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ABSTRACT

We address the problem of parameter estimation of chirplets,
which are chirp signals with Gaussian shaped envelopes.
The procedure we propose is an extension of our previous
work on estimation of chirp signals {5], and it is based on
MCMC sampling. For fast convergence of the MCMC sam-
pling based method, a critical step is the initialization of the
method. Since the chirplets have finite durations and may
or may not overlap in time, we propose initialization pro-
cedures for each of these cases. We have tested the method
by extensive simulations and compared it with Cramer-Rao
bounds. The obtained results have been excellent.

1. INTRODUCTION

Chirp signals appear in many phenomena of interest in sci-
ence and engineering including physics, radar and sonar.
For instance, in radar applications the chirp signals con-
tain information about distance and velocity of moving ob-
jects. Furthermore, human voice and sounds of animals
and insects can be decomposed into a series of chirp sig-
nals, and based on the decomposition, they can readily be
classified. The main characteristic of the chirp signals is the
linear change of their instantaneous frequencies, and there-
fore they have often been used in representing signals with
time varying spectra. Parameter estimation of chirp signals
has been of great interest in the past, and a wide variety of
estimation procedures have been proposed and studied in
great detail [2, 5].

Recently in the literature, increased attention has been
given to chirplet signals, which are chirp signals that have
Gaussian-shaped envelopes [1, 3, 6, 7]. They encompass
important signal transforms, such as the short-time Fourier
transform and the wavelet transform, and also, they rep-
resent the most general signal for which the Wigner distri-
bution is positive throughout the time-frequency plane [2].
Clearly, the chirplets have more variables than the stan-
dard chirp signals, and therefore the parameter estimation
of chirplets is more complicated.

Important work in developing estimation methods for
chirplets is presented in [1] and [6], where the parameters
of chirplet signals are limited to discrete values. They are
easier to implement, but do not always fit the underlying
signals well. The principles of maximum likelihood esti-
mation were used in the sub-optimal method proposed in
[7]. In [3] Markov Chain Monte Carlo (MCMC) sampling
{8] was exploited for the estimation of narrowband chirplet
signals. An adaptive chirplet based signal approximation
was proposed in [9].
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Here we extend some of our previous work on estimat-
ing chirp signals by the use of MCMC sampling [5]. MCMC
based methods produce samples that are drawn from a tar-
get distribution, which is usually the posterior distribution
of the parameters of interest. These samples can then be
used to compute estimates based on various types of cost
functions, or in general, to approximate the posterior it-
self. An important part of the procedure is its initializa-
tion. Initialization is particularly important for the prob-
lem of parameter estimation of chirp and chirplet signals
because the posterior densities of the parameters of these
signals are multimodal with many narrow peaks. In this
paper we describe a scheme for initialization of the MCMC
sampling that prevents trapping of the chain arcund local
maxima. of the posterior. Simulation results that illustrate
the performance of the method are also provided.

2. BAYESIAN PARAMETER ESTIMATION OF
CHIRPLET SIGNALS

The observed discrete-time sequence that is composed of K
chirplets embedded in noise is given by

K
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and n = ng,....,0 + N — 1 and 0 < ai,wr < 27. The
parameters Tk, wi and oy are the time center, frequency
and frequency rate of the k—th chirplet, respectively, and
Br controls the duration of the k—th chirplet. Each chirplet
can, thus, be described by the vector of parameters 8y
lak, Br, Tk, ar,wi]. The amplitude of the k-th chirplet, ay
is a complex number, and w{n] is a complex white Gaussian
noise (CWGN) with zero mean and variance o2, whose real
and imaginary components are identically distributed. We
see that the chirp signal is a special case of the chirplet,
which is obtained by setting f = 0.

Our approach to estimating 8 is based on the Bayesian
methodology, and so we are interested in the posterior dis-
tribution of §. Its relation to the prior and the likelihood is

given by

p(fly) o« p(y|0)p(6) 3)
where 6 = [6,,60,,...,0x,05]. We use uniform priors for
{Br, Tk, o, wi }, and the improper noninformative priors for
ar and 02, i.e., play) ~ const. and p(o) ~ 1/02,.
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We apply the Bayesian approach by MCMC sampling.
A Markov chain is generated whose target distribution is the
multivariate posterior distribution, and it is implemented
by sampling from lower-dimensional distributions. Once
we obtain the samples from the posterior distribution, we
can easily construct various point estimators.

