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ABSTRACT

Particle filtering has drawn much attention in recent years
due to its capacity to handle nonlinear and non-Gaussian
problems. One crucial issue in particle filtering is- the se-
lection of importance function. In this paper, we propose a
new type of importance function, which possess advantages
over both the posterior and the prior importance functions.
In addition, we demonstrate the use of the proposed im-
portance function in blind detection in flat fading channels.
Simulation results show its efficiency and performance.

1. INTRODUCTION

Adaptive filtering methods have found wide range of appli-
cations in science, engineering, and finance. Among them,
a group of new algorithms known as particle filters [1] has
drawn much attention in recent years. Based on Monte
Carlo sampling strategies, particle filters have strong po-
tential for tackling nonlinear and non-Gaussian problems
[1].

One crucial issue in particle filtering is the selection of
the importance function. The two choices that are most
seen in the literature are the posterior and the prior im-
portance functions. The posterior importance function, al-
though minimizing the variance of the importance weights,
is often almost impossible to use due to difficulty in de-
termining the corresponding weights. Therefore, the prior
importance function is usually adopted. A major disadvan-
tage of the prior importance function is its ineffectiveness
that leads to poor filtering performance. Other algorithms
including the auxiliary particle filter have been proposed to
improve its effectiveness [2].

In this paper, we look beyond the above two choices and
propose a new type of importance function. It is a hybrid
of the aforementioned importance functions. This impor-
tance function leads to more effective algorithms than the
prior importance function because it uses the most recent
observations. It is also less restricted than its posterior
counterpart, and is thus applicable to more problems.

As an application of our proposed importance function,
the problem of adaptive blind detection in flat fading chan-
nels is studied. A similar problem has been addressed in [3].
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However, here we consider a more realistic situation, i.e., we
assume that the noise variance is unknown. Consequently,
the scheme proposed in [3] is no longer feasible.

The paper is organized as follows: The particle filter is
briefly described in Section 2. The posterior and the prior
importance functions are discussed in Section 3. In Section
4, the new hybrid importance function is proposed, and the
computation of its weights is outlined. In Section 5, blind
detection in flat fading channels by particle filtering with
the proposed importance function is studied. The simula-
tion results are shown in Section 6. Concluding remarks are
provided in Section 7.

2. THE PARTICLE FILTER

We consider dynamic systems that are described by state-
space models. A state-space model can be represented by

the equation:
Xt =f(xt—1)u¢) (1)
Y = g(xe, ve)

where f(-) and g(-) represent the state and observation
functions respectively, x; is a vector of state parameters
at time ¢, y: denotes the observations, and u; and v; are
the two noise vectors all associated with time ¢. Now let
x0:t = {Xo,:*,%:} and yo:t = {Yo,--,¥y:} represent a col-
lection of states and observations from 0 to ¢, respectively.
Our aim is then to estimate x; sequentially based on the
observations yo.;. Under a Bayesian paradigm, the poste-
rior distribution p(x¢|yo::) is the key entity for estimation.
Note that when f(:) and g(-) are linear with respect to
the states and u,. and v, are Gaussian, p(x¢|yo::) can be
derived exactly and the well known Kalman filter provides
the optimum solution. However in cases of nonlinearity and
non-Gaussianity, this distribution is usually difficult to ob-
tain and, furthermore, the subsequent calculation for the
Bayesian estimators could be also prohibitively complex.
To circumvent these difficulties, the particle filters adopt
simulation-based approaches of which the basic technique
is the sequential importance sampling [1].

To illustrate the particle filtering algorithm, suppose
that at time t — 1, we have collected IV sets of properly
weighted samples x§)_, = {x¥,...,x9),} and their asso-
ciated weights wf’_)1 for j = 1,---,N. In particular, the

weighted samples {xJ,,_;, w¥ )}f’:l are distributed approxi-
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mately according to p(Xo:t—1|yo:t—1). When the new obser-
vations y, arrive, the update of the sample sets from ¢t — 1
to t is carried out as follows:

The Particle filter
e Forj=1,---,N

(5)

—Sample b3 importance function
) (])}

q(xt|x0 I _1)Yo:t) and set x(’) = {xgi_1,x

from an

— Calculate the weight by

2D = @ (%09 [yo:e)
v = Wi ®
PG 1lyo:e-1)a(x x5 1, you)
@
e For j=1,..-, N, normalize the weights:

v = —F—5 ®)

The resulting weighted samples {x{/?, w" }/L, approximate
p(x¢|yo:t), and the Bayesian estimator of the states x; can
be easily calculated using the set {x(") gj )}f’=1 For in-
stance, the minimum mean square estimator (MMSE) of x,
is computed according to

N
XtMMSE = Z xP ), (4)
i=1

The choice of the importance function is essential because
it determines the efficiency as well as the complexity of the
particle filtering algorithm.

