 sec. 49.92 sec.

Bottle 5.48 sec. 5.51 sec. 19.63 sec. 30.62 sec.

5.6 Discussion

In this chapter, we described two methods to map the color images constructed
by SFF onto the object’s surface. Texture mapping on each surface patch of the 3D
model extracts only the useful information (subimage blocks) from the original im-
age. Texturing on the surface patch with the best viewpoint image gives less distor-
tion on the image texture. The major drawback of this approach is that the real-time
rendering is slower. Texture mapping on each region of construction is efficient but
performs poorly when surface normals are away from the corresponding viewpoint.
The size of a 3D model is reduced by extracting the subimage on a bounding box
which just encloses the region of construction.
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Figure 5-8: Complete 3D model with texture mapping– toy
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Figure 5-9: Complete 3D model with texture mapping– head
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Figure 5-10: Complete 3D model with texture mapping– cylinder
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Figure 5-11: Complete 3D model with texture mapping– bottle
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Figure 5-12: Complete 3D model with texture mapping– detergent container



Chapter 6

Conclusion

6.1 Summary

In this dissertation, we have presented a complete system for automatic 3D
model reconstruction. This digital vision system is comprehensive in that it includes
all stages– data acquisition, registration, surface integration, and texture mapping,
to create a photo-realistic 3D model. The complete 3D model is constructed by
merging multiple range images with texture information from different viewpoints.
The system can be implemented with low-cost equipments and constructs complete
3D models in under 20 minutes.

In data acquisition stage, range and focused intensity images are recovered by
rotational stereo and shape from focus. For each viewpoint, two sequences of im-
ages with different focus positions are recorded before and after a stereo rotation
angle. A focused image pair and the corresponding rough depth maps are con-
structed from the image sequences by shape from focus. Rotational stereo model
is used to compute the epipolar geometry of the image pair instead of image rec-
tification. Stereo matching is done along the epipolar lines with the restrictions
provided by rough depth map to obtain an accurate depth map. Partial 3D shapes
from different viewpoints are obtained by rotating the object with known rotation
angles.

The partial 3D models are then registered to a common coordinate frame with
necessary alignment for surface integration. This includes rotation axis calibration
and registration. The calibration estimates the translation and unit vectors of the
rotation axis. The estimated rotation axis is then refined using the overlapping
regions of range images. We describe two registration algorithms, one is based
on global resampling of range data set, and the other one directly computes and
updates the rotation axis iteratively.

A surface integration algorithm, Region-of-Construction algorithm, is devel-
oped to remove the redundant data from range images and stitch the resulting non-
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overlapping regions to create a seamless 3D model. It takes advantage of known
topology of range images and thus requires less computation compared to general
integration algorithms. This algorithm also has the ability to construct complex
objects with a hole by adding a hole-creating process. We also develop two other
integration algorithms. One is based on

��� � ��� � 	
representation by resampling the

data points. Registered range images are resampled by linear interpolation in both�
and

�
directions on a cylindrical coordinate system. The other one is slice-by-

slice algorithm, which first turns range images to slices and combines the slices to
a complete 3D model.

The final photo-realistic 3D model is created by mapping the texture informa-
tion onto the complete surface model. For fast rendering, the mapping is done on
each region of construction and combining them together. We also implement a
method to map the texture on each surface patch of the complete 3D model.

6.2 Future Work

The future work of this research can be extended on all four stages of 3D model
reconstruction as well as other improvements. Possible related research is discussed
below.

Data Acquisition

Currently the 3D shape recovery is based on a pinhole camera model. By taking
other camera parameters such as lens distortion into account, the resulting 3D model
should be more precise. Furthermore, 3D shape recovery from depth map can be
adjusted by considering all viewpoints simultaneously instead of simple inverse
perspective projection model.

Registration

Registration in this research is to find the translation and unit vectors of the rota-
tion axis. To create a complete 3D model including the top and bottom, an object
has to be rotated along a horizontal direction either manually or automatically. In
this case, a more sophisticated registration method should be implemented to obtain
those transformation matrices. For higher resolution range images, high accuracy
of registration becomes very important. More input range images with larger over-
lapping regions could be used to obtain more accurate registration results.
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Surface Integration

Surface integration is a research topic in computational geometry. Most researchers
focus on turning unorganized points to a mesh model. Since our input range image
contain the information about the spatial connectivity, we should investigate how
to use this information to efficiently construct an accurate model. We can also
investigate how to convert the range images to point cloud or slice data, and apply
the existing integration algorithms to create a 3D model. This conversion usually
requires very accurate registration of the range images.

Texture Mapping

Texture mapping in this research assigns to each surface its own texture map with
its acquisition viewpoint. In case the surface normal is almost perpendicular to the
viewpoint, the image texture will be displayed with large distortion for the viewing
directions close to the surface normal. Future research can focus on how to ren-
der the textured 3D model consistently for different viewing directions. Another
research topic is shading inversion– given the surface normal (assuming uniform
illumination from all directions), how can we correct (or invert) for the brightness
change caused by shading effects.

Surface Simplification

With more and more high precision range data acquisition techniques available, the
reconstructed 3D model contains more vertex information than required by appli-
cations. These models are usually large, and difficult for real-time rendering. Thus,
surface simplification is important in the further research [74, 40]. It should be able
to reduce both the data size and the error on the data point (caused by noise or
incorrect registration, etc.) at the same time.

