JOINT SYMBOL DETECTION AND TIMING ESTIMATION USING PARTICLE FILTERING
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ABSTRACT

This paper addresses joint estimation of the timing epoch and
detection of the transmitted symbols in a digital communication
system. Most timing recovery techniques found in the literature
are either approximately or heuristically derived, since optimal
estimators are analytically intractable, Our approach to the
problem relies on modeling the symbeol timing as an autoregressive
process. In this way, the digital communication system can be
mathematically represented by a dynamic system in state-space
form and the sequential Monte Carlo (SMC) methodology can
be applied. SMC algorithms are powerful tools for Bayesian
estimation that are based on representing the posterior distribution
of the system state by a discrete measure with random support.
This representation can be updated recursively, as new information
becomes available. allowing for optimal estimation of both, the
transmitted symbols and their timing.

1. INTRODUCTION

The fundamental goal of a digital receiver is the detection of
transmitted symbols with maximum reliability. However, the
signal observed at the receiver is distorted due to the effect of
the transmission channel. For accurate symbol detection, several
physical parameters must be estimated and compensated for prior
to the detection, and they inctude the symbol timing, the carrier
frequency, and the carrier phase. The generalized synchronization
problem deals with the estimation of these parameters from the
signals collected at the receiver front end.

Different techniques have been proposed for solving the
synchronization problem, but most of them are based on
approximate and heuristic methods because optimal estimation
of the parameters of interest is analytically intractable (see
[1] for a review of the subject). Broadly speaking, the
synchronization techniques found in the literature can be
categorized as decision directed (or data-aided) and non-decision
directed (or non-data-aided) [1]. Decision directed schemes
depend on the availability of reliable symbol estimates for
obtaining parameter estimates and, therefore, they usually require
training signals. The most common decision-directed schemes are
derived from (approximate) maximum-likelihood (ML) estimation
theory. Unlike data-aided techniques, non-data-aided methods do
not require knowledge of the transmitted symbols and, instead,
they exploit the statistics of the digital waveforms, such as
the second order cyclostationarity, which is exhibited by digital
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modulations [2]. Approximate ML estimation techniques can also
be used in non-decision directed metheds if the symbols are treated
as random variables with known statistics | 1].

Sequential Monte Carlo (SMC) techniques [3] (also referred
to as pariicle filtering methods) are powerful tools for Bayesian
estimation that employ discrete measures with random supports
for representing posterior distributions of unknowns of interests.
Recently, SMC has been successtully applied in communications
including to joint estimation and decoding of space-time trellis
codes [4] and equalization [5, 6]. The SMC approach is also
potentially useful for joint symbol detection and synchronization
because it provides a way to numerically compute optimal
estimators when exact solutions cannot be derived analytically
[7]. In order to apply common SMC algorithms, e.g., sequential
importance sampling (S1S), the observed signal needs to be
written as a dynamic system in state-space form. Several authors
have addressed the problem of symbol detection with SMC
methods, but under the assumption of perfect knowledge of the
synchronization parameters [8]. However, as we have already
discussed, the actual values of some of the system parameters
{propagation delay, phase and frequency offsets) are completely
or partiatly unknown, and they must be estimated.

In this paper we propose a method based on particle filtering
that jointly detects the transmitted symbols and measures their
timing. The algorithm is derived by considering an extended
dynamic system where the symbol delay and the transmitted
symbols are state variables. Specifically, the delay is modeled
as a first-order autoregressive (AR} stochastic process, while the
transmitted symbols are independent and identically distributed
{i.i.d.) random variables from a discrete uniform distribution. In
this way, both symbols and their delays can be optimally estimated
using a particle filter.

The remaining of the paper is organized as follows. Section
2 describes the system model. The proposed algorithm for joint
symbol detection and timing estimation is presented in Section 3.
[llustrative computer simulations are shown in Section 4. Finally,
Section 5 contains our conclusions.

2. SIGNAL MODEL

Consider a digital communication system where symbols, {s },
from an arbitrary alphabet are transmitted in frames of length A,
The noisy received complex envelope for any linearly modulated
signal has the form

M-1
¥it) = 2 smg (t — mT + 7(8)) &/ 4 u(t)

m=0
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where g(¢) is the modulation pulse waveform, T is the symbol
period, 0 < 1(¢) < T is the time-varying symbol delay, # and w
are the carrier phase and the carrier frequency offsets, respectively,
and v(t) is complex additive white Gaussian noise (AWGN).