3. THE IMPORTANCE FUNCTIONS
3.1. The posterior importance function

The posterior importance function is defined as q(xdxé{ﬁ_l,
Yoit) = p(x;le,{z, Yo:t). If it is used for generating particles,
the importance weights can be obtained from

'“_’?) = wgl—)ﬂ’(yt'x: 1y Yoi—1). (5)
This choice of the importance function is optimal in the
sense of minimizing the variance of the importance weights.
As a consequence, more effective samples can be generated
and better estimates produced. However, a major difficulty
in its use is the calculation of the weights. Note that it
requires analytical evaluation of p(y,]xgl_)l,yozt_l), which
involves complex high dimensional integrations. This diffi-
culty prevents the posterior importance function from being
widely used.

3.2. The prior importance function

The prior importance function is defined as q(xtlxé’;z_l,
Yoit) = p(xtlxm ). Compared with the posterior impor-
tance function, it is attractive due to its simplicity in im-
plementation. First, we can see that sampling from the

prior densities is often straightforward. Second, since the
weights associated with this importance function are

—(J) — o)

= w? p(yelx{, you-1) (6)

where p( y¢|x(’ ), Yo:t—1) is simply the likelihood function at
time ¢, the calculation of the likelihood function is usually
easy. Despite the simplicity of applying the prior impor-
tance function, the implementation of the particle filter with
it is discouraged because it can be very inefficient. Since no
information from the observations is used, the generated
particles often come from the tails of the posterior distri-
butions, and as a result, the weights have large variations
and the estimation results are poor.

4. A HYBRID IMPORTANCE FUNCTION

Consider the situation where the use of the posterior impor-
tance function is extremely difficult. In the cases analyzed
here, we assume that the state parameters can be divided
into two independent pa:ts €8, Xp = {Xu,xzt} such that
generation from p(melx“ 1) and p(xiexS), x¥)_ 1, yo)
can be carried out easily. In these cases, we propose to use
the following importance function

‘I(Xt|xot pYyoi) = p(x1¢|x2t »xt()Jg 11y0:t)P(x2t|x(2],2—1)

where x4 is the proposed sample at ¢ from p(xzt|x2 1
Apparently, (7) is a hybrid between the posterior and the
prior importance functions. The weights of the particles
generated by the hybrid importance function can be derived
from (2). An outline of the derivation is shown in (8). We
note from (8) that the distribution p(yg|x2t ,x((,{z_l, Yo:t—1)
is critical in the computation of the weights, and that there-
fore, its analytical form should be available.

The advantage of the proposed hybrid importance func-
tion over the posterior importance function is in the easy
updating of the weights. In addition, since the hybrid im-
portance function includes information from the observa-
tions, it generates samples with smaller weight variance
than the prior importance function.

The key to the applicability of this importance func-
tion is the assumption of knowing the analytical form of
p(x1¢|x2t X @) 1> Yo:t) (including the normalizing constant).
Cases that fall within the assumption, for instance, are the
ones where the x;¢’s are discrete variables, and given xa,
y¢ is linear with x);,. These conditions resemble those of
the mixture Kalman filter [4, 3]. However, in the mixture
Kalman filter, they provide the possibility to maginalize the
nuisance states x;;. On the contrary, in our case x;; are the
states of interests, and the conditions lead to a more effi-
cient and effective importance function. In fact, the mixture
Kalman filter can be integrated with the use of the hybrid
importance function to further enhance the performance of
the method. In addition, other techniques like the smooth-
ing kernel [5) can be mcorporated to reduce the variance of
the weights.
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= w?—)lp(ytlxglt)’xgt)—h yO:t—l) (8)

5. ADAPTIVE BLIND DETECTION IN FLAT
FADING CHANNELS WITH UNKNOWN
NOISE VARIANCE

5.1. Problem formulation

We consider detection of digital signals in flat fading chan-
nels. In the baseband, at time ¢, the received signal y; is
obtained from the M-ary transmitted signal s; as

yt = hese + et (9)

where h: and e; are the complex fading coefficients and ad-
ditive ambient noise. The noise e is assumed to be complex
Gaussian with zero mean and unknown variance o2. The
flat fading channel is further assumed to be a Rayleigh pro-
cess, and thus h; is a complex Gaussian process. To model
the temporal correlation of the fading channel, a second
order autoregressive (AR) process is used such that

ks = —arhi-1 — a2hi—2 + v (10)

where a; and a2 are the known model coefficients, and v¢ ~
CN(0,1). The coefficients are closely related to the physical
characteristics of the underlying fading process and can be
determined by fitting the autocorrelation function of the
true fading process (6].

From a particle filtering perspective, we need to formu-
late the problem in a state space representation. It can be
expressed as

gy = 0?—1
h; = Dh,_; +guve 1y
Yt = gThg.ig + et

where h; = [, hs-1]7, g =[1 0]", and

| —a1 -a2
o=+ =]
At any instant of time ¢, the unknowns of the problem are

8¢, by and o7, and our main objective is to detect the trans-
mitted signal s; sequentially without sending pilot signals.