View Planning

The model reconstruction process we have described in this dissertation performs
no planning of sensor viewpoints. Equal rotation angles are used to acquire partial
3D models between views. How to select the minimum number of views to best
cover an object surface is an important research topic [66, 59]. This can speed up
the data acquisition process, especially when a large number of viewpoints has to
be taken to completely cover an object.



Appendix A

Quaternion and Rotation

A common problem in robotics and computer vision is solving for rigid-body
motions consisting of a rotation and translation in three-dimensional space. A num-
ber of techniques have been developed to deal with this problem and quaternion
have been found to be the most efficient representation. In this Appendix, we will
define the quaternion, state some of its essential properties and use it to represent
and algebraically manipulate rotations.

A.1 Quaternion

A quaternion can be thought of as a vector with four components. Alternately,
it can be thought of as a higher-order complex number with one real part and three
imaginary parts, and can be written as

�
� � � �

� 	 � � � � � � (A.1)

where the coefficients 	 , � , and � in the imaginary terms are real numbers, and
parameter � is a real number called the scalar part. Parameters

�
,
�
, � are defined

with the properties � 6 � � 6 � � 6 � / � �
� � � / ��� � � (A.2)

From the properties, it follows that� � � / � � � � � � � � / � � � � (A.3)

Scalar multiplication is defined in analogy with the corresponding operations
for vectors and complex numbers. That is, each of the four components of the
quaternion is multiplied by the scalar value. For a scalar � , the scalar multiplication
is given by

�
�
� � � � �

�
� 	 � � � � � ��� � (A.4)
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Similarly, quaternion addition is defined as

�
� � �

�
� 6 � �

� � � � 6 	 � � � 	 � � 	 6 	 � � � � � � � 6 	 � � � � � � � 6 	 (A.5)

Multiplication of two quaternions is carried out using the operations in Eqs. A.2
and A.3. It is associative but not commutative, as can easily be checked.

An ordered-pair notation for a quaternion is also formed in analogy with com-
plex number notation:

�
� � �

�
��� 	

(A.6)

where v is the vector
� 	 � � � � 	 . In this notation, quaternion addition is expressed as

�
� � �

�
� 6 � �

� � � � 6 ����� � ��� 	 (A.7)

Quaternion multiplication can then be expressed in terms of vector dot and cross
products as

�
� �
�
� 6 � �

� � � 6 /���� � ��� � � �
���

� � 6 ��� � ��� � ��� 	 (A.8)

The norm of a quaternion is given by

, �� , � � �
�
�
�
	 ( �	 � �

�
6
�
� � � 	 ( �	 (A.9)

and the inverse of a quaternion is

�
�
( � �

�

, �� , 6
�
�
�+/
� 	

(A.10)

so that

�
�
�
�
( � � �

�
( � �
� � � � � 8 	 � (A.11)

The conjugate
�
� � of a quaternion

�
� is defined by negating the vector component:

�
�
� � �

�
� /�� 	

(A.12)

It can be easily checked that the conjugate of a unit quaternion with , �� , � � is the
inverse of the unit quaternion. As a result, for a unit quaternion,

�
�
� �
� � �

�
�
�
� �
�
� (A.13)
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A.2 Rotation using Quaternion

Rotations about a specific axis in three-dimensional space can be conveniently
represented by unit quaternions (Figure A-1). The unit quaternion

�
� corresponding

to a rotation angle
�

about the unit vector � is given by
�
�
��� 	

where

� � - .10
�

� � � � � 032 �
�

� (A.14)

Any point position � to be rotated by this quaternion can be represented in quater-
nion notation as

� � � 8 � � 	 (A.15)

with the coordinates of the point as the vector part � � ��� ��� ��� 	
. The rotation of

the point is then carried out with the quaternion operation

� � � �
� � �

�
( �

� (A.16)

This transformation produces the new quaternion with scalar part equal to 0:

� � � � 8 � � � 	 (A.17)

and the vector part is calculated with dot and cross products as

� � � � 6 � � � � � � � 	
� � � � � �

� 	 �
� � � � �

� 	 (A.18)

Parameters � and
�

have the rotation values given in Eqs. A.14.
Transformation A.16 is equivalent to rotation about an axis that passes through

the coordinate origin. This is the same as the sequence of rotation transformations
that aligns the rotation axis with the

�
axis, rotates about

�
, and then returns the

rotation axis to its original position.
Using the definition for quaternion multiplication, and designating the compo-

nents of the vector part of
�
� as

� � � 	 � � � � 	 , we can evaluate the terms in Eq. A.18
to obtain the elements for the composite rotation matrix in a 3 by 3 form as

� ��� 	 �
��
�
� / �
� 6 / ��� 6 ��	�� / � �
� ��	�� � � �����	�� � � �
� � / ��	 6 / ��� 6 �
��� / � �
	��	�� / � � � �
��� � � � 	 � / ��	 6 / �
� 6

���
� (A.19)

where 	 , � , � and � are given in Eqs. A.14. Notice that when the rotation angle is
zero, then the rotation matrix in A.19 becomes a �

�
� identity matrix, i.e.,

� � 8 	 �	� .
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PSfrag replacements

�

�

�

�

�

�

Figure A-1: Unit quaternion parameters
�

and � for rotation about a specified axis

A.3 Concluding Remark

The unit quaternion representation can often simplify problems in which we
have to deal with the attitude of an object in space. Quaternions are also useful
in a number of other computer graphics procedures, including three-dimensional
rotation calculations. They require less storage space than 4 by 4 matrices, and
it is simpler to write quaternion procedures for transformation sequences. This is
particularly important in animations that require complicated motion sequences and
motion interpolations between two given positions of an object.
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