The posterior distribution, p(8ly), is a highly compli-
cated function. We sample a, 02, by Gibbs sampling and
{Br, Tk, Wk, @k }x=1,...,k by the Metropolis-Hasting method.
If § denotes the most recent values of the parameters 6 in
the Markov chain, and 0_. represents all the parameters 6
except the ones next to the minus sign, the procedure can
be described as follows: set 2 = 0 and perform the iterations
along the following steps:

i+1
pe+y

. sample ~ p(Brly, é—Bk)

(i+1)
k

. sample o™ ~ p(axly,8-a,)

1
2
3. sample w,(cﬂ'l) ~ p(wkly,8-u,)
4
5

(i+1)

. sample 7, ~ p(Trly,0-+,)

. jointly sample u,(:+1),r,£i+1) ~ p(wk, Tk y,é—wn,—rk)
along the line given by (9) and discussed in the next
section, and set k =k + 1

. repeat steps 1 to b, until k = K
G+ ~ p(aly,6-a)

Qli+1)

. sample o, ~ P(Ui'y, é-o&,)

6
7. sample a
8
9. repeat steps 1-8 M times.

We sample o, Bi,wr and 7 in the first five steps, using
the random walk Metropolis-Hasting algorithm with Tay-
lor expansion around the current parameter values. Since
the posterior p(aly,f-a) is a Gaussian distribution, we can
sample a easily. As for o2, its posterior is an inverted
Gamma distribution, and the sampling of o2 is also easy.

3. CRITICAL ISSUES

There are two issues of great importance to our approach
to estimating the parameters of the chirplet signals. One
is the effect of unknown timings of the chirplets on the
convergence of the MCMC, and the other is the presence
of highly peaked local maxima in the chirpograms of the
chirplets [5]. The latter can lead to incorrect initialization
of the proposed MCMC method, and thereby to very slow
convergence of the Markov chain.

3.1. Effect of Unknown Timings of the Chirplets

The initialization of MCMC methods when they are ap-
plied to frequency estimation of sinusoids is usually done
by the periodogram. We are, thus, tempted to initialize
the MCMC sampling for chirplets by using chirpograms. It
turns out that this is not as straightforward, and as will be
shown below, their use without careful consideration will
provide only good initialization of the frequency rate but
not the frequency. In brief, without knowing the timing of
the chirplet, the estimated frequency will be inaccurate, and
therefore for good initialization we cannot use the original
definition of the chirpogram, but rather a modified version
of it.

For simplicity, we only present the case of data that
represent a single chirplet without noise, where the true

parameters of the chirplet are ai, 1, 71,w1, 1. The chir-
pogram is then given by
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Clearly, without knowing 71, the values of w and « that
maximize P(w,a) are moved from (wi,a1) to a different
value given by ((w1 — @171) mod 2n,@1). Thus, the initial-
ization of the frequency from the chirpogram depends on
71. So, we modify the definition of the chirpogram to

2
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where 0 < w,a < 27, 0 < 7 < N — 1. The discretized
version of it takes the form
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where 0 <1 < My, 0 < k £ M,, and My and M, are
positive integers that are not necessarily equal to N.
Furthermore, assume that the frequency rate a; of the
chirplet is known, and let 71 = 7 + A7 be the estimated
time center of the chirplet. Then, from (4) and under the
noiseless assumption, we get

N-1 2
P(w[f, ) = % Y y[nle~ T+ T (=0
n=0
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and the estimate for w; is

W, = argmax P(w|71, 1) = w1 + a1 AT (7)
w

From the above relations, we see that an estimation error of
the time center propagates in the estimate of the frequency.
Given «a; and 7y, the pair (w1,71) is initialized by the sets
of pairs

(@1,71) = (w1 + a1 AT, 71 + AT) (8)
where N R
w1l — @171 =W — Q171 (9)

This relationship is shown in Figure 1.

3.2. Mirror Points of the Chirplets

‘We now briefly discuss the mirror points of a single chirplet.
As expected, given 71, the chirplet signal does have mirror
points in its chirpogram. At the true location of the chirplet
in the frequency-frequency rate plane, (/1, k1), the magni-
tude of the modified chirpogram is equal to P(li,ki|m).
The magnitudes at the mirror points located at (I, k; +
0.5My) and (I1 + 0.5My, k1 + 0.5M,) are less than half of
P(ly,k1jm1). This will be a problem when we work with
multiple chirplets. For more discussion on this issue, see
[5].
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Figure 1: A contour of P{w,7|a1) of a chirplet signal with
parameters {81, 71,01, w1} = {0.01,44,0.6283,1.2566}, in
the vicinity of wy, 7.

4. INITIALIZATION PROCEDURE

QOur purpose here is to propose a simple procedure for find-
ing good initial values of all the parameters sampled by the
MCMC method. According to the degree of signal overlap
in time domain, we divide the problem into two categories:
overlapped chirplets and non-overlapped chirplets. For in-
stance, if the chirplet signals can be distinguished directly
from the signal energy in the time domain, we say that we
have the non-overlapped case (even if the chirplets are par-
tially overlapped). Otherwise the chirplets are overlapped.