5.2. A particle filtering solution

In the implementation of particle filtering, the first rule of
thumb is to marginalize out as many nuisance parameters
as possible. Here, we observe that given o7 and s, (11) is

linear regarding h:. Therefore, the mixture Kalman filter

can be used to marginalize out h¢. Next, we are ready to
apply particle filtering on s: and of. In choosing the im-
portance function, we notice that the posterior importance
function is intractable due to the presence of of. Conse-
quently, one would usually resort to using the prior impor-
tance function. However, since s; is a discrete variable, we
can instead adopt the hybrid importance function which is
taken as

Q(stu ”?|S§{.)1, ‘7391)7 yO:t)

p(3elo} D, you)p(otlo?C))

p(selo7 D, yo.)8(079)) (12)
where ¢20) = afij,), 8(-) is the Dirac delta function, and
the last equality is obtained based on the state equation

o? = o?_;. The corresponding weight is obtained from (8)
as

1l

WEJ) wg_)lp(ygla?(j), Y(m-l)
w® Y plyelse, o7 you-1)  (13)
€A

il

I

where 4 = {a1,---,am} is the alphabet space of s;.

Next, we discuss the sampling of s; and o7 from (12)
and the calculation of the weight (13). First of all, we notice
that no sampling for o} is required. Although it simplifies
the sampling process, the absence of sampling introduces
lack of diversity on o7. To address this problem, smoothing
kernel techniques can be used during the resampling proce-
dure. As for s, since it is discrete, the sampling of it only
requires the evaluation of the importance function on A. In
particular, we have
p(selo??, you) o< p(yelse, o727, Yoie—1) (14)
Now, considering also (13), we find that both the sampling
of s; and the calculation of the weight are achieved by com-
puting p(ytlae,cr,z(J ), yo:e—1). This distribution is the like-
lihood function after marginalizing out h¢ and can be ob-
tained from the predictive procedure of the Kalman filter
as

p(uelse, 079, you1) = N(mf, ) (15)
where m{) = g"Dp{?, and ¢’ = g"2Pg + o2 with
E = DP?_)ID"I +g"g and H denoting the Hermitian trans-
pose. Moreover, p{), and PY), are computed from the
update steps of the Kalman filter that are expressed, in
the time index ¢, as p) = Dp{, + K& (y, — m{) and
PY) = (1~ KPgs)nd) where K = 5 gcd)-150),
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Figure 1: Comparison plot of the BERs between the particle
filtering detectors using the hybrid and the prior importance
function at various SNRs.

6. SIMULATION

The performance of the proposed particle filtering scheme
using the hybrid importance function is studied in this sec-
tion. The coefficients of the fading channel model (10) were
a; = —1.99348 and az = 0.996. They reflect a physical
scenario of a Doppler spread of 113 Hz and data rate of
10 Kbps. This AR process is normalized to have a unit
power, and thus the signal to noise ratio (SNR) is obtained
as 10log(1/0?). The transmitted signal is BPSK modulated
with differential coding. In the following examples, four
different particle filtering schemes were examined. Two of
them used the hybrid importance function: one with a re-
sampling procedure at every 10 transmissions (HIF-R) and
the other, with a smoothing kernel for o2 applied at every
resampling step (HIF-RS). There were also two schemes
that used the prior importance function. One of them em-
ployed resampling at every 10 transmissions (PIF-R) and
the other, used both resampling and a smoothing kernel
(PIF-RS). Furthermore, for the ones using the hybrid im-
portance function, 150 particles were drawn at every fil-
tering step. However, 2000 particles were generated for
the ones using the prior importance function. Finally, the
MMSE estimator was used to estimate s;.

In the first example, we provide the bit error rates (BERs)
of several particle filters under various SNRs. To compute
the BER at a tested SNR, a symbol stream was transmit-
ted continuously until 300 errors were collected (to allow
the algorithms to reach the stable state, the errors among
the first 100 symbols were ignored). We plotted the simula-
tion results in Figure 1. We find that, although the PIF-RS
solution provided improvement over the results of PIF-R,
the HIF-R clearly achieved the best performance. In addi-
tion, it only used about 1/13 of the number of particles used
by the two PIF filters. These facts clearly demonstrate the
better efficiency and effectiveness of the hybrid importance
function. :

In the second example, we compared the performance
of the HIF filters with the performance of the known chan-
nel and genie aided detectors, where the noise variance was
known. These two detectors served as benchmarks for lower

- - HIF-R

~— HIF-RS

—o— Genie aided
—+—_Known channel

BER

10 15 20 25 30 35
SNR

Figure 2: Plot of the BERs at various SNRs of the two
HIF solutions and of the known channel and genie aided
detectors.

bounds. We plotted the BERs vs SNRs in Figure 2. We no-
tice that by applying the smooth kernel to o2, big improve-
ments were achieved by HIF-RS. Especially, at high SNRs,
the performance of the HIF-RS filter approaches that of the
genie aided detector with known noise variance.

7. CONCLUSION

In this paper, we proposed a hybrid importance function
which encompasses advantages of both the posterior and the
prior importance functions. We have shown its application
to the blind detection in flat fading channels. Simulation
results showed much improved performance over the ones
that use the prior importance function.
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