The equivalent discrete-time signal model after sampling is
given by

M-—1
Y= Y Smg(kTy —mT + el Foh 4y,
m=0

where y, = y(kT.), vx = v(kTs), k =0, ..., K — 1 denotes the

sample discrete-time index, T is the sampling period, N; = L

is the number of samples per symbol, v = 3= T is the norma]izqf:a
frequency offset, and 7. = v{kT). Note that, after sampling, the
noise term v (k7% ) remains white with variance o2,

Without loss of generality, let us assume that g(£) is a causal
pulse with finite duration. This happens in practical situations due
to the use of truncated Nyquist pulses (i.e., time-shifted raised-
cosines with limited duration). Therefore, we can express the
received signal as

k
: s 2r
Yo = E smg(kTs — mT + 73)e/ el %5 4y
m=k—L

where L + 1 is the Inter-Symbol Interference (ISI) span with the
assumption that I < M. Using vector notation, we arrive at the
convenient representation

Uk =ejgskTgk(Tk,V) + g, ¢}

where sy, = [$k—1L, ..., sk]T isan (L + 1) x 1 vector, and

g(kTy — (k — L)T + ) ¥ek”

g(kTy — (k= L+ DT + )l o
g (e, v) = .

9(KTs — kT + )& B+

is an (L + 1) x 1 vector that represents the channel.

In general, the objective is to jointly estimate the transmitted
symbols, sm, m = 0 : M — 1, the signal timing, 7%, the phase
rotation #, and the frequency offset, v, using the received signal,
yo:Kk-1. For clarity of presentation, however, in this paper we
restrict ourselves to the problem where only the symbols and the
delays are unknown.

3. PARAMETER ESTIMATION USING PARTICLE
FILTERING

Following [9], we can model the symbol timing as a first order AR
process,

Te = aTe-1 + g (2)
where the perturbation variable, uy, is assumed to be a zero-mean
Gaussian with variance o2, The values of a and o2 depend on the
transmitter and receiver timing jitter. For negligible Doppler shifis
and stable local oscillators at both ends, the value of a should be
set close to one, and &2 should be chosen very small [9].

In the sequel, we assume that the carrier phase and frequency
offsets, § and v respectively, are correctly compensated for and
that the received signal is sampled at the symbol rate, 1.e., T = T,.
Under these assumptions and taking into account the structure of

the symbol vectors due to 151, we can combine (2) and (1) to obtain
the following state-space representation of the communication
system:

:; z ;::'11 __t :;': } state equation
ye = sp glme) + v observation eguation
where g(74) = [o(LT + &), g((L = DT + 7., ()]
o010 --- 0
g o 1 -+ 0
S=:1
oo 0 - 1
a0 o0 --- 0

isan (L + 1) x (L + 1) shifting matrix and dy, = [0,...,0,5x]"
is the (L + 1) x 1 perturbation vector that contains the new
symbol, sx. Note that the system state at time % is given by
(sk, 7). The model parameters, q, oﬁ, aﬁ and L, are assumed
fixed and known, and we focus on the joint estimation of the

symbols, sp.pr—1 = {S0,...,8m—1}, and the delay process,
Tom-1 = {70,..-,7Ta—1}, from the available observations
Yordi—1 = {yo,. .., Ya—1}.

From a Bayesian perspective, all information relevant for
the estimation of {so., 7o } is contained in the joint posterior
probability distribution of the system state’ p(so.x, To.k Yok )-
Unfortunately, the estimation of the latter density is analytically
intractable and, thus, it is not possible to obtain estimates
(e.g., minimum mean squared error or maximum a posieriori
probability) of the state sequence in closed-form. Therefore, we
resort to the sequential importance sampling (S1S) methodology
[10]. The basic idea behind SIS is to approximate the posterior
distribution by means of a discrete measure with random support
that can be recursively updated as new observations become
available. More specifically, p(so.x, To:x|Yo:x) is approximated
using a set of N particles, {(so;k,To:k)(n)}f:l, with associated
importance weights, wgc"), The particles are samples from an
importance function, m(8g.x, T0.x ), With the same support as the
true posterior distribution, and the weights are computed as

p(souk, To:x|yo:n)

(n)
o
Wk T {S0uk, To:%)

It can be shown [7] that the estimate

N
Blso, Toklyor) = D w6 ((see, To:x) = (s0:k, 704 )"™)

n=1

where §(-) is Dirac’s delta function, converges in mean squared
error to p(so.k, To:6{yo:k) as N — oc.