4.1. Non-overlapped Chirplets

The following procedures are for single or multiple chirplets,
which may be slightly overlapped in the time domain. We
use the fact that these chirplets can be distinguished di-
rectly by the energy detector, and the initialization pro-
ceeds as follows:

Step 1. Initialization of 3, 7, and a

The energy of the observations during the presence of a
chirplet at time n is expressed by

z1[n] = ly [n]|* = |a|* exp(~B(n - 7)°) (10)

We can find the approximate values (&,7) from the max-
imum value of z; {n]. The parameter § can be estimated
easily by first taking the logarithm of z [n],

(11)

and then solving for 3, where we substitute for a and 7 their
estimated values.

log 21 [n] = 2log |a] — B(n — 7)?

Step 2. Initialization of o and w

The first order phase difference equation of the obser-
vations can be expressed as follows.

an) = yhlyh-1" (12)
o™ [n — 1]e? @t F) 4y
_B(n-=r)? a(n‘—-r)2
where b[n] = ae T, ¢ = S5 4+ w(n—71) and v{n]

15 a summation of noise product terms with the nonover-
lapping signal. We can find & by applying the periodogram
to z2[n]. The frequency w can then be obtained easily.
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4.2. Overlapped Chirplets

If the chirplet signals are overlapped, the above initializa-
tion procedure will not be suitable. Although, overlapped
chirplets cannot be separated in the time-domain, they are
distinguishable by its chirpogram. The initialization proce-
dure in this case is implemented as follows:

Step 1. Initialization of w and «

We assume that the time center is zero, and we find
(w,a) by applying (4). From the previous discussions, we
know that the maximum point is located at (&', &) and
W' = (w—ar) mod 2r-

Step 2. Initialization of =

Once (', @) are found, we de-chirp the chirplet signals
and find the maximum point of energy in time domain as
our estimation for 7. This is done according to

i

T arg max 'y[n]sf’[n]lz (13)

)

When 7 is estimated, we can update @ from
OT) mod 2x- That means w = &' +2kn+a7, and 0

where

s1[n) = exp (j(&)'n + %—nz)

Step 3. Update w

Here, we simply assume that §= 0.

4.3. General Procedure for Initialization

When there are multiple chirplet signals in the observed
data, we initialize the individual chirplets sequentially by
applying one of the two procedures discussed in the previ-
ous two subsections. We start with initializing the strongest
chirplet. Once it is initialized, that is, its set of parameters
are estimated, that chirplet a;s,, is reconstructed and re-
moved from the data y according to
yi =y~§]a1. (14)
The next chirplet is initialized from the data y; along the
same lines as the first chirplet. It is then reconstructed and
removed from y1, and a new set of data y2 is obtained. The
procedure continues until all the chirplets are initialized.

5. MCMC SIMULATION RESULTS

In this section we provide simulation results based on the
proposed initialization procedures. In the simulations, all
the parameters {a, 8,w, o, o2} are unknown and need to be
estimated, whereas the number of chirplets is known. We
present results for all the parameters except for a.

The results for a single chirplet embedded in CWGN
are shown in Figure 2. The parameters of the signal were
(B1,71,a1,w1) = (0.01,44,0.6283 ,1.2566), N = 100. The
figure shows 1000 iterations of the Markov chains. The val-
ues from the last 500 iterations are used to find the mimum
mean square error (MMSE) estimates. The estimation re-
sults with 100 trials under different SNRs are displayed in
Figure 3. They are compared with the respective Cramer-
Rao Lower Bounds (CRLBs). The performance for a single
chirplet follows the CRLB for SNRs down to —3 dB.
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Figure 2: A MCMC simulation result of single chirplet sig-
nal with (f1,71,a1,w1) = (0.01,44,0.6283,1.2566) . The
left top, right top, left bottom and right bottom are for
beta, time center, frequency and frequency rate in order.
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Figure 3: Estimation performance for a single chirplet un-
der different SNRs and compared with CRLBs (solid line),
respectively. The solid lines from top represent the CRLBs
for frequency rate (and ), frequency, and time center, re-
spectively. The symbols -, *, o, and + represent the results
for frequency rate, 3, frequency and time center, respec-
tively.

Next, we made experiments with two chirplets over-
lapped in the time domain. To the single chirplet signal
in the first experiment, we added another chirplet whose
parameters were (02, 72, a2,wz) = (0.01, 46, 1.0053, 1.8850).
The simulation were carried out under different SNRs and
the results are shown in Figure 4. Again, they are very close
to the CRLB, this time for SNR > 3dB.

6. CONCLUSION

‘We have proposed an MCMC sampling based method for
parameter estimation of chirplet signals. A critical part of
the method is its initialization. We have described an ini-
tialization that avoids lengthy trappings of the chain for
long periods around local optima of the posterior distribu-
tion and that leads the chain to quick convergence. The
generated samples by the chain are used to find various
point estimates or to approximate the posterior distribu-
tion. Further work on this approach includes estimation
of the chirplet parameters when the number of chirplets is
assumed unknown.
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Figure 4: Estimation performance for two chirplet signals
under different SNRs and compared with CRLBs (solid
line). The symbols -, ¥, o, and z represent the results for
frequency rate, 8, frequency and time center, respectively.
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