The most salient feature of SIS methods is the possibility to
recursively update the particles and weights at time & when a new
cbservation, yx41, 1s available. Indeed, if the importance density
is factorized as

k
(S0, Tok) = | [ wilsi, )
=0

'Natice that estimating so.p given yg.k is completely equivalent to
estimating sg.; given the same observations.
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then the particles and weights are updated as

(ke 1, Tt 1™~ g (841, ThgL)

(m) (™ pluegalsl AR i i)
k

wp| & w i)
kL ""c+l(’§c+1="'k+1)

hence the sequentiality of the algorithm.
The efficiency of S1S algorithms largely depends on the choice
of. the importance function. The optimal importance function is

1 (Skt1; Th1) = P(Sk+1,7'k+1f9 (),ykﬂ)
o« plsis|si ,Tk+1.yk+1)
x p{Tk+llT}£n)) yk+1)1 (C)]

which can be shown to minimize the variance of the importance
weights [7]. Unfortunately, the last factor in (4) is difficuit to deal
with, hence we propose to use

a1, rr (T i)
(5)

instead. The SIS algorithm for joint timing estimation and symbol

detection using the importance function (5) is described below:

Th41{Sk£1, Thp1) X p(sk“!si”),

1. Initialization. We assume knowledge of the prior distribution
of the state, i.e., p{s_1, 7—1). This is reasonable in practice. The a
priori density of the symbol delay is uniform in (=7/2,T/2) or,
equivalently, in (0,T) [1]. Also, in digital communication systems
where symbols are transmitted in frames, the waveform preceding
the first information symbol is a system design parameter and,
therefore, is known by the receiver (e.g., the fail bits in normal
(GSM bursts). Therefore, the vector s—; is known in practice.

As a consequence, the SIS algorithm is initialized at k = —1
as 8™ = s and T ~ Y(0,T), n = 1,2,...,N. All the
particles are equally weighted, i.e., w(vnl) =1/N.

2. Importance sampling. At time k, the discretc measure
of the particle filter computed via the SIS algorithm is
{s(”), (=}, ,(C")},‘:;]. When yy+1 is observed, the state is
propagated one time step using the importance function (5).
Sampling from this function is practically achieved in two steps.
First, the delay is sampled according to

T ~ Narn™. o))

where M{(u,o”) is the Gaussian distribution with mean g
and variance o. Then, the vector s\, is sampled from

k41
p(sk+1|s§cn),1—;51)1,yk+1). Since the transmitted symbols are

1.i.d. discrete uniform random variables, the latter density can be
decomposed as

P(yk+1|5k+1,5i " T;g:.)l)

N (se),02) 6

plser sy TV yre1)

where f"'gcl)l(sk-#l) = {5;(:1)1,.911- . -9](c 333k+1] g( (ﬂ))
Notice that, given s(") we only need to draw the new symbol,

sg7, in order to build sV Let S = {Si,..,5s} be the

modulation alphabet. According to (6), we can assign posterior

probabilities to the symbols in & and derive the probability mass
function
PN (ser1) = plsisr = Silst, 7T pear)

N (.Uk+1(SJ): Uv)
EsesN (uk’ﬁl(s),oﬁ)

)

for n = 1,...,N. Therefore, we draw 55:21 ~ (5541} and
build SS:H [SScn—)LH: 3!21)1

3. Weight update. Once the new particles have been drawn, the
importance weights are updated, Substituting (6), (7) and (5) into
(3) yields

) (n)p(yk+1‘5k+1=7121)1)13(51&?17 Igi)lls(n)irk"))

Wiy
p (5521 )p(TJETl |Tkn))

= w" YN (uL’;’1<S),o:) pslsE)

Ses

o« w” 3N (uli(9),0%)

Ses

where we have used that s,c +1 and T,ET_:_)I are independent given s{_")

and T,E"). In practice, the weights are computed as

a7 = wf® 3N (u0h(9),07)

Ses

and then normatized, w,(ci)l = (ZN ks}rl) B i'f)fci)l

4. Estimation. The particle filter can be used to approximate any
kind of estimator of the state variables at time & + 1, or the full
state trajectory at time M. Here, we consider the minimum mean
square error {MMSE) estimate of the delays,

~ — (n) n}
Tok+1 = Z To. k+1“’l(;+1

and maximum a posteriori (MAP) of the symbol estimates,

0k

80:k41 = arg max {Z 6(50 kel so;k+1)w§c1)1} .
5. Resampling. It can be shown that the variance of the
importance weights, w,(;:_)l, can only increase stochastically over
time [7]. This means that, after a few time steps of the standard
SIS algorithm as described so far, the majority of the normalized
importance weights have negligible values and only a few of the
particles in the filter have significant weights, i.e., only a few
particles are really useful. The usual solution to this problem
is to resample the existing particles {7]. Intuitively, resampling
consists of discarding those particles with negligible weights and
replicating those with higher weights. In multinomial resampling,
for instance, /N new trajectories are created by sampling the

discrete set {{Sx41, 7e41)}_, with probabilities m,(cl)l The
resampled trajectories are all equally weighted (i.e., all importance
weights are reset to 1 /N).

The recursive steps of the proposed algorithm are summarized

in Table 1.
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For k = 0 to M (total number of symbols)
Forn = 1to N (total number of particles)
Draw T,E__n) ~ N(CET;E?D Uu)
Draw 5" ~ p™ (54) o N (™ (1), 0})
Build s\ = [sft"_)L, st
Update weights ﬁ;,(c“) = w,(c"_)1 ses N(pfc”)(S), a2)
Normalize weights w ™ = (Z:V:I u”;,(:)) wl™

Resample if Negy = < Nf2

L
S ()
Timing recovery and symbol detection
Py _ N n (n)
fom—1 =30, Té:n)/l—le—l

~ N
So.M—1 = argilaXs, ,r_q {Zn=1 5(9[(]?[24'—1 - SOiM-l)wg‘fL)—l}

Table 1. SIS with resampling algorithm.

4. COMPUTER SIMULATIONS

We have verified the performance of the proposed algorithm by
computer simulations of a system with BPSK modulation, IS span
L 41 = 3 and time-limited causal raised-cosine pulses with a
roll-off factor «« = 0.7. The ceefficient of the AR process, a,
used to model the dynamics of the symbo} timing is 0.999, and the
variance of the additive noise u: is o2 = 0.0001.

Figure 1 depicts the Bit Error Rate (BER) attained by the
proposed algorithm for different values of the Signal-to-Noise
Ratio (SNR) when the number of particles used to obtain the
estimates is N = 50. It is apparent that the achieved BER
with unknown symbol timing is very close to the BER obtained
considering the same particle filtering method but with known
symbol timing. We have also compared the proposed algorithm
with the optimal detector given 0. and known 7. It is clear that
the performance of the proposed method is very close to this lower
bound.

Figure 2 shows one realization of the actual variation of the
normalized symbol timing error and the corresponding estimates
for a 2 dB and 12 dB SNRs. As seen from the figure, the
proposed algorithm tracks the variation of the symbol timing quite

accurately.
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Fig. 1. BER as a function of SNR for known and unknown symbol
timing.

5, CONCLUSIONS

A new algorithm for joint symbol detection and timing estimation
based on particle filtering is proposed. Our computer simuiation
experiments show an adequate performance both in terms of BER

— oot
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Fig. 2. Actual and estimated 7 for two different SNRs.

and tracking of the symbol timing. The method reported in
this paper is limited to problems where only the symbol delay
is unknown. A logical continuation of this work will include
research on symbol detection when additional parameters in
synchronization problems are unknown. The proposed algorithm
is computationally intensive, However, SMC methods, and
specifically SIS, are highly parallelizable and suitable for VLSI
implementation.
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